BFF Four: Are we Converging?

Nancy Reid

May 2, 2017

HOME / RESEARCH /

Fourth Bayesian, Fiducial, and Frequentist
Conference (BFF4)

Harvard University

i HARVARD
ay 1- 3, 2017 o3

Faculty of Arts and Sciences
Hilles Event Hall, 59 Shepard St, Cambridge, MA DEPARTMENT OF STATISTICS



Classical Approaches: A Look Way Back

Nature of Probability

BFF one to three: a look back

Comparisons

Are we getting there?

BFF Four

Harvard, May 2017

2/34



Posterior Distribution Bayes 1763

P
< g
THOMAS BAYES
1702 = 1761
5 y Nontonformist minister
L1L. An Efay towards folving a Problem in and mathematiciat
5 Originator of tle statistical
tﬁe Doftrine Cl)f Cbﬂﬁﬂ&f— By tbe [m‘e Rﬂ')‘ theory of probability, the basts
My Bayes, F. R. 8. communicated by Mr. 8 vt e
Price, iz a Letter 1o John Canton, A. M. Tivetera
E R.S. s 17311761
&7 centeitys
Dear Sir,
Read Dec. 23, J Now fend you an effay which I have
1763- found among the papers of our de- A 5

ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.
Experimental philofophy, you will find, is nearly in- With sn APPENDIX by R.Pric
terefted in the fubje of it; and on this account there
feems to be particular reafon for thinking that a com-
munication of it to the Royal Society cannot be im- Read st the ROYAL SOCLET ¥ Dec. a3, 17

proper. Szl 3

Publifhed in Vol. LIIL of the Philofophical Tranfad

Stigler 2013

BFF Four Harvard, May 2017 3/34



Posterior Distribution
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Read at the ROYAL SOCIET Y Dec. 23, 1763

Bayes 1763
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THOMAS BAYES

1702 = 1761

Nontonformist minister
and mathematician

Originator of the statistical
theory of probability, the basts
of most market research and
opinion poll techniques

lived here
~ 1731 = 1761
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(0] y°) = f(y°; 0)n(6)/m(y°)

probability distribution for 6
y0 is fixed

probability comes from 7(6)
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Fiducial Probability Fisher 1930

528 Dr Fisher, Inverse probability

Tnverse Probabzllty B£R. A. FisHER, Se.D., F.R.S., Gonville and
CaiusCollege; Stati ept., Roth d Experimental Station.

[Received 23 July, read 28 July 1930.]

0 1890-1962
df = ——F(T,6)do Statistician and
o0 Geneticist
lived here
fiducial probability density for 6, given 1896-1904

statistic T o

probability comes from (dist'n of) T

“It is not to be lightly supposed that men of the mental calibre of Laplace and
Gauss ... could fall into error on a question of prime theoretical importance,
without an uncommonly good reason”
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Confidence Distribution

SOME PROBLEMS CONNECTED WITH STATISTICAL INFERENCE
By D. R. Cox
Birkbeck College, University of London*

1. Introduction. This paper is based on sn invited address given to a joint
meeting of the Institute of Math istics and the B ic Society
at Princeton, N. J., 20th April, 1956. It consists of some general comments, few
of them new, about statistical inference.

Since the address was given publications by Fisher [11], [12], [13], have pro-
duced a spirited discussion [7], [21], [24], [31] on the general nature of statistical
methods. I have not attempted to revise the paper so as to comment point by
point on the specific issues raised in this controversy, although I have, of course,
checked that the literature of the controversy does not lead me to change the
opinions expressed in the final form of the paper. Parts of the paper are con-
troversial; these are not put forward in any dogmatic spirit.

2. and decisic A istical inference will be defined for the

Cox 1958; Efron 1993

e "Much controversy has centred on the distinction between fiducial and

confidence estimation”

e “ ... The fiducial approach leads to a distribution for the unknown parameter”

e “... the method of confidence intervals, as usually formulated, gives only one
interval at some preselected level of probability”

e “..in ... simple cases ... there seems no reason why we should not work
with confidence distributions for the unknown parameter

e “These can either be defined directly, or ...

all confidence intervals”

introduced in terms of the set of

BFF Four Harvard, May 2017
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Confidence Distribution Cox 1958: Efron 1993

1, and that inferences are desired for 6 = #( u), a real-valued function of p. Let 6.(a)

be the upper endpoint of an exact or app ided level-a d interval
for 6. The standard intervals for example have
0.(a)=0+562, (1-1)

where § is the maximum likelihood estimate of 6, & is the Fisher information estimate
of standard error for 6, and z* is the a-quantile of a standard normal distribution,
2(® = ®~!(a). We write the inverse function of 6,(«) as a,(6), meaning the value of &

This content downloaded from 142.150.190.39 on Sun, 09 Apr 2017 20:35:40 UTC
use subjeet to hiip://about jstor.org/terms.

4 BRADLEY EFRON

cor ding to upper endpoint 6 for the d interval, and assume that o, ()
is smoothly increasing in . For the standard intervals, o, (0) =®((6— é)/c‘r), where @
is the standard normal cumulative distribution function.

The confidence distribution for 6 is defined to be the distribution having density

71(8) = da,(6)/ d. (1-2)
e “assigns probability 0.05 to ¢ lying between the upper endpoints of the 0.90
and 0.95 confidence intervals, etc.”
e “Of course this is logically incorrect, but it has powerful intuitive appeal”

e “... no nuisance parameters [this] is exactly Fisher’s fiducial distribution”
Seidenfeld 1992; Zabell 1992

BFF Four Harvard, May 2017 7/34
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Structural PI’Obablllty Fraser 1966

Biometrika (1966), 53, 1 and 2, p. 1 1
Printed in Great Britain

Structural probability and a generalization*

By D. A. 8. FRASER
University of Toronto

SUuMMARY
ion of fiducial ility for ion models,
is dlscussed in terms of an error variable. A i condition is i i

on the par: space; this the consi under
Bayesian manipulations found in Fraser (1961). An extension of structural probability for
real-parameter models is developed; it provides an alternative to the local analysis in
Traser (1964b).

1. INTRODUCTION
Fiducial ility has been for location and jon models
(Fraser, 1961) and compared with the prescriptions in Fisher’s papers (Fraser, 19635). The
transformation formulation leads to a frequency interpretation and to a variety of con-
sistency conditions; the term structural probability will be used to distinguish it from
Fisher’s formulation.

e “are-formulation of fiducial probability for transformation models”
e “This transformation re-formulation leads to a frequency interpretation”

e achange in the parameter value can be offset by a change in the sample
y—-y+a6—0-—a

e a local location version leads to:
Likelihood
0 —_——
0 f(y",0)

0
df = _%F(yv 0)d6 = —%F(}”@)ﬁ
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Significance Function

P()
1 L )
—————— score
—-— likratio
3rd-order
exact

0 1 2 3 4 5 6

Figure 5. The Standardized Maximum Likelihood Estimate, Stan-
dardized Score, and Signed Likelihood Ratio Produce Three Approx-
imations for the Significance Function. Model: location log gamma(3);
data: v* = 3.14.

e “from likelihood to significance”

Fraser 1991

e “significance records probability left of the observed data point”

"likelihood records probability at the observed data point

”

¢ the significance function is a plot of this probability

as a function of 6

e “the full spectrum of confidence intervals is obtained ...
suggesting the alternate name confidence distribution function

BFF Four Harvard, May 2017



Nature of Probability Cox 2006; R & Cox 2015; Zabell, 1992

e probability to describe physical haphazard variability aleatory
e probabilities represent features of the “real” world
in somewhat idealized form
e subject to empirical test and improvement
e conclusions of statistical analysis expressed in terms of
interpretable parameters
e enhanced understanding of the data generating process

e probability to describe the uncertainty of knowledge epistemic

e measures rational, supposedly impersonal, degree of belief,
given relevant information Jeffreys

e measures a particular person’s degree of belief, subject
typically to some constraints of self-consistency
Ramsey, de Finetti, Savage
¢ often linked with personal decision making necessarily?

BFF Four Harvard, May 2017 10/34



... hature of probability

BFF Four

Bayes posterior describes uncertainty of knowledge
probability comes from the prior

confidence intervals or p-values refer to empirical probabilities

in what sense are confidence distribution functions,
significance functions, structural or fiducial probabilities to be
interpreted?

empirically? degree of belief?
literature is not very clear imho

we may avoid the need for a different version of probability by
appeal to a notion of calibration

Harvard, May 2017
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BFF 1 -4

BFF Four

posterior distribution
fiducial probability
confidence distribution
structural probability
significance function

belief functions

Harvard, May 2017

objective Bayes
generalized fiducial inference

confidence distributions and
confidence curves

approximate significance
functions

inferential models
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What has changed?

computation

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

R

STRUGGLE NO MORE!
T™M HERE TO SOLVE
T JITH ALGORITHINS!

\

BFF Four

Harvard, May 2017
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Objective Bayes Berger, BFF4, e.g.

BFF Four

noninformative, default, matching, reference, ... priors

we may avoid the need for a different version of probability by
appeal to a notion of calibration

Cox 2006, R & Cox 2015
as with other measuring devices
within this scheme of repetition, probability is defined as a
hypothetical frequency

it is unacceptable if a procedure yielding high-probability
regions in some non-frequency sense are poorly calibrated

such procedures, used repeatedly, give misleading
conclusions
Bayesian Analysis, V1(3) 2006

Harvard, May 2017 14/34



... objective Bayes

BFF Four

pragmatic solution as a starting point
some versions may not be correctly calibrated
requires checking in each example

calibrated versions must be targetted on the parameter of
interest

only in very special cases can calibration be achieved for more
than one parameter in the model, from the same prior

the simplicity of a fully Bayesian approach to inference is lost
Gelman 2008; PPM LW

Harvard, May 2017
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Confidence Distribution Xie & Singh; Hjort & Schweder

BFF Four

any function H: )Y x © — (0,1) which is
a cumulative distribution function of 6 forany y € Y
has correct coverage: H(Y,0) ~ U(0,1) Y ~ f(;0)

CDs, or approximate CDs, are readily obtained from pivotal
quantitites

pivotal quantity: g(y, 8) with sampling distribution known
Vn(y —u)/s
sufficiently general to encompass bootstrap distribution and
many standard likelihood quantities
recent examples include robust meta-analysis and
identification of change-points
Xie et al. 2011; Cunen et al. 2017; Hannig & Xie 2012

Harvard, May 2017 16/34



... confidence distribution

1.0
1.0

confidence
cc

02 04 06 08

05 06 07 08 09

0.0

1.0

significance
pivot

02 04 06 08

0.0
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Generalized Fiducial Hannig et al 2016

BFF Four

Fisher: g(Y,6) has a known distribution; invert this to create
distribution for # when y? is obtained

Fraser: use data-generating equation to make the inversion
more direct, e.g. Yi=pu+e, e=y>—pu

Hannigetal. Y = G(U,6), U has known distribution
suppose we can invert this for any y°: 6 = Q.0(U)
fiducial distribution of 6 is Qyo(U*) U* independent copy of U

inverse only exists if  and Y have same dimension
might get this by reduction of a sample to sufficient statistics
more generally, fiducial density takes the form

r(6; y°) o f(y°,0)J(y°, 0)

Harvard, May 2017 18/34



Significance Function Fraser & R, ...

e focus on parameter of interest
many arguments point to the need for this
e yecR" HeRP, YR

e focus on dimension reduction

e n | pusing an approximation location model
Likelihood
__9 N ) B
df = — 5 F(y,0)do = aeF(y,@)f(yo’ )= f(v°.9)

y()
e p | 1 using a tangent exponential model

e combination of structural model and likelihood asymptotics

e leads for example to construction of default priors
Fraser et al 2010

BFF Four Harvard, May 2017 19/34



Inferential Models Martin & Liu

Hannigetal. Y = G(U,6), U has known distribution
suppose we can invert this for any y°: 6 = Q0 (U)
fiducial distribution of 0 is Q0 (U*) U* independent copy of U

use a random set S to predict U

this random set is converted to a belief function about ¢

need to ensure the belief function is valid and efficient

valid = calibrated ?

BFF Four Harvard, May 2017 20/34



Comparisons: conditioning

e objective Bayes e yes

e generalized fiducial inference e yes and no JASA '16

» confidence distributions and e needs to be built in
confidence curves ahead of time

e approximate significance functions e Yyes; via approximate

location model

e inferential models e needs to be built in
ahead of time

BFF Four Harvard, May 2017 21/34



Comparisons: Eliminating Nuisance Parameters

e objective Bayes e marginalization
rarely works ...

depends on the problem
?

generalized fiducial inference

confidence distributions and use profile
confidence curves log-likelihood, or similar
focus parameter

approximate significance functions

marginalization
via Laplace approximation

inferential models

marginalization
invoked ahead of time

BFF Four Harvard, May 2017 22/34



Comparisons: Calibration

often

e objective Bayes
e generalized fiducial inference e yes

e confidence distributions and
confidence curves

typically approximate

e approximate significance functions

typically approximate

e inferential models e yes

BFF Four Harvard, May 2017 23/34



Comparisons: Nature of Probability

e Bayes / objective Bayes
e generalized fiducial inference

e confidence distributions and
confidence curves

e approximate significance functions

e inferential models

BFF Four Harvard, May 2017

e epistemic / empirical

empirical

empirical

but not prescriptive

empirical

?epistemic?

24/34



What'’s the end goal?

e Applications — something that works
gives ‘sensible’ answers

not too sensitive to model assumptions
computable in reasonable time
provides interpretable parameters

e Foundations — peeling back the layers
what does 'works’ mean?

what probability do we mean
‘Goldilocks’ conditioning

how does this impact applied work?

BFF Four Harvard, May 2017

Meng & Liu, 2016
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Role of Foundations Cox & R, 2015

e avoid apparent discoveries based on spurious patterns

to shed light on the structure of the problem

calibrated inferences about interpretable parameters

realistic assessment of precision

understanding when/why methods work/fail

BFF Four Harvard, May 2017 26/34



Well, are we?

objective Bayes
confidence distributions
generalized fiducial
inferential models

significance functions

BFF Four Harvard, May 2017

N-
m

Larry W: “the perpetual motion machine
of Bayesian inference”

Min-ge, Regina: “everything fits”
Nils: “CDs are the ‘gold standard’ ”

Jan: “bring it on ... I'll figure it out”

Ryan: “it’s the only solution”
Chuanhai: “ it might take 100 years’

Don: “it’s the best solution ...
you can’t solve everything at once”

27/34



Some warning signs

Big data: are we making
a big mistake?

I:E-.-nuul'm r, pournalis i h vadcaster Tim Harford delive l the 2014 5 , ifice
lectu | Haoy | ‘- al Societry International Conference. In chi ie
repu H h I | J-mu 1l J imaed, Harford warns us not to forge r|'|r sragzasscal

“Big data” has arrived, but big insights have not

22222



Some warning signs
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Some warning signs

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht! Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
readv have nerfect finite_ samnle exnressivitv as soon as the number of narameters

BFF Four  Harvard, MEX%&G6€ds the number of data points as it usually does in practice. 3034
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Some warning signs

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht! Oriol Vinyals

University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

“deep neural networks easily fit random labels”

“these observations rule out ... possible explanations for the
generalization performance of state-of-the-art neural networks.”

BFF Four Harvard, May 2017 31/34



Some warning signs

Discrimination by algorithm: scientists devise test to detect Al bias

Researchers devise test to determine whether machine learning algorithms
are introducing gender or racial biases into decision-making

theguardian.com

Facial recognition database used by FBI
is out of control, House committee hears

Database contains photos of half of US adults without consent, and algorithm is
wrong nearly 15% of time and is more likely to misidentify black people

BFF Four Harvard, May 2017 32/34


https://www.theguardian.com/technology/2017/apr/13/ai-programs-exhibit-racist-and-sexist-biases-research-reveals?CMP=share_btn_tw
https://www.theguardian.com/technology/2017/mar/27/us-facial-recognition-database-fbi-drivers-licenses-passports

Summary

BFF Four

Bayes, fiducial, structural, confidence, belief

BFF 1 - 4: Develop links to bridge gaps among different
statistical paradigms

targetting parameters

limit distributions

calibration in repeated sampling
relevant repetitions for the data at hand

NR: Why is conditional inference so hard?
DRC: | expect we’re all missing something, but | don’t know
what it is

StatSci Interview 1996

Harvard, May 2017 33/34
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