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1 Introduction

Cox and Hinkley’s Theoretical Statistics (1974) was arguably the first modern treatment of the foundations and
theory of statistics, and for the past thirty years has served as a unique book for the study of what used to be
called mathematical statistics. One of its strengths is the large number of examples that serve not only to illustrate
key concepts, but also to illustrate limitations of many of the classical approaches to inference. Since the time of
its publication there has been considerable development of the theory of inference, especially in the area of higher
order likelihood asymptotics. The paper by Barndorff-Nielsen and Cox (1979) read to the Royal Statistical Society
initiated many of these developments. There have also been very dramatic advances in the implementation of Bayesian
methodology, particularly with the development of sampling methods for computing posterior distributions.

A current approach to the study of theoretical statistics should be informed by these advances. Barndorff-Nielsen
and Cox (1994) presents an approach to inference based on likelihood asymptotics, as does Pace and Salvan (1997).
Severini (2000a) covers much of the same material at a somewhat more elementary level. Bayesian methodology
is covered in books on that topic, for example Bernardo and Smith (2000), while Schervish (1995) presents an
encyclopedic treatment of both classical and Bayesian approaches to inference. Davison (2003) provides a masterful
and wide-ranging account of the use of statistical models in theory and practice, with a welcome emphasis on many
practical aspects, and this approach is closest in spirit to the one I would like to follow. At a more advanced level
there is not to my knowledge a treatment of the main themes of theoretical statistics that attempts to incorporate
recent advances in a unified framework.

In this paper I will attempt to set out some ideas for such a framework, building on topics and examples from
Cox and Hinkley (1974), and very heavily influenced by Barndorff-Nielsen and Cox (1994). The emphasis is on some
theoretical principles that have their basis in asymptotics based on the likelihood function. There are of course many
important advances and developments in statistical theory and methodology that are not subsumed by asymptotic
theory or Bayesian inference. These include developments in nonparametric and semiparametric inference as well as
a large number of more specialised techniques for particular applications. The explosion in statistical methods in
a great many areas of science have made a comprehensive study of the field of statistics much more difficult than
perhaps it was, or seems to have been, thirty years ago. In light of David Cox’s view that a theory of statistics
forms a basis both for understanding new problems and for developing new methods, I try here to focus on how to
structure this theory for students of statistics.

In §2 I sketch a framework for the implementation of higher order asymptotics and Bayesian inference into my
ideal course or text on the theory of statistics. In §3 I note topics from a more standard treatment of theoretical
statistics that have been omitted and provide some brief conclusions.
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2 Likelihood based asymptotics

2.1 Introduction

The likelihood function provides the foundation for the study of theoretical statistics, and for the development of
statistical methodology in a wide range of applications. The basic ideas for likelihood are outlined in many books,
including Ch. 2 of Cox and Hinkley (1974). Given a parametric model f(y; θ) on a suitably defined sample space and
parameter space, the likelihood and log-likelihood functions of θ are defined as

L(θ) = L(θ; y) ∝ f(y; θ) `(θ) = `(θ; y) = logL(θ; y) + a(y).

If θ is a scalar parameter a plot of L(θ) or `(θ) against θ for fixed y provides useful qualitative information about
the values of θ consistent with that observed value of y. For examples see Barndorff-Nielsen and Cox (1994, pp.
96–97). Particularly useful summaries include the score function u(θ; y) = `′(θ), the maximum likelihood estimate
θ̂ = arg supθ`(θ), the observed Fisher information j(θ) = −`′′(θ) and the log-likelihood ratio `(θ̂)−`(θ). Standardized
versions of these are used to measure the discrepancy between the maximum likelihood estimate θ̂ and the parameter
θ: we define them as follows:

score s(θ) = `′(θ){j(θ̂)}−1/2 (1)

Wald q(θ) = (θ̂ − θ){j(θ̂)}1/2 (2)

likelihood root r(θ) = sign (q)
√

[2{`(θ̂)− `(θ)}]. (3)

With independent identically distributed observations y = (y1, . . . , yn), an application of the central limit theorem to
the score function u(θ; y) can be used to show each of s, q and r has a limiting standard normal distribution, under
the model f(y; θ), and subject to conditions on f that ensure consistency of θ̂ and sufficient smoothness to permit
the requisite Taylor series expansions.

These limiting results suggest that in finite samples we can approximate the distribution of s, q, or r by the
standard normal distribution. In Figure 1 we illustrate these approximations for a single observation from the
location model f(y; θ) = exp{−(y − θ) − e−(y−θ)}. I have plotted as a function of θ the exact probability F (y; θ)
and the normal approximations to this exact probability: Φ(s), Φ(q) and Φ(r), for a fixed value of y, taken here to
be 21.5. This is called here the p-value function, and is used to calibrate the log-likelihood function by identifying
values of θ consistent with the data on a probability scale. For example, the value of θ that corresponds to a p-value
of 1−α corresponds to a lower 100α% confidence bound for θ. The approximations illustrated in Figure 1 are called
first order approximations, as they are based on the limiting distribution.

A function of y and θ that has a known distribution is often called a pivotal statistic, or pivotal function. The
p-value functions based on r, q and s shown in Figure are all pivotal functions, at least approximately, since the
distribution of, for example, r, is known to be standard normal (approximately), and so the distribution of Φ(r)
is U(0, 1) (approximately). The exact p-value function constructed from the known distribution f(y; θ) is an exact
pivotal function. An important aspect of the theory of higher order asymptotics based on the likelihood function is
the joint dependence of the likelihood function and derived quantities on both the parameter and the data.

Somewhat remarkably, a simple combination of r and s leads to a pivotal function for which the normal approxi-
mation is much improved more accurate. Table 1 compares the exact p-value to that based on a normal approximation
to

r∗(θ) = r(θ) +
1
r(θ)

log
s(θ)
r(θ)

. (4)

The derivation of r∗ uses so-called higher order asymptotics, the basis of which is an asymptotic expansion whose
leading term gives the first order normal approximation to the distribution of r. The approximation illustrated in
Table 1 is often called a third order approximation, as detailed analysis shows that the approximation has relative error
O(n−3/2), in the moderate deviation range θ̂ − θ = Op(n−1/2). However, before theoretical motivation is provided
for this particular construction the numerical evidence is compelling, in this and any number of continuous one-
parameter models. The next subsections consider methods for obtaining similar results in somewhat more complex
models. The emphasis is on constructing p-value functions for a scalar parameter, based on a scalar summary of the
data. Subsection 2.2 considers reduction of the data to a scalar summary, and subsection 3.3 discusses models with
nuisance parameters.
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Figure 1: The exact distribution of θ̂ (solid) and the approximate normal distribution based on the likelihood root
r (dash), the score statistic s (dotted) and the Wald statistic q (long dash). The model is f(y; θ) = exp{−(y −
θ)− e−(y−θ)} and the observed value of y is 21.5. This illustrates the use of asymptotic theory to give approximate
p-values; in this case the approximations are quite different from each other and from the exact p-value.
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Table 1: Selected exact p-values compared to the third order approximation Φ(r∗), for the location model illustrated
in Figure 1.

θ 14.59 16.20 16.90 17.82 18.53 20.00 20.47 20.83
exact 0.999 0.995 0.990 0.975 0.950 0.800 0.700 0.600
Φ(r∗) 0.999 0.995 0.990 0.974 0.949 0.799 0.700 0.600

θ 21.41 21.69 21.98 22.60 22.81 23.03 23.17 23.43
exact 0.400 0.300 0.200 0.050 0.025 0.010 0.005 0.001
Φ(r∗) 0.401 0.302 0.202 0.051 0.025 0.010 0.005 0.001
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2.2 Marginal and conditional distributions

With a sample of size 1 and a scalar parameter the variable is in one-to-one correspondence with the parameter, and
plots and tables are easily obtained. In some classes of models we can establish such a correspondence and obtain
analogous results. In full exponential families this correspondence is achieved by considering the marginal distribution
of the maximum likelihood estimator or the canonical statistic. In transformation families this correspondence is
achieved by considering the conditional distribution given the maximal ancillary. Thus these two families can serve as
prototypes for proceeding more generally. The discussion of exponential and transformation families in Chapter 2 of
Barndorff-Nielsen and Cox (1994) seems ideal for this, and there are excellent treatments as well in Pace and Salvan
(1997), Severini (2000a) and Davison (2003). An important and useful result is the derivation, in transformation
models, of the exact distribution of the maximum likelihood estimator conditional on the maximal ancillary. The
illustration of this is particularly simple for the location model, where we have (Cox and Hinkley, 1974, Ex. 4.15),

f(θ̂ | a; θ) =
exp{`(θ; θ̂, a)}∫
exp{`(θ; θ̂, a)}dθ

(5)

with
`(θ; θ̂, a) =

∑
log f(yi − θ) =

∑
log f(ai + θ̂ − θ), (6)

where the maximal ancillary a = (a1, . . . , an) = (y1 − θ̂, . . . , yn − θ̂).
Laplace approximation to the integral in the denominator gives an approximation to the conditional density of

θ̂, called the p∗ approximation
p∗(θ̂ | a; θ) = c|j(θ̂)|1/2 exp{`(θ̂)− `(θ)}. (7)

An approximation to the integral of this density can be integrated to give the normal approximation to the distribution
of r∗ defined at (4); see for example Davison (2003, Ch.12). This argument generalises to transformation families, of
which the location model is the simplest example (Barndorff-Nielsen and Cox, 1994, §6.2).

Related calculations can be carried out in one parameter exponential families with density f(yi; θ) = exp{θyi −
c(θ)− d(yi)}. For y = (y1, . . . , yn) we have

f(y; θ) = exp{θy+ − nc(θ)− d̃(y+)};

where y+ = Σyi is a minimal sufficient statistic for θ. A higher order approximation to the distribution of y+ or θ̂
leads to a normal approximation to the distribution of

r∗(θ) = r(θ) +
1
r(θ)

log
q(θ)
r(θ)

(8)

where now q(θ) is the Wald statistic (2). This approximation can be derived from a saddlepoint approximation to
the density of the sufficient statistic y+, just as (4) is derived by integrating the p∗ approximation (7). An example
is given by the Pareto distribution

f(y; θ) = θ(1 + y)−(θ+1), y > 0, θ > 0;

the p-values based on a simulated sample of size 5 are illustrated in Figure 2. The exact distribution is computed
using the fact that log(1 + y) follows an exponential distribution with rate θ.

Examples such as these are perhaps useful for motivation of the study of the r∗ approximation, but they are also
essentially defining the inference goal as a set of confidence bounds, or equivalently p-values for testing arbitrary
values of the parameter. The intervals will not be nested if the log-likelihood function is multi-modal, so it is
important to plot the likelihood function as well as the p-value function.

In location families, or more generally in transformation families, conditioning serves to reduce the dimension of
the data to the dimension of the parameter. Assume we have a model with a single unknown parameter, that is
neither an exponential family model nor a transformation model. The solution that arises directly from consideration
of higher order approximations is to construct a one-dimensional conditional model using an approximate ancillary
statistic.
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Figure 2: A one-parameter exponential family illustration of the asymptotic theory. The approximate p-value based
on r∗ cannot be distinguished from the exact value (solid). The normal approximation to the likelihood root (dashed)
and Wald statistic (dotted) are much less accurate.
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As an example consider sampling from the bivariate normal distribution, with only the correlation coefficient
as an unknown parameter (Cox and Hinkley, 1974, Ex. 2.30; Barndorff-Nielsen and Cox, 1994, Ex. 2.38). The
log-likelihood function is

`(θ) = −n
2

log(1− θ2)− 1
2(1− θ2)

∑
(y2

1i + y2
2i) +

θ

1− θ2

∑
y1iy2i, −1 ≤ θ ≤ 1. (9)

In this model the minimal sufficient statistic (Σ(y2
1i + y2

2i),Σy1iy2i) does not have a single component that is exactly
ancillary, although either of Σy2

1i or Σy2
2i is ancillary. It is possible to find an approximate ancillary by embedding

the model in a two-parameter exponential family, for example by treating α1Σ(y1i+y2i)2/{2n(1+θ)} and α2Σ(y1i−
y2i)2/{2n(1 − θ)} as independent χ2

n random variables, where α1 = α/(1 − θ), α2 = α/(1 + θ), thus recovering (9)
when α = 1. An illustration of this approach in a different (2,1) family is given in Barndorff-Nielsen and Cox (1994,
Ex. 7.1).

It is also possible to use a method based on a local location family, as described in Fraser and Reid (1995). The
main idea is to define the approximately ancillary statistic indirectly, rather than explicitly, by finding vectors in
the sample space tangent to an approximate ancillary. This is sufficient to provide an approximation to the p-value
function. The details for this example are given in Reid (2003, §4), and the usual normal approximation to the
distribution of r∗ still applies, where now

r∗(θ) = r(θ) +
1
r(θ)

log
Q(θ)
r(θ)

(10)

and
Q(θ) = {ϕ(θ̂)− ϕ(θ)}{jϕϕ(θ̂)}1/2 (11)

is the Wald statistic (2) in a new parametrisation ϕ = ϕ(θ; y). This new parametrisation is the canonical parameter in
an approximating exponential model and is computed by sample space differentiation of the log-likelihood function:
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Table 2: Exact and approximate p-values for various values of θ. The exact values are based on 100,000 simulations
from the model given at (9), with n = 5. The second row is based on the normal approximation to the distribution
of r, and the third row is based on the normal approximation to the distribution of r∗.

left tail right tail
θ Exact 0.001 0.005 0.010 0.025 0.050 0.050 0.025 0.010 0.005 0.001

-0.9 r 0.0022 0.009 0.018 0.042 0.079 0.033 0.016 0.006 0.003 0.0005
r∗ 0.0010 0.005 0.010 0.025 0.050 0.050 0.025 0.010 0.005 0.0009

-0.7 r 0.0019 0.009 0.018 0.041 0.078 0.045 0.024 0.011 0.006 0.0015
r∗ 0.0009 0.005 0.010 0.025 0.049 0.053 0.027 0.011 0.005 0.0013

-0.5 r 0.0022 0.009 0.017 0.041 0.077 0.058 0.031 0.014 0.007 0.0017
r∗ 0.0010 0.005 0.010 0.025 0.050 0.055 0.027 0.010 0.005 0.0010

-0.3 r 0.0022 0.009 0.019 0.042 0.076 0.065 0.035 0.016 0.009 0.0019
r∗ 0.0011 0.005 0.010 0.026 0.051 0.053 0.026 0.011 0.005 0.0010

0 r 0.0022 0.010 0.018 0.040 0.074 0.072 0.039 0.017 0.009 0.0021
r∗ 0.0011 0.005 0.011 0.026 0.051 0.051 0.025 0.010 0.005 0.0010

ϕ(θ) = `;V (θ; y), (12)

jϕϕ(θ̂) = |`θ;V (θ̂)|−2j(θ̂).

The derivation of V is outlined in Reid (2003, §3); briefly if zi(yi; θ) has a known distribution, then the ith element
of V is

Vi = −(
∂zi
∂yi

)−1(
∂zi
∂θ

)|θ̂. (13)

For model (9) we have

`;V (θ) = n{θ(t− θ̂s)− (s− θ̂t)}/{(1− θ2)(1− θ̂2)}
`θ;V (θ̂) = n(t− 3θ̂s+ 3θ̂2t− θ̂3s)/{(1− θ̂2)3}

with s = Σ(y1iy2i), t = Σ(y2
1i + y2

2i). The pivotal statistic used was (z1i, z2i) = [(y1i + y2i)2/{2(1 + θ)}, (y1i −
y2i)2/{2(1− θ)}.

Table 2shows exact and approximate p-values for inference about θ based on the normal approximation to r and
to r∗. The exact values were obtained from 100,000 simulations. The approximation is remarkably accurate even for
extreme values of θ.

The derivations of approximations like these require a fairly detailed description of asymptotic theory, both the
usual first order theory and less familiar extensions such as Edgeworth, saddlepoint, and Laplace approximations,
as set out, for example, in Barndorff-Nielsen and Cox (1990). It is difficult to know how much of this is essential
for a modern approach to statistical theory, but one hopes it is possible to describe the main results without being
overly technical or overly vague. I have not been specific about the definition of approximate ancillarity, which can
get rather technical. The construction using vectors based on a pivotal statistic gives a means of proceeding, and
while the ancillary statistic related to this is not uniquely determined, the resulting approximation is unique to third
order.
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Figure 3: The profile log-likelihood (solid) and the marginal log-likelihood (dashed) for σ in the one-way analysis of
variance model, with three observations from each of five groups. Profiling does not properly account for uncertainty
in the estimation of the nuisance parameter λ.
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2.3 Models with nuisance parameters

We now consider vector parameters θ, and in order to be able to extend the construction of a p-value function we will
assume that the parameter of interest ψ is a scalar, and that θ = (ψ, λ). The simplest way to obtain a log-likelihood
function for ψ is to use the profile log-likelihood function `p(ψ) = `(ψ, λ̂ψ) where λ̂ψ is the constrained maximum
likelihood estimate. Properties and illustrations of the profile log-likelihood function are described in Barndorff-
Nielsen and Cox (1994, Ch. 3.4,5). Asymptotically normal statistics analogous to (1), (2) and (3) can be obtained
from the profile log-likelihood.

The profile likelihood does not in general correspond to the density of an observable random variable, however,
and as a result the first order approximations can be very poor, especially in the case of high dimensional nuisance
parameters, such as inference for the variance parameter in a normal theory linear regression, and in more extreme
examples where the dimension of the nuisance parameter increases with the sample size. These examples can be used
to motivate adjustments to the profile likelihood to accommodate the presence of nuisance parameters.

As an example consider a one-way analysis of variance yij ∼ N(λi, ψ), i = 1, . . . n; j = 1, . . . , k (Cox and Hinkley,
1974, Ex. 5.20, 9.5, 9.24). A comparison of the profile log-likelihood and the log-likelihood from the marginal
distribution of the within group sum of squares Σij(yij − ȳi.)2 illustrates both the effect on the maximum point and
on the curvature; see Figure 3. The marginal log-likelihood for variance components in normal theory linear models
is often described as a REML log-likelihood, and has been discussed in much more general settings; see, for example,
Cox and Solomon (2002, Ch. 4).

I think the easiest way to motivate an the adjustment that in this example produces the marginal log-likelihood

7



is to take a Bayesian approach, and derive the Laplace approximation to the marginal posterior density

πm(ψ | y) =
∫

exp{`(ψ, λ; y)π(ψ, λ)dλ∫
exp{`(ψ, λ; y)π(ψ, λ)dψdλ

.=
1√
(2π)

exp{`p(ψ)− `p(ψ̂)}{jp(ψ̂)}1/2 |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
(14)

where jp(ψ) = −`′′p(ψ), and jλλ(ψ, λ) is the nuisance parameter component of the observed Fisher information matrix.
This approximation is relatively easy to derive, and can be used to develop two important and closely related

aspects of higher order asymptotics in a frequentist setting. First, the ‘likelihood function’ associated with this
marginal posterior is an adjusted profile log-likelihood

`a(ψ) = `p(ψ)− 1
2

log |jλλ(ψ, λ̂ψ)|.

It seems at least plausible that one could construct non-Bayesian inference for ψ by ignoring the prior, i.e. assigning
a uniform prior to both ψ and λ. This shows directly that the adjusted log-likelihood is not invariant to reparameter-
isation, and could lead into a discussion of orthogonal parameterisation (Barndorff-Nielsen and Cox, 1994, Ch. 2.7;
Cox and Reid, 1987).

Second, an extension of the derivation of the r∗ approximation in the location model leads to an approximation
to the marginal posterior survivor function of the same form∫ ∞

ψ

πm(ψ | y)dψ .= Φ(r∗) (15)

where

r∗ = r∗(ψ) = rp(ψ) +
1

rp(ψ)
log

qB(ψ)
rp(ψ)

rp(ψ) = sign {qB(ψ)}
√

[2{`p(ψ̂)− `p(ψ)}]

qB(ψ) = −`′p(ψ){jp(ψ̂)}−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
. (16)

In a nonBayesian context, higher order inference in the presence of nuisance parameters is relatively straightfor-
ward in two models that, while specialised, never-the-less cover a fair number of examples. The first is independent
sampling from the regression-scale model

yi = x′iβ + σei (17)

where ei are independent, mean 0, and follow a known distribution. A generalisation of the location family result
(5) gives a density on Rp+1, where p is the dimension of β, by conditioning on the residuals (yi − x′iβ̂)/σ̂. In
this conditional distribution all nuisance parameters are exactly eliminated by marginalizing to the t-statistic for a
component of β (or for log σ);

tj = (β̂j − β̂)/ŝe(β̂j).

This is essentially the same as Bayesian inference for βj using the prior dβd log σ, so the approximation given at (15)
can be used. Software for this is implemented in the marg library of S (Brazzale, 2000, Ch. 6). Table 3gives 95%
confidence intervals for a regression coefficient fitting model (17) with a number of different error distributions. It
is computed from the house price data from Sen and Srivastava (1990). In this example the confidence intervals are
quite stable over a range of error distributions, although the first- and third- order confidence intervals are rather
different.

In exponential family models, if the parameter of interest is a component of the canonical parameter, then the
nuisance parameter can be eliminated by conditioning on the remaining components of the sufficient statistic, leading
to approximations like (15) for models such as logistic regression, Poisson regression, and inference about the shape
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Table 3: Comparison of 95% confidence intervals for a regression parameter under different models for the error
distribution. Fitting and inference is carried out in R using the marg library of Brazzale. The data set has 26
observations, 4 covariates and an unknown scale parameter. The confidence intervals are for the coefficient of the
covariate frontage.

First order Third order
Student (3) -0.07 0.65 -0.16 0.69
Student (5) -0.09 0.65 -0.15 0.70
Student (7) -0.08 0.66 -0.14 0.70

Normal -0.08 0.66 -0.13 0.71

of a Gamma distribution. The appropriate definition of r∗ can be derived from the saddlepoint approximation as

r∗ = r∗(ψ) = rp(ψ) +
1

rp(ψ)
log

qE(ψ)
rp(ψ)

rp(ψ) = sign (ψ̂ − ψ)
√

[2{`p(ψ̂)− `p(ψ)}]

qE(ψ) = (ψ̂ − ψ){jp(ψ̂)}1/2 |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
. (18)

This is implemented in cond in Brazzale (2000), where a number of examples are given. In regression models
for discrete data, the question of continuity correction arises, and the correct interpretation of the third order
approximations, which are inherently continuous, is not completely clear. Experience seems to indicate that the
normal approximation to the distribution of r∗ gives good approximations to the mid-p-value, i.e. Pr(y > y0) +
(1/2)Pr(y = y0). The continuity correction implemented in Brazzale (2000) instead replaces y0 by y0±1/2, according
as y0 is in the right or left tail, and computes r∗ at this new data value. Discussion of continuity correction is given
in Davison and Wang (2002), Pierce and Peters (1992) and Severini (2000b).

Outside these two classes there is not an exact conditional or marginal density for the parameter of interest. To
find an approximate solution, it turns out that the higher order approximation is a generalisation of the t-pivot result
for regression-scale models. The approach developed by Barndorff-Nielsen (1986) and outlined in Barndorff-Nielsen
and Cox (1994, Ch.6.6) is based on an approximation to the conditional density of θ̂ given a, which is transformed
to the joint density of (r∗(ψ), λ̂ψ), where now

r∗ = r∗(ψ) = rp(ψ) +
1

rp(ψ)
log

u(ψ)
rp(ψ)

and to show that this leads to the standard normal approximation to the density of r∗. The complementing statistic
u(ψ) is

u(ψ) = |`;θ̂(θ̂)− `;θ̂(θ̂ψ) `λ;θ̂(θ̂ψ)|/{|jλλ(θ̂ψ)||j(θ̂)|}1/2; (19)

this assumes that the log-likelihood `(θ) can be expressed as `(θ; θ̂, a). It can in applications be quite difficult to
compute the sample space derivatives in u, and a method of approximating them when the model can be embedded
in a full exponential family is proposed in Skovgaard (1996, 2001).

An approach developed in Fraser (1990) and Fraser and Reid (1995), and outlined in Reid (2003) uses the
parametrisation ϕ(θ) given at (12) to generalise Q of (11) to

Q(ψ) = {ν(θ̂)− ν(θ̂ψ)}/σ̂ν

=
|ϕ(θ̂)− ϕ(θ̂ψ) ϕλ′(θ̂ψ)|

|ϕθ′(θ̂)|
|jθθ(θ̂)|1/2

|jλλ(θ̂ψ)|1/2
. (20)

The close connection between u and Q is discussed further in Reid (2003) and in Fraser, Reid and Wu (1999). Both ν
and σ̂ν are computed directly from ϕ(θ) and the matrix of derivatives ϕθ′(θ), and can be implemented numerically if
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Table 4: Comparison of the normal approximation to r and to r∗, with r∗ using (20), for the Behrens-Fisher
problem. Shown are the noncoverages of the nominal upper and lower endpoints for a 90% confidence interval, in
100,000 simulations. In all rows µ1 = 2, µ2 = 0.

exact 0.05 0.95 0.05 0.95
n1 n2 σ2

1 σ2
2 r r∗

3 2 2 1 0.015 0.893 0.033 0.965
20 2 2 1 0.127 0.875 0.066 0.934
7 5 2 1 0.069 0.931 0.045 0.950
20 15 2 1 0.057 0.944 0.050 0.950
3 2 4 1 0.104 0.895 0.041 0.959
20 2 4 1 0.109 0.898 0.063 0.938
7 5 4 1 0.058 0.930 0.050 0.949
20 15 4 1 0.957 0.944 0.050 0.950
2 3 2 1 0.124 0.875 0.041 0.959
2 20 2 1 0.155 0.849 0.069 0.933
5 7 2 1 0.074 0.925 0.051 0.949
15 20 2 1 0.057 0.942 0.050 0.949
2 3 4 1 0.137 0.862 0.048 0.951
2 20 4 1 0.162 0.842 0.069 0.933
5 7 4 1 0.077 0.922 0.052 0.948
15 20 4 1 0.058 0.941 0.050 0.949

necessary. This enables approximate inference for parameters in generalised linear models other than linear functions
of the canonical parameters. In the two special cases discussed above this simplifies to the versions discussed there;
i.e. for inference in generalised linear models with canonical link function Q simplifies to qE given in (18), and in a
regression scale model, the general version reproduces the marginal approximation using qB (16) (without the prior).

We illustrate with the Behrens-Fisher problem (Cox and Hinkley, 1974, §5.2iv). Suppose we have independent
samples of size n1 and n2 from normal distributions with parameter θ = (µ1, σ

2
1 , µ2, σ

2
2), respectively, and the

parameter of interest is ψ = µ1 − µ2. The canonical parameter of the full exponential model is

ϕ(θ) = (µ1/σ
2
1 ,−1/2σ2

1 , µ2/σ
2
2 ,−1/2σ2

2).

Table 4 gives a comparison of the first- and third- order approximations for a selection of values of n1, n2, σ2
1 and

σ2
2 . Except in cases of extreme imbalance, the third order approximation is remarkably accurate.

Given that the calculations can be relatively easily implemented in a variety of models, it would be useful for
theoretical discussions to be able to delineate the inferential basis for approximations based on r∗ computed using
u in (19) or Q in (20), and the situation is still somewhat unsatisfactory. The quantity r∗ does seem to arise quite
naturally from the likelihood ratio, and the marginal distribution of r∗ is what gives a pivotal statistic, but beyond
this it is I think difficult to see what ‘statistical principle’ is at work. Perhaps the asymptotic derivation is enough.
Some further discussion of this point is given in recent work by Pierce and Bellio (2004).

The similarity of the approximations in the Bayesian and non-Bayesian versions suggests the possibility of choosing
a prior so that the resulting posterior distribution has accurate frequentist coverage to some order of approximation.
A discussion of the asymptotic normality of the posterior distribution shows that Bayesian and nonBayesian likelihood
inference have the same limiting distributions, so investigating this further requires higher order asymptotics. Welch
and Peers (1963) showed for scalar θ that Jeffreys prior π(θ) ∝ {i(θ)}1/2 ensures that posterior quantiles provide lower
confidence bounds with error O(n−3/2). Extensions to the nuisance parameter setting have been less successful, as
unique priors providing this asymptotic equivalence are not readily available. An overview of these results is given in
Reid, Mukerjee and Fraser (2003). An interesting foundational point was raised in the discussion and reply of Pierce
and Peters (1992), and is illustrated perhaps most clearly in the derivation of the distribution function for r∗ from
the p∗ approximation to the density of θ̂ given at (7). A change of variable from θ̂ to r means the Jacobian includes
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∂`/∂θ̂, which in turn means that the result involves a very particular sample space dependence of the log-likelihood
function.

In the nuisance parameter setting the profile log-likelihood plays an important role, and in particular a plot of the
profile log-likelihood can often be informative (Barndorff-Nielsen and Cox, 1994, §3.5). As argued above, adjustments
to the profile log-likelihood arise naturally from the asymptotic point of view, although the simple adjustment using
log |jλλ(ψ, λ̂ψ)| is unsatisfactory in its dependence on the parameterisation. More refined adjustments to the profile
log-likelihood are based on the same asymptotic arguments as lead to the r∗ approximation, and a computationally
tractable version based on the arguments that lead to (20) is described and illustrated in Fraser (2003).

This discussion has focussed on inference for a scalar component of θ, as that leads to the most tractable, and also
most effective, approximations. The p-value function approach does not extend easily to inference about a vector
parameter, as departures from the ‘null’ point are multidimensional. Bartlett correction of the log-likelihood ratio
does provide and improvement of the asymptotic χ2 approximation, which is another motivation for the primacy of
the likelihood ratio over asymptotically equivalent statistics such as the standardized maximum likelihood estimate.
Skovgaard (2001) proposes a different form of correction of the log-likelihood ratio that is closer in spirit to the
r∗ approximation. Another possibility is to derive univariate departures in some way, such as conditioning on the
direction of the alternative vector and examining its length.

The most important advance in Bayesian inference is the possibility of simulating observations from the posterior
density using sophisticated numerical methods. This has driven an explosion in the use of Bayesian methods in
practice, particularly for models in which there is a natural hierarchy of effects, some of which can be modelled
using priors and hyper-priors. In these settings the inferential basis is straightforward, and the main difficulties are
computational, but there is less attention paid to the stability of the inference with respect to the choice of prior
than is perhaps desirable. The approximations discussed here can be useful in checking this, and perhaps have a
role in assessing convergence of the Markov chain based sampling algorithms. From the point of view of the study
of theoretical statistics, an approach which incorporates Bayesian inference as a major component should spend, I
think, considerable time on the choice of prior and the effect of the prior. The construction of non-informative priors,
and the assessment of the sampling properties of inference based on ‘popular’ priors should be addressed at length.

3 Discussion

More traditional approaches to the study of the theory of statistics emphasise, to varying degrees, the topics of point
estimation and hypothesis testing. The approach based on likelihood essentially replaces both of these by the p-value
function. The use of this function also side-steps the discussion of one-tailed and two-tailed tests. The conditional
approach to vector parameter inference mentioned above is extends the discussion in Cox and Hinkley (1974, §3.4iv).

Among the more classical topics, some understanding of some basic concepts is needed at least for several specific
applied contexts, and perhaps more generally. For example, much of the work in nonparametric regression and density
estimation relies on very generally specified models, and relatively ad hoc choices of estimators. In this setting the
bias and variance of the estimators, usually of functions, but sometimes of parameters, are the only easily identifiable
inferential quantities, and it is of interest to compare competing procedures on this basis. As another example, the
notion of the power of a test to detect a meaningful substantive difference plays a prominent role in many medical
contexts, including the analysis of data from clinical trials. While the relation of power to sample size is less direct,
and less meaningful, than the relation of the length of a confidence interval to sample size, the use of fixed level
testing is sufficiently embedded in some fields that students do need to learn the basic definitions of size and power.
In other fields the basic definitions of decision theory, including loss functions and utilities, will be important.

I don’t see any role beyond historical for extended discussion of optimality considerations, particularly with regard
to testing. The existence and/or construction of most powerful tests under various special circumstances is in my view
largely irrelevant to both practice and theory. The development of admissible or otherwise optimal point estimators
may be useful in specialised decision theory settings, and perhaps has a role in choosing among various estimators
of functions in settings like nonparametric regression, but does not seem to me to be an essential part of the basics
of statistical theory.

One concern about the approach based on higher order asymptotic theory is whether it is excessively specialised,
in view of the many developments in modelling for complex settings that have been developed along with the rise in
computing power. An important question is whether this theory provides any general concepts that may prove useful

11



in much more complex settings, such as analysis of censored survival data, of longitudinal data, of data with complex
spatial dependencies, of graphical models, or hierarchical models, to name just a few. The approach outlined in §2
emphasises the primacy of the likelihood function, the isolation of a one-dimensional distribution for inference about
the likelihood function, and the isolation of a scalar parameter of interest. This can I think be used much more
generally.

In many applications of parametric modelling, the role of the likelihood function is well established, and is often
the first step in an approach to constructing inference from very complex models. The results described in the
previous section indicate that relying on the first-order normal approximation may be misleading, especially in the
presence of large numbers of nuisance parameters. Some adjustment for nuisance parameters seems essential, both
for plotting the likelihood and for inference. A Bayesian adjustment is the most easily implemented, but raises the
difficulty of the dependence of the results on the prior. This dependence is rather clearly isolated in expressions like
(14) or (16).

The emphasis in §2 on scalar parameters of interest may be important for discussion of more realistic models,
where the identification of this parameter may not be obvious. For example, in the transformed regression model of
Box and Cox (1964)

yλi = x′iβ + σei, i = 1, . . . n

where θ = (β, σ, λ), and we assume ei are independent standard normal variates, it seems likely that components of
β are not the real parameters of interest. In work as yet unpublished with Fraser and Wong, we suggest that for a
simple linear regression model xi = (1, zi), one version of a parameter of interest is the rate of change in the median
response, at a fixed value z0:

ψ(θ) =
d

dz
(β0 + β1z)1/λ|z=z0 .

The calculations described in §2.3 are easily carried out in this setting.
In many settings very complex models are constructed at least in part because there is a vast amount of data

available. One example is the use of regression models in environmental epidemiology that adjust for potential
confounders using methods based on splines. Another is the use of hierarchical modelling of variance components in
models for longitudinal data. The study of asymptotic theory can at the least serve as a reminder that the models
with very large numbers of nuisance parameters may lead to misleading inference, and that a Bayesian approach
is likely to need fairly careful attention to the specification of the prior. The theory can also provide a basis for
understanding that the amount of information in the data may be quite different from the apparent sample size. An
excellent illustration of this appears in Brazzale (2000, §5.3.1). Recent work by Claeskens (2004) uses marginal or
REML likelihood for variance components in fitting regression splines in an interesting combination of ideas from
likelihood asymptotics and nonparametric smoothing methods.

In spite of the fact that study of theoretical statistics, and particularly foundations, is perhaps not so fashionable
today, there are in our journals a great many theoretical, or at least mathematically technical, papers. Yet most
graduate departments seem to be struggling with their basic theory courses, trying to make them relevant, yet finding
it difficult to escape the more classical structure. This is certainly an evolutionary process, but I think the time is
right to accelerate the modernisation that was initiated in Cox and Hinkley (1974).
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