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1. Introduction

Jakob Bernoulli’s Ars Conjectandi established the field of probability theory, and founded a long
and remarkable mathematical development of deducing patterns to be observed in sequences of
random events. The theory of statistical inference works in the opposite direction, attempting
to solve the inverse problem of deducing plausible models from a given set of observations.
Laplace pioneered the study of this inverse problem, and indeed he referred to his method as that
of inverse probability.

The likelihood function, introduced by Fisher (1922), puts this inversion front and centre, by
writing the probability model as a function of unknown parameters in the model. This simple,
almost trivial, change in point of view has profoundly influenced the development of statistical
theory and methods. In the early days, computing data summaries based on the likelihood func-
tion could be computationally difficult, and various ad hoc simplifications were proposed and
studied. By the late 1970s, however, the widespread availability of computing enabled a parallel
development of widespread implementation of likelihood-based inference. The development of
simulation and approximation methods that followed meant that both Bayesian and non-Bayesian
inferences based on the likelihood function could be readily obtained.

As a result, construction of the likelihood function, and various summaries derived from it,
is now a nearly ubiquitous starting point for a great many application areas. This has a unifying
effect on the field of applied statistics, by providing a widely accepted standard as a starting point
for inference.

With the explosion of data collection in recent decades, realistic probability models have con-
tinued to grow in complexity, and the calculation of the likelihood function can again be com-
putationally very difficult. Several lines of research in active development concern methods to
compute approximations to the likelihood function, or inference functions with some of the prop-
erties of likelihood functions, in these very complex settings.

In the following section, I will summarize the standard methods for inference based on the
likelihood function, to establish notation, and then in Section 3 describe some aspects of more
accurate inference, also based on the likelihood function. In Section 4, I describe some exten-
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sions of the likelihood function that have been proposed for models with complex dependence
structure, with particular emphasis on composite likelihood.

2. Inference based on the likelihood function

Suppose we have a probability model for an observable random vector Y = (Y1, . . . , Yn) of
the form f (y; θ), where θ is a vector of unknown parameters in the model, and f (y; θ) is a
density function with respect to a dominating measure, usually Lebesgue measure or count-
ing measure, depending on whether our observations are discrete or continuous. Typical models
used in applications assume that θ could potentially be any value in a set �; sometimes � is
infinite-dimensional, but more usually � ⊂ R

d . The inverse problem mentioned in Section 1 is
to construct inference about the value or values of θ ∈ � that could plausibly have generated an
observed value y = y0. This is a considerable abstraction from realistic applied settings; in most
scientific work such a problem will not be isolated from a series of investigations, but we can
address at least some of the main issues in this setting.

The likelihood function is simply

L(θ;y) ∝ f (y; θ); (2.1)

i.e., there is an equivalence class of likelihood functions L(θ;y) = c(y)f (y; θ), and only relative
ratios L(θ2;y)/L(θ1;y) are uniquely determined. From a mathematical point of view, (2.1) is a
trivial re-expression of the model f (y; θ); the re-ordering of the arguments is simply to empha-
size in the notation that we are more interested in the θ -section for fixed y than in the y-section
for fixed θ . Used directly with a given observation y0, L(θ;y0) provides a ranking of relative
plausibility of various values of θ , in light of the observed data.

A form of direct inference can be obtained by plotting the likelihood function, if the parameter
space is one- or two-dimensional, and several writers, including Fisher, have suggested declaring
values of θ in ranges determined by likelihood ratios as plausible, or implausible; for example,
Fisher (1956) suggested that values of θ for which L(θ̂;y)/L(θ;y) > 15, be declared ‘implau-
sible’, where θ̂ = θ̂ (y) is the maximum likelihood estimate of θ , i.e., the value for which the
likelihood function is maximized, over θ , for a given y.

In general study of statistical theory and methods we are usually interested in properties of
our statistical methods, in repeated sampling from the model f (y; θ0), where θ0 is the notional
‘true’ value of θ that generated the data. This requires considering the distribution of L(θ;Y), or
relative ratios such as L{θ̂ (Y );Y }/L{θ(Y );Y }. To this end, some standard summary functions
of L(θ;Y) are defined. Writing �(θ;Y) = logL(θ;Y) we define the score function u(θ;Y) =
∂�(θ;Y)/∂θ , and the observed and expected Fisher information functions:

j (θ;Y) = −∂2�(θ;Y)

∂θ ∂θT
, i(θ) = E

{
−∂2�(θ;Y)

∂θ ∂θT

}
. (2.2)

If the components of Y are independent, then �(θ;Y) is a sum of independent random vari-
ables, as is u(θ;Y), and under some conditions on the model the central limit theorem for u(·;Y)
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leads to the following asymptotic results, as n → ∞:

s(θ) = j−1/2(θ̂)u(θ)
L−→N(0, I ), (2.3)

q(θ) = j1/2(θ̂)(θ̂ − θ)
L−→N(0, I ), (2.4)

w(θ) = 2
{
�(θ̂) − �(θ)

} L−→χ2
d , (2.5)

where we suppress the dependence of each derived quantity on Y (and on n) for notational
convenience. These results hold under the model f (y; θ); a more precise statement would use
the true value θ0 in u(θ), (θ̂ −θ), and �(θ) above, and the model f (y; θ0). However, the quantities
s(θ), q(θ) and w(θ), considered as functions of both θ and Y , are approximate pivotal quantities,
i.e., they have a known distribution, at least approximately. For θ ∈ R we could plot, for example,
�{q(θ)} as a function of θ , where �(·) is the standard normal distribution function, and obtain
approximate p-values for testing any value of θ ∈ R for fixed y. The approach to inference based
on these pivotal quantities avoids the somewhat artificial distinction between point estimation
and hypothesis testing. When θ ∈ R, an approximately standard normal pivotal quantity can be
obtained from (2.5) as

r(θ) = sign(θ̂ − θ)
[
2
{
�(θ̂) − �(θ)

}]1/2 L−→N(0,1). (2.6)

The likelihood function is also the starting point for Bayesian inference; if we model the
unknown parameter as a random quantity with a postulated prior probability density function
π(θ), then inference given an observed value Y = y is based on the posterior distribution, with
density

π(θ | y) = exp{�(θ;y)}π(θ)∫
exp{�(φ;y)}π(φ)dφ

. (2.7)

Bayesian inference is conceptually straightforward, given a prior density, and computational
methods for estimating the integral in the denominator of (2.7), and associated integrals for
marginal densities of components, or low-dimensional functions of θ , have enabled the appli-
cation of Bayesian inference in models of considerable complexity. Two very useful methods
include Laplace approximation of the relevant integrals, and Markov chain Monte Carlo simula-
tion from the posterior. Difficulties with Bayesian inference include the specification of a prior
density, and the meaning of probabilities for parameters of a mathematical model.

One way to assess the influence of the prior is to evaluate the properties of the resulting infer-
ence under the sampling model, and under regularity conditions similar to those needed to obtain
(2.3), (2.4) and (2.5), a normal approximation to the posterior density can be derived:

π(θ | y)
.∼N

{
θ̂ , j−1(θ̂)

}
, (2.8)

implying that inferences based on the posterior are asymptotically equivalent to those based
on q . This simple result underlines the fact that Bayesian inference will in large samples give
approximately correct inference under the model, and also that to distinguish between Bayesian
and non-Bayesian approaches we need to consider the next order of approximation.
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If θ ∈ R
d , then (2.3)–(2.5) can be used to construct confidence regions, or to test simple hy-

potheses of the form θ = θ0, but in many settings θ can usefully be separated into a parameter of
interest ψ , and a nuisance parameter λ, and analogous versions of the above limiting results in
this context are

s(ψ) = j
−1/2
p (ψ̂)�′

p(ψ)
L−→N(0, I ), (2.9)

q(ψ) = j
1/2
p (ψ̂)(ψ̂ − ψ)

L−→N(0, I ), (2.10)

w(ψ) = 2
{
�p(ψ̂) − �p(ψ)

} L−→χ2
d1

, (2.11)

where �p(ψ) = �(ψ, λ̂ψ) is the profile log-likelihood function, λ̂ψ is the constrained maximum
likelihood estimate of the nuisance parameter λ when ψ is fixed, d1 is the dimension of ψ ,
and jp(ψ) = −∂2�p(ψ)/∂ψ ∂ψT is the Fisher information function based on the profile log-
likelihood function.

The third result (2.11) can be used for model assessment among nested models; for example,
the exponential distribution is nested within both the Gamma and Weibull models, and a test
based on w of, say, a gamma model with unconstrained shape parameter, and one with the shape
parameter set equal to 1, is a test of fit of the exponential model to the data; the rate parameter is
the nuisance parameter λ. The use of the log-likelihood ratio to compare two non-nested models,
for example a log-normal model to a gamma model, requires a different asymptotic theory (Cox
and Hinkley, 1974, Ch. 8).

A related approach to model selection is based on the Akaike information criterion,

AIC = −2�(θ̂) + 2d,

where d is the dimension of θ . Just as only differences in log-likelihoods are relevant, so are dif-
ferences in AIC: for a sequence of model fits the one with the smallest value of AIC is preferred.
The AIC criterion was developed in the context of prediction in time series, but can be motivated
as an estimate of the Kullback-Leibler divergence between a fitted model and a notional ‘true’
model. The statistical properties of AIC as a model selection criterion depend on the context; for
example for choosing among a sequence of regression models of the same form, model selection
using AIC is not consistent (Davison, 2003, Ch. 4.7). Several related versions of model selec-
tion criterion have been suggested, including modifications to AIC, and a version motivated by
Bayesian arguments,

BIC = −2�(θ̂) + d log(n),

where n is the sample size for the model with d parameters.

3. More accurate inference

The approximate inference suggested by the approximate pivotal quantities (2.9), (2.10) and
(2.11) is obtained by treating the profile log-likelihood function as if it were a genuine log-
likelihood function, i.e. as if the true value of λ were λ̂ψ . This can be misleading, because it does
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not account for the fact that the nuisance parameter has been estimated. One familiar example is
inference for the variance in a normal theory linear regression model; the maximum likelihood
estimate is

σ̂ 2 = (y − Xβ̂)T (y − Xβ̂)/n,

which has expectation (n − k)σ 2/n, where k is the dimension of β . Although this estimator is
consistent as n → ∞ with k fixed, it can be a poor estimate for finite samples, especially if k is
large relative to n, and the divisor n − k is used in practice. One way to motivate this is to note
that nσ̂ 2/(n− k) is unbiased for σ 2; an argument that generalizes more readily is to note that the
likelihood function L(β,σ 2; β̂, σ̂ 2) can be expressed as

L1
(
μ,σ 2; β̂)

L2
(
σ 2; σ̂ 2),

where L1 is proportional to the density of β̂ and L2 is the marginal density of σ̂ 2 or equivalently
(y − Xβ̂)T (y − Xβ̂). The unbiased estimate of σ 2 maximizes the second component L2, which
is known as the restricted likelihood, and estimators based on it often called “REML” estimators.

Higher order asymptotic theory for likelihood inference has proved to be very useful for gen-
eralizing these ideas, by refining the profile log-likelihood to take better account of the nuisance
parameter, and has also provided more accurate distribution approximations to pivotal quantities.
Perhaps most importantly, for statistical theory, higher order asymptotic theory helps to clarify
the role of the likelihood function and the prior in the calibration of Bayesian inference. These
three goals have turned out to be very intertwined.

To illustrate some aspects of this, consider the marginal posterior density for ψ , where θ =
(ψ,λ):

πm(ψ | y) =
∫

exp{�(ψ,λ;y)}π(ψ,λ)dλ∫
exp{�(ψ,λ;y)}π(ψ,λ)dλdψ

. (3.1)

Laplace approximation to the numerator and denominator integrals leads to

πm(ψ | y)
.= (2π)(d−d1)/2 exp{�(ψ, λ̂ψ)}|jλλ(ψ, λ̂ψ)|−1/2π(ψ, λ̂ψ)

(2π)d/2 exp{�(ψ̂, λ̂)}|j (ψ̂, λ̂)|−1/2π(ψ̂, λ̂)
(3.2)

= 1

(2π)d1/2
exp

{
�p(ψ) − �p(ψ̂)

}|jp(ψ̂)|1/2
{ |jλλ(ψ, λ̂ψ)|

|jλλ(ψ̂, λ̂)|
}−1/2 π(ψ, λ̂ψ)

π(ψ̂, λ̂)
,

= 1

(2π)d1/2
exp

{
�a(ψ) − �a(ψ̂)

}π(ψ, λ̂ψ)

π(ψ̂, λ̂)
,

where jλλ(θ) is the block of the observed Fisher information function corresponding to the nui-
sance parameter λ, |j (θ̂)| has been computed using the partitioned form to give the second ex-
pression in (3.2), and in the third expression

�a(ψ) = �p(ψ) − (1/2) log
∣∣jλλ(ψ, λ̂ψ)

∣∣.



Likelihood 1409

When renormalized to integrate to one, this Laplace approximation has relative error O(n−3/2)

in independent sampling from a model that satisfies various regularity conditions similar to those
needed to show the asymptotic normality of the posterior (Tierney and Kadane, 1986).

These expressions show that an adjustment for estimation of the nuisance parameter is cap-
tured in log |jλλ(·)|, and this adjustment can be included in the profile log-likelihood function, as
in the third expression in (3.2), or tacked onto it, as in the second expression. The effect of the
prior is isolated from this nuisance parameter adjustment effect, so, for example, if λ̂ψ = λ̂, and
the priors for ψ and λ are independent, then the form of the prior for λ given ψ does not affect
the approximation.

The adjusted profile log-likelihood function �a(ψ) is the simplest of a number of modified
profile log-likelihood functions suggested in the literature for improved frequentist inference
in the presence of nuisance parameters, and was suggested for general use in Cox and Reid
(1987), after reparametrizing the model to make ψ and λ orthogonal with respect to expected
Fisher information, i.e., E{−∂2�(ψ,λ)/∂ψ ∂λ} = 0. This reparameterization makes it at least
more plausible that ψ and λ could be modelled as a priori independent, and also ensures that
λ̂ψ − λ̂ = Op(1/n), rather than the usual Op(1/

√
n).

A number of related, but more precise, adjustments to the profile log-likelihood function have
been developed from asymptotic expansions for frequentist inference, and take the form

�M(ψ) = �p(ψ) + (1/2) log |jλλ(ψ, λ̂ψ)| + B(ψ), (3.3)

where B(ψ) = Op(1); see, for example, DiCiccio and Martin (1993) and Pace and Salvan (2006).
The change from −1/2 to +1/2 is related to the orthogonality conditions; in (3.3) orthogonality
of parameters is not needed, as the expression is parameterization invariant.

Inferential statements based on approximations from (2.9)–(2.11), with �a(ψ) or �M(ψ) sub-
stituting for the profile log-likelihood function, are still valid and are more accurate in finite sam-
ples, as they adjust for errors due to estimation of λ. They are still first-order approximations,
although often quite good ones.

One motivation for these modified profile log-likelihood functions, and inference based on
them, is that they approximate marginal or conditional likelihoods, when these exist. For exam-
ple, if the model is such that

f (y;ψ,λ) ∝ g1(t1;ψ)g2(t2 | t1;λ),

then inference for ψ can be based on the marginal likelihood for ψ based on t1, and the theory
outlined above applies directly. This factorization is fairly special; more common is a factoriza-
tion of the form g1(t1;ψ)g2(t2 | t1;λ,ψ): in that case to base our inference on the likelihood for
ψ from t1 would require further checking that little information is lost in ignoring the second
term. Arguments like these, applied to special classes of model families, were used to derive the
modified profile log-likelihood inference outlined above.

A related development is the improvement of the distributional approximation to the approxi-
mate pivotal quantity (2.6). The Laplace approximation (3.2) can be used to obtain the Bayesian
pivotal, for scalar ψ ,

r∗
B(ψ) = r(ψ) + 1

r(ψ)
log

{
qB(ψ)

r(ψ)

}
.∼N(0,1), (3.4)
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where

r(ψ) = sign(ψ̂ − ψ)
[
2
{
�p(ψ̂) − �p(ψ)

}]1/2
, (3.5)

qB(ψ) = −�′
p(ψ)j

−1/2
p (ψ̂)

{ |jλλ(ψ, λ̂ψ)|
|jλλ(ψ̂, λ̂)|

}1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
(3.6)

and the approximation in (3.4) is to the posterior distribution of r∗, given y, and is accurate to
O(n−3/2).

There is a frequentist version of this pivotal that has the same form:

r∗
F (ψ) = r(ψ) + 1

r(ψ)
log

{
qF (ψ)

r(ψ)

}
.∼N(0,1), (3.7)

where r(ψ) is given by (3.5), but the expression for qF (ψ) requires additional notation, and
indeed an additional likelihood component. In the special case of no nuisance parameters

qF (θ) = {
�;θ̂ (θ̂; θ̂ , a) − �;θ̂ (θ; θ̂ , a)

}
j−1/2(θ̂; θ̂ , a) (3.8)

= {
ϕ(θ̂) − ϕ(θ)

}
ϕ−1

θ (θ̂ )j1/2(θ̂). (3.9)

In (3.8), we have assumed that there is a one-to-one transformation from y to (θ̂ , a), and that
we can write the log-likelihood function in terms of θ, θ̂ , a and then differentiate it with respect
to θ̂ , for fixed a. Expression (3.9) is equivalent, but expresses this sample space differentia-
tion through a data-dependent reparameterization ϕ(θ) = ϕ(θ;y) = ∂�(θ;y)/∂V (y), where the
derivative with respect to V (y) is a directional derivative to be determined.

The details are somewhat cumbersome, and even more so for the case of nuisance parameters,
but the resulting r∗

F approximate pivotal quantity is readily calculated in a wide range of models
for independent observations y1, . . . , yn. Detailed accounts are given in Barndorff-Nielsen and
Cox (1994), Pace and Salvan (1997), Severini (2000), Fraser, Reid and Wu (1999) and Brazzale,
Davison and Reid (2007, Ch. 8.6); the last emphasizes implementation in a number of practical
settings, including generalized linear models, nonlinear regression with normal errors, linear
regression with non-normal errors, and a number of more specialized models.

From a theoretical point of view, an important distinction between r∗
B and r∗

F is that the latter
requires differentiation of the log-likelihood function on the sample space, whereas the former
depends only on the observed log-likelihood function, along with the prior. The similarity of
the two expressions suggests that it might be possible to develop prior densities for which the
posterior probability bounds are guaranteed to be valid under the model, at least to a higher order
of approximation than implied by (2.8), and there is a long line of research on the development
of these so-called “matching priors”; see, for example, Datta and Mukerjee (2004).
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4. Extending the likelihood function

4.1. Introduction

While the asymptotic results of the last section provide very accurate inferences, they are not
as straightforward to apply as the first order results, especially in models with complex depen-
dence. They do shed light on many aspects of theory, including the precise points of difference,
asymptotically, between Bayesian and nonBayesian inference. And the techniques used to derive
them, saddlepoint and Laplace approximations in the main, have found application in complex
models in certain settings, such as the integrated nested Laplace approximation of Rue, Martino
and Chopin (2009).

A glance at any number of papers motivated by specific applications, though, will confirm that
likelihood summaries, and in particular computation of the maximum likelihood estimator, are
often the inferential goal, even as the models become increasingly high-dimensional.

This is perhaps a natural consequence of the emphasis on developing probability models that
could plausibly generate, or at least describe, the observed responses, as the likelihood function
is directly obtained from the probability model. But more than this, inference based on the like-
lihood function provides a standard set of tools, whose properties are generally well-known, and
avoids the construction of ad hoc inferential techniques for each new application. For example,
Brown et al. (2004) write “The likelihood framework is an efficient way to extract information
from a neural spike train. . . We believe that greater use of the likelihood based approaches and
goodness-of-fit measures can help improve the quality of neuroscience data analysis”.

A number of inference functions based on the likelihood function, or meant to have some of
the key properties of the likelihood function, have been developed in the context of particular
applications or particular model families. In some cases the goal is to find ‘reasonably reliable’
estimates of a parameter, along with an estimated standard error; in other cases the goal is to use
approximate pivotal quantities like those outlined in Section 2 in settings where the likelihood is
difficult to compute. The goal of obtaining reliable likelihood-based inference in the presence of
nuisance parameters was addressed in Section 3. In some settings, families of parametric models
are too restrictive, and the aim is to obtain likelihood-type results for inference in semi-parametric
and non-parametric settings.

4.2. Generalized linear mixed models

In many applications with longitudinal, clustered, or spatial data, the starting point is a general-
ized linear model with a linear predictor of the form Xβ + Zu, where X and Z are n × k and
n × q , respectively, matrices of predictors, and u is a q-vector of random effects. The marginal
distribution of the responses requires integrating over the distribution of the random effects u,
and this is often computationally infeasible. Many approximations have been suggested: one
approach is to approximate the integral by Laplace’s method (Breslow and Clayton, 1993), lead-
ing to what is commonly called penalized quasi-likelihood, although this is different from the
penalized versions of composite likelihood discussed below. The term quasi-likelihood in the
context of generalized linear models refers to the specification of the model through the mean
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function and variance function only, without specifying a full joint density for the observations.
This was first suggested by Wedderburn (1974), and extended to longitudinal data in Liang and
Zeger (1986) and later work, leading to the methodology of generalized estimating equations, or
GEE. Renard, Molenberghs and Geys (2004) compared penalized quasi-likelihood to pairwise
likelihood, discussed in Section 4.3, in simulations of multivariate probit models for binary data
with random effects. In general penalized quasi-likelihood led to estimates with larger bias and
variance than pairwise likelihood.

A different approach to generalized linear mixed models has been developed by Lee and
Nelder; see, for example, Lee and Nelder (1996) and Lee, Nelder and Pawitan (2006), un-
der the name of h-likelihood. This addresses some of the failings of the penalized quasi-
likelihood method by modelling the mean parameters and dispersion parameters separately. The
h-likelihood for the dispersion parameters is motivated by REML-type arguments not unrelated
to the higher order asymptotic theory outlined in the previous section. There are also connec-
tions to work on prediction using likelihood methods (Bjørnstad, 1990). Likelihood approaches
to prediction have proved to be somewhat elusive, at least in part because the ‘parameter’ to be
predicted is a random variable, although Bayesian approaches are straightforward as no distinc-
tion is made between parameters and random variables.

4.3. Composite likelihood

Composite likelihood is one approach to combining the advantages of likelihood with compu-
tational feasibility; more precisely it is a collection of approaches. The general principle is to
simplify complex dependence relationships by computing marginal or conditional distributions
of some subsets of the responses, and multiplying these together to form an inference function.

As an ad hoc solution it has emerged in several versions and in several contexts in the sta-
tistical literature; an important example is the pseudo-likelihood for spatial processes proposed
in Besag (1974, 1975). In studies of large networks, computational complexity can be reduced
by ignoring links between distant nodes, effectively treating sub-networks as independent. In
Gaussian process models with high-dimensional covariance matrices, assuming sparsity in the
covariance matrix is effectively assuming subsets of variables are independent. The term com-
posite likelihood was proposed in Lindsay (1988), where the theoretical properties of composite
likelihood estimation were studied in some generality.

We suppose a vector response of length q is modelled by f (y; θ), θ ∈ R
d . Given a set of events

Ak, k = 1, . . . ,K , the composite likelihood function is defined as

CL(θ;y) =
K∏

k=1

f (y ∈ Ak; θ), (4.1)

and the composite log-likelihood function is

c�(θ;y) =
∑

k

logf (y ∈ Ak; θ). (4.2)
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Because each component in the sum is the log of a density function, the resulting score func-
tion ∂c�(θ;y)/∂θ has expected value 0, so has at least one of the properties of a genuine log-
likelihood function.

Relatively simple and widely used examples of composite likelihoods include independence
composite likelihood,

c�ind(θ;y) =
q∑

r=1

logf1(yr ; θ),

pairwise composite likelihood

c�pair(θ;y) =
q∑

r=1

∑
s>r

logf2(yr , ys; θ),

and pairwise conditional composite likelihood

c�cond(θ;y) =
q∑

r=1

logf (yr | y(−r); θ), (4.3)

where f1(yr ; θ) and f2(yr , ys; θ) are the marginal densities for a single component and a pair of
components of the vector observation, and the density in (4.3) is the conditional density of one
component, given the remainder.

Many similar types of composite likelihood can be constructed, appropriate to time series, or
spatial data, or repeated measures, and so on, and the definition is usually further extended by
allowing each component event to have an associated weight wk . Indeed one of the difficulties
of studying the theory of composite likelihood is the generality of the definition.

Inference based on composite likelihood is constructed from analogues to the asymptotic re-
sults for genuine likelihood functions. Assuming we have a sample y = (y(1), . . . , y(n)) of inde-
pendent observations of y, the composite score function,

uCL(θ;y) =
n∑

i=1

∑
k

∂ logf
(
y(i) ∈ Ak; θ

)
/∂θ, (4.4)

is used as an estimating function to obtain the maximum composite likelihood estimator θ̂CL, and
under regularity conditions on the full model, with n → ∞ and fixed K , we have, for example,

(θ̂CL − θ)T G(θ̂CL)(θ̂CL − θ)
L−→χ2

d , (4.5)

where

G(θ) = H(θ)J−1(θ)H(θ) (4.6)

is the d × d Godambe information matrix, and

J (θ) = var
{
uCL(θ;Y)

}
, H(θ) = E

{−(∂/∂θ)uCL(θ;Y)
}
,
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are the variability and sensitivity matrix associated with uCL.
The analogue of (2.5) is

2
{
c�(θ̂CL) − c�(θ)

} L−→
d∑

i=1

λiχ
2
1i , (4.7)

where λi are the eigenvalues of J−1(θ)H(θ).
Neither of these results is quite as convenient as the full likelihood versions, and in particular

contexts it may be difficult to estimate J (θ) accurately, but there are a number of practical settings
where these results are much more easily implemented than the full likelihood results, and the
efficiency of the methods can be quite good.

A number of applied contexts are surveyed in Varin, Reid and Firth (2011). As just one exam-
ple, developed subsequently, Davison, Padoan and Ribatet (2012) investigate pairwise composite
likelihood for max-stable processes, developed to model extreme values recorded at a number D

of spatially correlated sites. Although the form of the D-dimensional density is known, it is not
computable for D > 3, although expressions are available for the joint density at each pair of
sites. Composite likelihood seems to be particularly important for various types of spatial mod-
els, and many variations of it have been suggested for these settings.

In some applications, particularly for time series, but also for space-time data, a sample of
independent observations is not available, and the relevant asymptotic theory is for q → ∞,
where q is the dimension of the single response. The asymptotic results outlined above will
require some conditions on the decay of the dependence among components as the ‘distance’
between them increases. Asymptotic theory for pairwise likelihood is investigated in Davis and
Yau (2011) for linear time series, and in Davis, Klüppelberg and Steinkohl (2012) for max-stable
processes in space and time.

Composite likelihood can also be used for model selection, with an expression analogous to
AIC, and for Bayesian inference, after adjustment to accommodate result (4.7). Statistica Sinica
21, #1 is a special issue devoted to composite likelihood, and more recent research is summarized
in the report on a workshop at the Banff International Research Station (Joe, 2012).

4.4. Semi-parametric likelihood

In some applications, a flexible class of models can be constructed in which the nuisance ‘param-
eter’ is an unknown function. The most widely-known example is the proportional hazards model
of Cox (1972) for censored survival data; but semi-parametric regression models are also widely
used, where the particular covariates of interest are modelled with a low-dimensional regression
parameter, and other features expected to influence the response are modelled as ‘smooth’ func-
tions. Cox (1972) developed inference based on a partial likelihood, which ignored the aspects
of the likelihood bearing on the timing of failure events, and subsequent theory based on asymp-
totics for counting processes established the validity of this approach. In fact, Cox (1972)’s partial
likelihood can be viewed as an example of composite likelihood as described above, although the
theory for general semi-parametric models seems more natural.
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Murphy and van der Vaart (2000) showed that partial likelihood can be viewed as a profile like-
lihood, maximized over the nuisance function, and discussed a class of semi-parametric models
for which the profile likelihood continues to have the same asymptotic properties as the usual
parametric profile likelihood; the contributions to the discussion of their results provide further
insight and references to the extensive literature on semi- and non-parametric likelihoods. There
is, however, no guarantee that asymptotic theory will lead to accurate approximation for finite
samples; it would presumably have at least the same drawbacks as profile likelihood in the para-
metric setting. Improvements via modifications to the profile likelihood, as described above in
the parametric case, do not seem to be available in these more general settings.

Some semi-parametric models are in effect converted to high-dimensional parametric models
through the use of linear combinations of basis functions; thus the linear predictor associated
with a component yi might be β0 + β1xi + ∑J

j=1 γjB(zi), or β0 + β1xi + ∑J
j=1 γ1jBj (z1i ) +

· · ·+∑J
j=1 γkjBj (zki). The log-likelihood function for models such as these is often regularized,

so that �(β, γ ) is replaced by �(β, γ ) + λp(γ ), where p(·) is a penalty function such as �γ 2
kj or

�|γkj |, and λ a tuning parameter. Many of these extensions, and the asymptotic theory associated
with them, are discussed in van der Vaart (1998, Ch. 25). Penalized likelihood using squared
error is reviewed in Green (1987); the L1 penalty has been suggested as a means of combining
likelihood inference with variable selection; see, for example, Fan and Li (2001).

Penalized composite likelihoods have been proposed for applications in spatial analysis
(Divino, Frigessi and Green, 2000; Apanasovich et al., 2008; Xue, Zou and Cai, 2012), Gaus-
sian graphical models (Gao and Massam, 2012), and clustered longitudinal data (Gao and Song,
2010).

The difference between semi-parametric likelihoods and nonparametric likelihoods is some-
what blurred; both have an effectively infinite-dimensional parameter space, and as discussed
in Murphy and van der Vaart (2000) and the discussion, conditions on the model to ensure that
likelihood-type asymptotics still hold can be quite technical.

Empirical likelihood is a rather different approach to non-parametric models first proposed by
Owen (2001); a recent discussion is Hjort, McKeague and Van Keilegom (2009). Empirical like-
lihood assumes the existence of a finite-dimensional parameter of interest, defined as a functional
of the distribution function for the data, and constructs a profile likelihood by maximizing the
joint probability of the data, under the constraint that this parameter is fixed. This construction is
particularly natural in survey sampling, where the parameter is often a property of the population
(Chen and Sitter, 1999; Wu and Rao, 2006). Distribution theory for empirical likelihood more
closely follows that for usual parametric likelihoods.

4.5. Simulation methods

Simulation of the posterior density by Markov chain Monte Carlo methods is widely used for
Bayesian inference, and there is an enormous literature on various methods and their proper-
ties. Some of these methods can be adapted for use when the likelihood function itself cannot
be computed, but it is possible to simulate observations from the stochastic model; many ex-
amples arise in statistical genetics. Simulation methods for maximum likelihood estimation in
genetics was proposed in Geyer and Thompson (1992); more recently sequential Monte Carlo
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methods (see, for example, Sisson, Fan and Tanaka (2007)) and ABC (approximate Bayesian
computation) methods (Fearnhead and Prangle, 2012; Marin et al., 2011) are being investigated
as computational tools.

5. Conclusion

A reviewer of an earlier draft suggested that a great many applications, especially involving
very large and/or complex datasets, take more algorithmic approaches, often using techniques
designed to develop sparse solutions, such as wavelet or thresholding techniques, and that likeli-
hood methods may not be relevant for these application areas.

Certainly a likelihood-based approach depends on a statistical model for the data, and for
many applications under the general rubric of machine learning these may not be as important
as developing fast and reliable approaches to prediction; recommender systems are one such
example.

There are however many applications of ‘big data’ methods where statistical models do pro-
vide some structure, and in these settings, as in the more classical application areas, likelihood
methods provide a unifying basis for inference.
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