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SUMMARY

For likelihood-based inference involving distributions in which high-dimensional

dependencies are present it may be useful to use approximate likelihoods

based, for example, on the univariate or bivariate marginal distributions.

The asymptotic properties of formal maximum likelihood estimators in such

cases are outlined. In particular, applications in which only a single q × 1

vector of observations is observed are examined. Conditions under which con-

sistent estimators of parameters result from the approximate likelihood using

only pairwise joint distributions are studied. Some examples are analysed in

detail.

Some key words: Component of variance; Composite likelihood; Consis-

tency of estimation; Dichotomised Gaussian distribution; Generalized esti-
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1 Pseudolikelihood and score function

While the likelihood function has a central place in the formal theory of

statistical inference for particular models, there are a number of situations

where some modification of the likelihood is needed perhaps for robustness

or perhaps because of the complexity of the full likelihood. In this paper we

examine a special form of pseudolikelihood that is potentially useful when

complex interdependencies are involved in the full likelihood.

Suppose that Y is a q × 1 vector random variable with density f(y; θ),

where θ is an unknown parameter which initially we take to be one-dimensional.

From independent observations Y (1), . . . , Y (n) we may find the maximum

likelihood estimator of θ which has under the usual regularity conditions an

asymptotically normal distribution with mean θ and variance the inverse of

the Fisher information

nE{−∂2 log f(Y ; θ)

∂θ2
}.

Now suppose that it is difficult to specify the full q-dimensional distribu-

tion in convenient form but that it is possible to specify all one-, two-, . . .

dimensional distributions up to some order. Here we concentrate on just the

one- and two-dimensional ones; that is, we can specify for all s, t = 1, . . . , q

the univariate and bivariate densities fs(ys; θ), fst(ys, yt; θ) for s 6= t. Thus

from one vector Y we may form the first- and second-order loglikelihood

contributions

`1(θ; Y ) = Σs log f(Ys; θ),

`2(θ; Y ) = Σs>t log f(Ys, Yt; θ)− aq`1(θ; Y ),

where a is a constant to be chosen. Note that taking a = 0 corresponds to

taking all possible bivariate distributions whereas a = 1/2 corresponds in
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effect to taking all possible conditional distributions of one component given

another; this is the pseudolikelihood suggested by Besag (1974) for analysis

of spatial data. It may happen that, say, `1(θ; Y ) is in fact independent of θ,

i.e. that the one-dimensional marginal distributions contain no information

about θ.

For n independent, identically distributed vectors we define corresponding

pseudo loglikelihoods by addition:

`1(θ; Y
(1), . . . , Y (n)) = Σi`1(θ; Y

(i)),

`2(θ; Y
(1), . . . , Y (n)) = Σi`2(θ; Y

(i)).

We define pseudo score functions by loglikelihood derivatives in the usual

way:

U1(θ; Y ) = ∂`1(θ; Y )/∂θ = ΣsU1s(θ),

U2(θ; Y ) = ∂`2(θ; Y )/∂θ = Σs>tU2st(θ)− aqΣsU1s(θ),

U1(θ; Y
(1), . . . , Y (n)) = ∂`1(θ; Y

(1), . . . , Y (n))/∂θ = ΣU1(θ; Y
(i)),

U2(θ; Y
(1), . . . , Y (n)) = ∂`2(θ; Y

(1), . . . , Y (n))/∂θ = ΣU2(θ; Y
(i)).

The functions `1 and `2 are examples of composite likelihood functions,

studied in generality in Lindsay (1988). The first term in `2 is called the

pairwise likelihood. The estimating equations

Uν(θ̃; Y
(1), . . . , Y (n)) = 0

for ν = 1, 2 are under the usual regularity conditions unbiased, provided of

course that the relevant pseudo loglikelihoods depend on θ and so do not make

the U identically zero. The resulting estimator is for large n asymptotically

normal with mean θ and variance

[E{−U ′
ν(θ)}]−2E{U2

ν (θ)}. (1)
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Furthermore, E(U2
ν ) can be estimated by n−1ΣiU

2
ν (θ̃; Y (i)) and E{−U ′

ν(θ; Y )}
by −`′′ν(θ̃)/n.

An example is given by the symmetric normal distribution. We assume for

each i that the components of Y (i) follow a standard normal distribution and

that corr(Y (i)
r , Y (i)

s ) = ρ. There is no information about ρ in the univariate

marginal densities. The second-order pseudolikelihood is

l2(ρ; Y (1), . . . , Y (n)) = −nq(q − 1)

4
log(1− ρ2)− q − 1 + ρ

2(1− ρ2)
SSW

−(q − 1)(1− ρ)

2(1− ρ2)

SSB

q
,

where

SSW = Σn
i=1Σ

q
r=1(Y

(i)
r − Ȳ (i)

· )2, SSB = Σn
i=1Y

(i)2
· .

The associated score function is

U2(ρ; Y (1), . . . , Y (n)) =
nq(q − 1)ρ

2(1− ρ2)
− 1 + ρ2 + 2(q − 1)ρ

2(1− ρ2)2
SSW

−(q − 1)(1− ρ)2

2(1− ρ2)2

SSB

q

and the asymptotic variance of ρ̃ is

avar(ρ̃) =
2

nq(q − 1)

(1− ρ)2c(q, ρ)

(1 + ρ2)2
,

where

c(q, ρ) = (1− ρ)2(3ρ2 + 1) + qρ(−3ρ3 + 8ρ2 − 3ρ + 2) + q2ρ2(1− ρ)2.

This may be compared to the variance of the maximum likelihood estimator

using the full model,

avar(ρ̂) =
2

nq(q − 1)

{1 + (q − 1)ρ}2(1− ρ)2

{1 + (q − 1)ρ2}
.

This ratio is 1 for q = 2, as expected, and is also 1 if ρ = 0 or 1, for any

value of q. Figure 1 illustrates the loss of information with increasing q.
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2 Estimating equations: large q

In the previous section we considered fixed q as n increases. We now look

at the problem where a small number n of individually large sequences is

available, i.e. we let q increase for fixed n. This includes the possibility

of observing a single replicate of a process in which substantial and possibly

complicated internal dependencies are present. The case that n and q increase

simultaneously, for example in a fixed ratio, may also be of interest.

While the estimating equation Uν(θ̃; Y ) = 0 is unbiased, this no longer

implies satisfactory properties of the resulting estimator.

Consider first the estimating equation U1(θ̃; Y ) = 0, still assuming for

simplicity that θ is a scalar. We expand formally around θ to obtain, to the

first order,

q−1ΣU1s(θ) + q−1(θ̃ − θ)ΣU ′
1s(θ) = 0.

The second random sum is typically Op(1), whereas the first random sum

has zero mean and variance

q−2{Σvar(U1s) + 2Σs>tcov(U1s, U1t)}

and, depending on the form of the covariance terms, this may be O(qk−2)

for 1 ≤ k ≤ 2, so that the first random sum is Op(q
(k/2)−1). There are two

main possibilities. First, if k = 2 the two random terms in the expansion

of the estimating equation are of the same order in probability and this

suggests that θ̃ will not be a consistent estimator of θ as q increases; there

is too much internal correlation present. On the other hand, if k < 2 then

expansion shows that q1−k/2(θ̃− θ) is asymptotically normal with mean zero

and variance that can be derived from the expansion. Of course if k is close

to 2 then convergence may be very slow.
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To illustrate the general discussion, if the components of Y have marginally

any exponential family distribution with mean parameter θ and are arbitrar-

ily correlated, then if the correlation is that of short-range dependent sta-

tionary time series, k = 1 and convergence of the overall sample mean to θ

will be at the usual rate, that is 1/
√

q, whereas if the correlation is that of a

long-range dependent process with Hurst coefficient H > 1/2 then k = 2H

and convergence will be slower. Finally, if all pairs are equally correlated

then k = 2 and the mean of a single realization is not a consistent estimator

of θ. These results are clear from first principles.

A very similar if more complicated discussion applies to the use of pairwise

dependencies. The estimating equation U2(θ̃; Y ) = 0 has the expansion

q−2{Σs>tU2st(θ)− aqΣrU1r(θ)}+ q−2(θ̃ − θ){Σs>tU
′
2st(θ)− aqΣsU

′
1sθ} = 0.

The second term is typically Op(1), whereas the first term has mean zero and

variance

q−4[var{Σs>tU2st(θ)} − 2aqcov{Σs>tU2st(θ), ΣrU1r(θ)}+ (aq)2var{ΣsU1s(θ)}]. (2)

This can be calculated as a function of expected products of U ’s of various

kinds:

var{Σs>tU2st(θ)} =
1

2
q(q − 1)E(U2

2st) + q(q − 1)(q − 2)E(U2stU2sv)

+
1

4
q(q − 1)(q − 2)(q − 3)E(U2stU2vw),

cov{Σs>tU2st, ΣU1r} =
1

2
q(q − 1)E(U2stU1s) +

1

2
q(q − 1)(q − 2)E(U2stU1v),

var{ΣU1s} = qE(U2
1s) + q(q − 1)E(U1sU1t),

where s 6= t 6= v 6= w. The leading term in q is

{E(U2stU2vw) + a2E(U1sU1t)}
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and thus the first random sum may be of comparable order to the second

random sum, which suggests that the estimating equation will not usually

lead to a consistent estimator of θ. This is the case in the example above of

the normal correlation coefficient when n = 1; the asymptotic variance of ρ̃

is O(1) in q.

When n > 1 the usual asymptotic theory again applies in n, and the

variance of θ̃ is given by (1) with ν = 2. In this case if both the univariate

and bivariate distributions provide information on θ it should be possible to

choose a to maximize the information provided.

In the above development we have assumed that each pair of observations

(Ys, Yt) has the same bivariate distribution, so there is no need to distinguish

between U2stU2sv and U2stU2vs, for example. In principle however the pseu-

dolikelihood can be defined for the case where the pairs have different distri-

butions, in which case in the expression for the variance of the first random

term in the expansion of the estimating equation we have

var{Σs>tU2st(θ)} = Σs>ti2st + Σs>t,s>vist,sv + Σs>t>vist,tv

+Σs>t,w>sist,ws + Σs>t,w>tist,wt + Σs>t,w>vist,wv

where, for example,

ist,tv = E{U2st(θ)U2tv(θ)} = E[{∂ log f(Ys, Yt; θ)/∂θ}{∂ log f(Yt, Yv; θ)/∂θ}].

3 Vector θ

Essentially the same arguments apply when the parameter θ is a vector of

length d. The formal likelihood derivatives are defined as before component

by component and the expansion of the formal estimating equation can be

written

Uν(θ̃; Y
(1), . . . Y (n)) = 0
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= Uν(θ; Y
(1), . . . Y (n)) + (θ̃ − θ)TU ′

ν(θ; Y
(1), . . . Y (n))

= Σn
i=1Uν(θ; Y

(i)) + (θ̃ − θ)TΣn
i=1U

′
ν(θ; Y

(i)),

so that, asymptotically in n,

acov(θ̃) = n−1E{−U ′
ν(θ; Y )}−1E{Uν(θ; Y )UT

ν (θ; Y )}E{−U ′
ν(θ; Y )}−1

and furthermore E(−UνU
T
ν ) can be estimated by ΣiUν(θ̃; Y

(i))UT(θ̃; Y (i)) and

E{U ′
ν(θ; Y )} by −∂2lν(θ̃)/∂θ∂θT.

When n = 1 we can obtain a consistent estimator using l2 only if E(U2U
T
2 )

is O(q3) not O(q4). The analogue of (2) is

E(U2U
T
2 ) = q(2)Kst,st/2 + q(3)Kst,sw + q(4)Kst,vw/2

−2qa(q(2)Kst,s + q(3)Kst,v)

+q2a2(qKs,s + q(2)Ks,t), (3)

where Kst,vw = E(U2stU
T
2vw), Kst,v = E(U2stU

T
1v), and so on, and s, t, v, w are

all different.

Thus a necessary and sufficient condition for an asymptotic theory in q

to hold for fixed n and in particular for n = 1 is that there be a real root of

the equation

Kst,vw − 2aKst,v + 2a2Ks,t = 0 (4)

in a; note that the K’s are square matrices of size equal to the dimension

of θ. In some situations consistent estimation would be confined to certain

components of θ and then a more complicated condition would be involved.

4 Examples

Example 1: one-way random effects

8



A simple illustration of these results can be obtained from a single group

of q observations taken from a one-way normal-theory random effects model,

which can then be reparameterised in various ways; that is, a component

Y (i)
s of the ith vector has the form Y (i)

s = µ + ξ(i) + εis, where ξ(i) and

the εis are independently normally distributed with zero mean and variances

respectively τξ and τε. When n = 1 it is clear that only τε can be well

estimated. The problem may be reformulated by writing Y as multivariate

normal with components having mean µ and variance σ2 = τξ + τε and with

any two components of the same vector having correlation ρ = τξ/(τξ + τε).

The example given in §1 is a special case with µ = 0, σ2 = 1.

Example 2: dichotomised normal

Suppose that V follows a q-variate normal distribution with correlation

matrix R, and that Y1, . . . , Yq are binary variables produced by dichotomising

the unobserved components V1, . . . , Vq. Without loss of generality we can take

the mean of the V ’s to be zero and the variance one. Let rst = corr(Vs, Vt)

and denote the points of dichotomy by γ1, . . . , γq; that is Ys = 0 or Ys = 1

according as Vs ≤ γs or Vs > γs. We simplify the discussion by supposing

the γs known; an important special case is median dichotomy when γs = 0.

The marginal distributions of the Ys provide no information so that we use

the bivariate pairs: the pseudo loglikelihood based on these pairs is

`2(R) = Σs>t{ysyt log pst
11 + ys(1− yt) log pst

10 + (1− ys)yt log pst
01

+(1− ys)(1− yt) log pst
00},

where

pst
11 =

∫ ∞

γt

[
1− Φ

{
γs − rstv√
(1− r2

st)

}]
φ(v)dv

pst
10 = 1− Φ(γs)− pst

11

pst
01 = Φ(γs)− pst

00 = Φ(γt)− pst
11
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pst
00 = Φ(γs)− pst

01 = pst
11 + Φ(γs)− Φ(γt).

Note that the full likelihood analysis would involve the q-dimensional

normal integral and that quite apart from any computational difficulties there

might be fears about the robustness of the specification in so far as it involves

high order integrals.

For numerical illustration we consider γs = 0, rst = ρ, in which case pij

does not depend on s and t, and we have p00 = p11, p10 = p01 = (1/2)− p11,

p11 = sin−1(ρ)/(2π)− (1/4) and

`2(p11) = Σs>t{ysyt log p11 + ys(1− yt) log{(1/2)− p11}

+(1− ys)yt log{(1/2)− p11}+ (1− ys)(1− yt) log p11}

= Σs>t[(2ysyt − ys − yt) log[p11/{(1/2)− p11}] + {q(q − 1)/2} log(p11)]

= t log[p11/{(1/2)− p11}] + {q(q − 1)/2} log p11,

where

t = Σs>t(2ysyt − ys − yt).

Then

E{−`′′2(ρ)} =
q(q − 1)

p11(1− 2p11)
{p′11(ρ)}2,

var{`′2(ρ)} = var{`′2(p11)}{p′11(ρ)}2

=

(
1

p11

+
1

(1/2)− p11

)2

var(t){p′11(ρ)}2,

where

var(t) = 4var(Σs>tysyt) + (q − 1)2var(Σys)− 4(q − 1)cov(Σs>tysyt, Σys)

= q4(p1111 − 2p111 + 2p11 − p2
11 − 1/4)

+ q3(−6p1111 + 12p111 − 9p11 + 2p2
11 + 1)

+ q2(11p1111 − 22p111 + 14p11 − p2
11 − 5/4)

+ q(−6p1111 + 12p111 − 7p11 + 1/2),
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and

p1111 = pr(Us > 0, Ut > 0, Uv > 0, Uw > 0)

p111 = pr(Us > 0, Ut > 0, Uv > 0).

In the repeated sampling context as q tends to infinity for fixed n

avar(ρ̃) =
1

n
E{−`′′2(ρ)}−2var{`′2(ρ)}

=
1

n

4π2(1− ρ2)

q2(q − 1)2
var(t);

if n = 1 this variance is O(1) as expected on general grounds.

To compare this to the full likelihood calculation we need the full Fisher

information. The full likelihood is

log pr(Y1 = y1, . . . , Yq = yq) = (y1 . . . yq) log pq
11...1 + (1− y1)y2 . . . yq log pq−1

01...1 +

+y1(1− y2)y3 . . . yq log pq−1
101...1 +

. . . + y1 . . . yq−1(1− yq) log pq−1
1...10

+ . . . + (1− y1) . . . (1− yq) log p0
0...0,

where pi
0...01...1 is the probability of i ones and q − i zeroes. Then

`′(ρ) = Σq
i=0ti(d/dρ) log(pq−i

0...01...1),

`′′(ρ) = Σq
i=0ti(d

2/dρ2) log(pq−i
0...01...1),

where ti is the sum of
(

q
i

)
sequences with q − i ones and i zeroes, and has

expected value
(

q
i

)
pi

0...01...1. From this the expected Fisher information, and

hence the asymptotic variance of ρ̂, is readily obtained.

The p’s can be evaluated using a simplification given in Tong (1990, p.192)

as

pi
0...01...1 =

∫ ∞

−∞

[
1− Φ

{
t
√

ρ√
(1− ρ)

)
}
]i [

Φ

{
t
√

ρ√
(1− ρ)

}]q−i

φ(t)dt.
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Table 1 shows the asymptotic relative efficiency of ρ̃ for q = 10 for selected

values of ρ. As in Example 1, the loss of efficiency is relatively small, having

in this case a maximum of about 15%. Calculations not shown here for

smaller values of q show a maximum loss of efficiency of 8% for q = 8 and

3% for q = 5.

A more general version of the dichotomized normal, in which a latent mul-

tivariate normal random vector is categorized into several classes, is treated

by the method of pairwise likelihood in deLeon (2003), extending a method

proposed by Anderson and Pemberton (1985).

Example 3: 2× 2 tables

Suppose X(1), . . . , X(N) are unobserved binary vectors of length q, and for

each pair of positions (s, t) with s, t = 1, . . . , q, we observe the multinomial

vector y = (yst
11, y

st
10, y

st
01, y

st
00), where

yst
ij = ΣN

k=11{x(k)
s = i, x

(k)
t = j}, {i, j} ∈ {0, 1}

and 1{A} is the indicator function for the event A. The pseudo loglikelihood

based on the vector of counts is

`2(ρ; y) = Σs>t(y
st
11 log pst

11 + yst
10 log pst

10 + yst
01 log pst

01 + yst
00 log pst

00),

where we suppose that pst
ij = pst

ij(ρ). This is a simplified version of the pairwise

loglikelihood discussed in Fearnhead (2003), where s and t represent loci on

each of N chromosomes. A specific model for pst
ij(ρ) is discussed in McVean

et al. (2002). Fearnhead (2003) shows that the estimator of ρ based on a

truncated version of `2(ρ) is consistent as q →∞ but that an approximation

to `2(ρ) used in McVean et al. (2002) does not give consistent estimation

of ρ. In the latter case consistency fails because the score function from the

approximation to `2(ρ) does not have mean 0. In contrast the score function

for `2(ρ) does have mean 0: at issue is whether or not under suitable models
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for pst
ij(ρ) the variance is O(1) or O(1/q) as q → ∞. In an application in

which N is the number of individuals, an asymptotic theory in N and q

simultaneously would be relevant.

5 Discussion

In many applications, such as the genetics example above, it is prohibitively

difficult to compute the full likelihood function. A similar situation arises in

the analysis of spatial data, and Besag’s pseudolikelihood is obtained from

`2 by choosing a = 1/2. Pairwise likelihood for the analysis of spatial data is

discussed in Nott and Ryden (1999) and Heagerty and Lele (1998), building

on unpublished work by Hjort. These papers also consider the possibility

of unequal weighting of the contributions of different pairs. Henderson and

Shimakura (2003) use the pairwise likelihood in a model for serially correlated

count data for which the full likelihood is intractable.

In other applications the pseudolikelihood function based on pairs of ob-

servations may provide a useful model in settings where it is difficult to

construct the full joint distribution. One possible application is to the study

of multivariate extremes, where models for bivariate extremes such as dis-

cussed in Coles (2001, Ch. 8) could be used to construct a pseudolikelihood.

Parner (2001) considers modelling pairs of failure times in the context of

survival data.

In the examples in which the main parameter of interest is the correlation

between two elements of the vector there is no information in the univariate

margins. The expression for the variance of Σs>tU2st given in §3 suggests

that, if the parameter of interest appears in both the bivariate and univariate

margins, it might be possible by suitable choice of a to eliminate the leading

term in q in the variance of the score.
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The pseudolikelihood for the dichotomised normal example is the likeli-

hood for the quadratic exponential distribution, which has been proposed for

the analysis of multivariate binary data (Cox, 1972; Prentice & Zhao, 1990;

Cox & Wermuth, 1994). The score function from the quadratic exponential

is one version of a generalised estimating equation, as discussed for example

in Liang et al. (1992). A feature of generalised estimating equations is that

they lead to consistent estimators of parameters in the mean function, even

if the covariances are misspecified. Similarly we might expect that use of

the pseudolikelihood `2, for example, would lead to consistent estimators of

correlation parameters under a range of possible models for higher-order de-

pendency as incorporated into the full joint distributions. Pairwise likelihood

methods for correlated binary data are discussed in Kuk and Nott (2000) and

LeCessie and van Houwelingen (1994).
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Figure 1: Ratio of asymptotic variance of ρ̂ to ρ̃2, as a function of ρ, for fixed
q. At q = 2 the ratio is identically 1. The lines shown are for q = 3, 5, 8, 10
(descending).
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Table 1: Asymptotic relative efficiency (ARE) of ρ̃ for selected values of ρ,
with q = 10, computed as the ratio of the asymptotic variances.

ρ 0.02 0.05 0.12 0.20 0.40 0.50
avarρ̃ 0.066 0.084 0.128 0.178 0.270 0.285
avarρ̂ 0.066 0.084 0.128 0.177 0.261 0.272
ARE 0.998 0.995 0.992 0.968 0.953 0.968

ρ 0.60 0.70 0.80 0.90 0.95 0.98
avarρ̃ 0.161 0.074 0.031 0.009 0.274 0.235
avarρ̂ 0.145 0.065 0.027 0.007 0.257 0.212
ARE 0.953 0.903 0.900 0.874 0.867 0.850
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