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The essential role of the likelihood function in both Bayesian and non-Bayesian
inference is described. Several topics related to the extension of likelihood-based
methodology to more complex settings are reviewed, including modifications
to profile likelihood, composite and pseudo-likelihoods, quasi-likelihood, semi-
parametric and non-parametric likelihoods, and empirical likelihood .  2010 John
Wiley & Sons, Inc. WIREs Comp Stat 2010 2 517–525

INTRODUCTION

The likelihood function for a parametric model
is proportional to the density function of the

model, but is considered as a function of the
parameters in the model, with the data held fixed. In
machine learning applications, where inference about
the model parameters is often less important than
prediction of new instances, the negative of the log
of the likelihood function can serve as a useful loss
function. The likelihood function has proved to be
such a powerful tool for inference that it has been
extended and generalized to semi-parametric models
and non-parametric models, and various pseudo-
likelihood functions have been proposed for more
complex models. This article will review some of
the extensions to likelihood and likelihood-based
inference that have been developed for the analysis
of large or complex data sets.

NOTATION AND EXAMPLES
We start with a given parametric model, f (y; θ), the
probability density function for a random variable Y.
At least initially we assume that y is a vector of n
components y1, . . . , yn, yi ∈ R, and θ ∈ ". In regular
statistical models, " is very often taken to be Rd or a
subset of Rd.

The likelihood function for this parametric
model is

L(θ; y) = c(y)f (y; θ), (1)

viewed as a function of θ , for fixed y. While some
authors define the likelihood function without the

∗Correspondence to: reid@utstat.utoronto.ca

Department of Statistics, University of Toronto, Toronto, Canada
M5S 3G3

DOI: 10.1002/wics.110

arbitrary function c(y), this definition shows explicitly
that the value of the likelihood function is only
meaningful in relative terms. It is usually more
convenient to work with the log-likelihood function

#(θ; y) = a(y) + log f (y; θ); (2)

this is particularly useful when the components of y
are independent.

Example 1 If Y = (Y1, . . . , Yn) are independent
and identically distributed normal random variables,
with mean µ and variance σ 2, then

#(θ; y) = −n
2

log σ 2 − 1
2σ 2

∑
(yi − µ)2,

where θ = (µ, σ 2), " = R × R+, and following def-
inition (2), we can ignore the constant term
−(n/2) log(2π). This example can be generalized in
many ways, for example by assuming the Yi are inde-
pendent, with means µi; if further µi = xT

i β where
xi is a q × 1 vector of known values associated with
the ith component, then we have a standard linear
regression model with log-likelihood function

#(θ; y) = −n
2

log σ 2 − 1
2σ 2

∑ (
yi − xT

i β
)2

,

where θ = (β, σ 2).
There are many extensions of this simple

regression model. One important class of extensions
is to fitting a model where the mean is specified only
as a ‘smooth function’ of the covariates:

yi = m(xi) + εi.

In applications, the smooth function is often modeled
using a set of basis functions. For example, with a
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single covariate (q = 1) we might write

m(x) =
J∑

j=1

φjBj(x) (3)

for some functions Bj(·); both J and Bj are to be
specified. A popular choice for Bj is the set of B-spline
basis functions; alternatives include sine and cosine
functions, or wavelet bases. With more than one
covariate, one popular choice is to model the mean
with q distinct smooth functions, and the result is
called an additive model. For small values of q, usually
at most 3, another possibility is to use spline basis
functions in 2 or 3 dimensions, such as thin plate
splines. A good general reference is Wood.1

Example 2 Suppose each yi is itself a vector of
length k, and an observed value of yi has a 1 in the cth
place and zeroes elsewhere, if the ith data point is in
class c. A general model for this is a multinomial, and
a sample of size n from the multinomial distribution
has log-likelihood

#(θ; y) =
n∑

i=1

k∑

c=1

yic log(pc),

where 0 ≤ pc ≤ 1,
∑

c pc = 1, and
∑

ic yic = n. In
machine learning this is often called the negative cross-
entropy function; see, for example, Ref 2 (Ch. 7). As in
Example 1, we could model the vector of probabilities
p through some input variables x and unknown
parameters β, or with a smooth function m(·).

Example 3 If the sequence y = (y1, . . . , yn) is
observed sequentially in time, then the model for y
can be written as a product of conditional densities:

f (y1, . . . , yn) = f (y1) · f (y2 | y1) . . . f (yn | yn−1, . . . , y1).

For example, if we assume a Markov structure then
this can be simplified to

f (y1, . . . , yn) = f (y1)
n∏

i=2

f (yi | yi−1).

An unknown vector of parameters θ could enter as
part of the modeling of these conditional densities. As
an example, we might have yi = (1 − ρ)µ + ρyi−1 +
εi, with the innovations εi taken to be independent.
This is an autoregressive model of order 1; the
likelihood is fully specified by assuming a model, such
as Gaussian, for the distribution of ε, and a model
for the starting value y0. Extensions incorporating
additional parameters with covariates xi could also be
introduced.

Example 4 The log-likelihood function for a
non-homogeneous Poisson process evolving in time is
given by

n∑

i=1

log{λ(yi)} −
∫ ∞

0
λ(u)du, 0 < y1 < · · · < yn,

(4)

where λ(·) is the rate function for the process, and
events are observed to occur at times y1, . . . , yn.
Parameters θ are introduced into the log-likelihood
function by specifying a parametric form for the rate
function, such as λ(t) = λ, or λ(t) = exp{x(t)Tβ}. This
formulation can be greatly extended, for example to
data measured in space, rather than time, in which
case (4) becomes

n∑

i=1

log{λ(yi)} − +(S),

where (y1, . . . , yn) now take values in a set S, for
example a set of latitude and longitude points in a
spatial area, and +(S) =

∫
S λ(s)ds.

A number of derived quantities are routinely
used in parametric inference. The score function
#′(θ ) = ∂#(θ; y)/∂θ is typically used to obtain the
maximum likelihood estimator, which in regular
models satisfies

#′(θ̂; y) = 0.

The negative second derivative of the log-likelihood
is called the (Fisher) information function and
the observed and expected Fisher information are,
respectively,

j(θ̂) = − ∂2#(θ; y)
∂θ∂θT

∣∣∣∣
θ=θ̂

, i(θ ) = E
{
−∂2#(θ; y)

∂θ∂θT

}
,

where the expectation is over the distribution of
y = (y1, . . . , yn).

In models where some components of θ are of
direct interest and others are nuisance parameters, it
is usual to write θ = (ψ , λ), where ψ is the parameter
of interest, and to partition j(θ ) and i(θ) accordingly,
for example

i(θ ) =
(

iψψ (θ ) iψλ(θ)
iλψ (θ ) iλλ(θ )

)
.

General introductions to the definition of the
likelihood function and its use ininference are given
by Fisher,3 Edwards4 and Azzalini.5 A large number
of relevant and interesting models are discussed by
Davison6 (Ch. 4 and 6), Cox and Hinkley7 (Ch. 2),
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and Barndorff-Nielsen and Cox8 (Ch. 2). Example
4 above has been drawn from the work of Davison6

(Ch. 6.5, where several other examples are presented).

LIKELIHOOD INFERENCE: BAYES
AND FREQUENTIST
In fairly wide generality the following convergence
results can be derived:

#′(θ )T{j(θ̂)}−1#′(θ) L→ χ2
d, (5)

(θ̂ − θ)Tj(θ̂ )(θ̂ − θ ) L→ χ2
d, (6)

2{#(θ̂) − #(θ )} L→ χ2
d, (7)

where the limit is taken as n the dimension of y, goes to
∞.1 In (5)–(7), χ2

d is the chi-squared distribution on d
degrees of freedom, where d is the dimension of θ . One
of the necessary conditions to obtain these results is
that a central limit theorem is available for the #′(θ; y),
which is a sum of n quantities if the components of
y are independent. Also needed is the convergence (in
probability) of the maximum likelihood estimator θ̂
to the true value θ , and this can often be difficult to
establish for some models; in many discussions it is
simply assumed to be true.

Similar results are available for inference
about component parameters: writing θ = (ψ , λ), and
denoting by λ̂ψ the constrained maximum likelihood
estimate of λ for ψ fixed,

sup
λ

#(ψ , λ; y) = #(ψ , λ̂ψ ; y) = #P(ψ), (8)

we have, for example,

#′
P(ψ)Tjψψ (θ̂ )#′

P(ψ) L→ χ2
q, (9)

(ψ̂ − ψ)T{jψψ (θ̂)}−1(ψ̂ − ψ) L→ χ2
q, (10)

2{#(ψ̂, λ̂) − #(ψ , λ̂ψ )} L→ χ2
q, (11)

where q is the dimension of ψ . The function #P(ψ)
defined in (8) is the profile, or concentrated, log-
likelihood function.

The first-order approximations suggested by
these limiting results, such as

θ̂
·∼ N{θ , j−1(θ̂)}, (12)

ψ̂
·∼ N{ψ , jψψ (θ̂)}, (13)

±√
2{#(ψ̂ , λ̂) − #(ψ , λ̂ψ )} ·∼ N(0, 1), (14)

1
More generally the limit can be taken as the expected Fisher

information in y increases. Recall that θ̂ = θ̂ (y) = θ̂ (y1, . . . , yn).

are widely used in practice for inference about θ .
Most statistical packages now have general purpose
routines for calculating these approximations. The
third approximation applies only for q = 1, and the
sign is usually taken as sign(ψ̂ − ψ).

Bayesian inference based on the likelihood
function is quite straightforward in principle: a
prior probability distribution for θ , denoted π (θ)
is combined with the likelihood function using the
rules of conditional probability to form the posterior
density for θ ,

π(θ | y) = L(θ; y)π(θ)∫
L(θ; y)π(θ)dθ

. (15)

Inference for a sub-parameter, ψ(θ), say, is obtained
from the marginal density for ψ :

πm(ψ | y) =
∫

ψ(θ)=ψ

π (θ | y)dθ , (16)

and a point estimate for ψ might be the mean or the
mode of this marginal posterior. Marginal posterior
probability statements are also readily obtained, so,
for example, a posterior interval with probability
(1 − α) is given by (ψL, ψU), obtained by finding ψL
and ψU so that

∫ ψ=ψU

ψ=ψL

πm(ψ | y)dψ;

this interval is not unique, and one choice often
recommended is to also require the interval to have
highest posterior density.

The integrals needed for computation of (15) and
(16) can be approximated by various methods, includ-
ing Laplace’s approximation or quadrature rules. In
high-dimensional cases, samples from the posterior
density can be obtained using Markov chain Monte
Carlo (MCMC) sampling. This involves constructing
a Markov chain with stationary distribution propor-
tional to π (θ | y) and simulating samples from the
stationary distribution by running the Markov chain
for a sufficiently long time. There is a very large
literature on techniques for MCMC sampling and
convergence properties: two book-length treatments
are Refs 9 and 10.

In most scientific applications of Bayesian
methods it is of interest to understand the behavior of
Bayesian inference under the probability distribution
given by the model f (y; θ), that is, for a fixed value
of θ and random sampling from y. This provides a
means for studying, for example, whether a posterior
marginal probability interval for ψ has validity under
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the sampling model. Under conditions on the model
and the prior it can be shown that the posterior density
for θ − θ̂ is asymptotically normal with mean 0 and
variance given by the inverse of the observed Fisher
information11 (Ch. 4); informally this is described as
the prior is ‘swamped by the data’. To assess the
influence of the prior on the posterior, from the point
of view of asymptotic theory, it is necessary to use
results on higher order approximations, based on
series expansions of the distribution of the maximum
likelihood estimator, in the non-Bayesian setting,
and series expansions to posterior integrals, in the
Bayesian setting. For a debate on the relevance of
model-based assessments of posterior probabilities,
see, for example, Refs 12, 13 and the discussion of
these papers.

COMPUTATION OF LIKELIHOOD
QUANTITIES
The maximum likelihood estimator is in regular
models obtained from the root(s) of the score equation

#′(θ; y) = 0,

which is usually solved iteratively, using a method like
Newton–Raphson or gradient descent. The method
of Fisher scoring uses Newton–Raphson with the
second derivative replaced by its expected value. If the
equation has multiple roots, the maximum likelihood
estimator is found, in principle, by finding all the roots
and choosing the one with the largest likelihood.

In the class of generalized linear models there
is enough smoothness in the model to ensure that
the score equation above has a unique root, which
is indeed the maximum likelihood estimator, and this
solution can be found by an iteratively reweighted
least squares fit. This allows many of the techniques
of linear regression to be extended to this class of
nonlinear models, with the log-likelihood function
replacing squared error.

Example 5 Suppose the response Yi is binomial,
with sample size ni and probability of success pi, and
that we have a sample of k independent observations
from this model. The log-likelihood function is

#(p) =
k∑

i=1

{yi log(pi) + (ni − yi) log(1 − pi)}.

With no further information linking the observations,
the maximum likelihood estimate of p is simply
vector of observed proportions (y1/n1, . . . , yk/nk).
With a number of covariates xi1, . . . , xiq, potentially

associated with each yi, a possible model for p is the
logistic model

log
pi

1 − pi
= xT

i β,

which gives

#(β) =
k∑

i=1

yixT
i β − ni log{1 + exp(xT

i β)},

and score equation

∑
(yi/ni)xT

i =
∑

pi(β)xT
i ,

where pi(β) = exp(xT
i β)/{1 + exp(xT

i β)}. This can be
framed as a weighted least squares problem, with the
weights depending on β. An initial guess of β provides
the starting weights, and at each step the least squares
equation is solved and the weights updated, until
convergence. The special case of binary data, with
ni = 1 is often useful in practice, although diagnostics
and fitting in this situation need more care.14

Example 6 In a feed-forward neural network
with one hidden layer, the model can be expressed as
a nonlinear regression model2 (Ch. 10):

Yi ∼ Bin(ni, pi),

log
pi

1 − pi
= β0 + ZT

i β,

Zim =
exp(xT

i αm)
1 + exp(xT

i αm)
,

where the Z’s are not observed. This has some
similarities to the logistic regression model, and using
the cross-entropy loss to fit this model is the same
as maximum likelihood estimation. However, the log-
likelihood function is essentially over-parameterized,
so has several local maxima. Standard algorithms
do not automatically attempt to find all the roots
and then choose the one with largest likelihood. The
approach recommended by Venables and Ripley14

(Ch. 9) is to use a number of random starting points,
thus fitting several neural networks, and to average
the predictions.

A widely used algorithm for computing max-
imum likelihood estimates, developed for models
which allow for missing data, is the EM algorithm of
Dempster et al.15 This algorithm iterates between esti-
mating the missing observations and maximizing the
likelihood function for the complete data. See Ref 6
(Ch. 5) for an introduction and Ref 16 or Ref 17 for
more detailed discussion and further references.
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LIKELIHOOD FOR MODEL SELECTION

The χ2 approximation derived from the asymptotic
result (7) or (11) provides a test of the hypothesis
θ = θ0 or ψ = ψ0; for example (11) can be used
to assess whether some components in a logistic
regression model are significantly different from zero.
The model with ψ = ψ0 is nested in the original
model f (y; θ) by assumption, in the sense that the
parameter space is a subset of ". In treatments of
generalized linear models, twice the difference of
log-likelihoods comparing the parametric model with
a non-parametric competitor is called the deviance,
and the contribution from the ith of n independent
observations from the model is called the deviance
contribution from yi. These deviance contributions
play the role of residuals in some diagnostic methods,
and choosing among nested generalized linear models
is often done by analysis of deviance, repeatedly using
result (11).

Example 5 (cont) The fully non-parametric fit
of the binomial model is p̂i = yi/ni, i = 1, . . . , k, and
the deviance comparing this model to the logistic
regression model is

D = 2
k∑

i=1

[#(p̂i; yi) − #{pi(β̂); yi}] =
k∑

i=1

di{yi, pi(β̂)}.

In a normal theory linear regression, the deviance
is simply the negative sum of squared residuals.

We might hope to choose the best model among
a set of competing models by finding the one that
has the largest value of the maximized log-likelihood
function. However, this will always choose the most
complex model, as we can always do at least slightly
better on the data set we are fitting by making the
model more complex. This is a familiar problem in
linear regression, where adding additional covariates
is guaranteed to reduce the residual sum of squares.

A commonly used approach to this problem is to
add to the log-likelihood function a penalty for model
complexity. The most widely used version is Akaike’s
Information Criterion, defined as

AIC = −2 log #(θ̂; y) + 2p, (17)

where p is the number of parameters estimated
in #(θ; ·). Models with smaller values of AIC are
preferred over models with larger values, and the
term 2p is a penalty for fitting models with larger
number of parameters. This expression for AIC is
derived by Davison6 (Ch. 4) as an estimate of the
Kullback–Leibler divergence between the fitted model

f (y; θ̂) and the true model g: in his derivation the fitted
model need not be nested within the true model.

The KL-divergence arises in a number of
contexts in statistical inference and in information
theory. In particular, writing Ĝn(y) for the empirical
distribution function based on a sample y1, . . . , yn
from a distribution G, we can see that the maximum
likelihood estimator θ̂ is that value that minimizes
the KL-divergence between f (y; θ) and dĜn(y), where
dĜn puts mass 1/n at each of the n observations.

It is very common in regression-type settings,
such as (3), to use AIC as a tool for model choice.
It is known, however, to actually be inconsistent for
this purpose, and various modifications have been
suggested. The original derivation of AIC was in the
time series context, where the focus on prediction from
the fitted model arises somewhat more naturally. A
good recent reference is Claeskens and Hjort.18 There
are several other model selection criteria similar to
AIC; in particular a Bayesian version due to Schwarz
called BIC replaces 2p in (17) with log(n)p.19

MODIFIED PROFILE LIKELIHOOD

In this section we re-visit the approximations given at
(9), (10) and (11). The assumption is that we have a
model with a fairly high-dimensional parameter, θ , but
that many components of θ are nuisance parameters,
incorporated to make the model more realistic, but not
of particular interest in themselves. Thus we partition
θ as (ψ , λ), with ψ the parameters of interest and λ

the nuisance parameters. It is intuitively clear that the
profile log-likelihood is too concentrated around its
maximum point, ψ̂ , because we have not allowed for
errors of estimation of the nuisance parameters λ, so,
for example, the curvature of #P at ψ̂ is likelihood
an overly optimistic estimate of the precision of the
maximum likelihood estimator ψ̂ .

Example 1 (cont.) If the model is yi = xT
i β + εi,

where xi is a q × 1 vector of known covariate values,
and εi is assumed to follow a N(0, ψ) distribution, the
maximum likelihood estimate of ψ is

ψ̂ = 1
n

0(yi − xT
i β̂)2, (18)

which tends to be too small, as it does not allow for
the fact that q unknown parameters (the components
of β) have been estimated. In this example, there is
a simple improvement, based on the result that the
likelihood function for (β, ψ) factors into

L1(β, ψ; ȳ)L2{ψ; 0(yi − xT
i β̂)2}. (19)
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The factor L2(ψ) is proportional to the marginal
density of the residuals, 0(yi − xT

i β̂)2, and basing
inference for ψ only on this marginal likelihood leads,
for example, to the maximum marginal likelihood
estimate

ψ̂m = 1
n − q

0(yi − xT
i β̂)2, (20)

an unbiased estimate of ψ . The estimate based on
the marginal likelihood of the residuals is often called
the restricted maximum likelihood (REML) estimate,
and REML methods are particularly important in
estimating variance components in linear models with
random effects. A book-length discussion is available
in Ref 20.

The theory of higher order approximations has
been used to derive a general adjustment to the profile
likelihood or log-likelihood function, which takes the
form

#A(ψ) = #P(ψ) + 1
2

log |jλλ(ψ , λ̂ψ )| + B(ψ), (21)

where jλλ is defined by the partitioning of the observed
information function, and B(ψ) is a further adjustment
function that is Op(1). Several versions of B(ψ) have
been suggested in the statistical literature: the main
goal is to adjust the profile log-likelihood for errors in
estimation of the nuisance parameters λ, essentially
by finding an approximation to the factorization
(19). Marginal likelihoods for scale parameters in
linear regression models with non-normal errors are
discussed by Fraser.21 Barndorff-Nielsen22 suggested
a general form for B(ψ) based on higher order
approximations and Fraser23 proposed a closely
related version that can be calculated without explicit
specification of approximately ancillary statistics.

In the special case that ψ is orthogonal to the
nuisance parameter λ with respect to expected Fisher
information, that is iψλ(θ) = 0, a simplification of
#A(ψ) is available as

#CR(ψ) = #P(ψ) − 1
2

log |jλλ(ψ , λ̂ψ )|, (22)

which was introduced by Cox and Reid.24 The change
of sign on log |jλλ| comes from the orthogonality
equations. In independent, identically distributed
sampling, #P(ψ) is Op(n), i.e. is the sum of n
bounded random variables, whereas log |jλλ| is Op(1).
A drawback of #CR is that it is not invariant to
one-to-one reparametrizations of λ, all of which
are orthogonal to ψ . In contrast #A(ψ) is invariant
to transformations θ = (ψ , λ) to θ̃ = {ψ , η(ψ , λ)},

sometimes called interest-respecting transformations.
Inference based on various versions of #A(·), that is
for various choices of B(·), is discussed by DiCiccio
et al.,25 Chang and Mukerjee,26 and references
therein.

A theory of higher order approximations to
likelihood-based quantities, refining approximations
such as (12), (13), and (14), has been developed in
a long series of papers beginning with Refs 27–30;
these in turn built on the saddlepoint approximation
of Daniels31 and Edgeworth expansions.8 Concise
accounts of the theory are available in several
books including Refs 8, 32, and 33. A number of
applications of higher order asymptotics are presented
by Brazzale et al.34

EXTENSIONS OF LIKELIHOOD
There are many great likelihood-type functions that
have been suggested for inference in setting with
complex data. One of the most important is the partial
likelihood for censored survival data.35,36

Example 7 Suppose we have a response yi on
each of n individuals, where yi is either a true failure
time or a censored failure time, along with an indicator
variable that identifies the uncensored observations. A
model closely related to the non-homogeneous Poisson
process of Example 4 is to assume that the failure rate
for the ith individual takes the form

λ(ti) = exp(xT
i β)λ0(ti), (23)

where xi is a vector of covariates associated with the
individual, and λ0(t) is a baseline failure rate, left
unspecified. The k observed failure times are ordered
as y(1) < · · · < y(k), and we use Ri to denote the risk
set of individuals available to fail at time y(i), that
is all individuals whose observed values of y, either
censored or uncensored, are greater than y(i). Cox35

suggested that inference for β be based on the partial
likelihood

k∏

i=1

exp(xT
(i)β)

∑
j∈Ri

exp(xT
j β)

,

where x(i) is the vector of covariates for the individual
with observed time y(i). This ignores the part of the
likelihood that records information between failure
times. It is not a marginal or conditional likelihood
except in special cases, but inference based on
the partial likelihood has many of the properties
of inference based on the full likelihood function,
including consistency and asymptotic normality, with
asymptotic covariance consistently estimated by the
second derivative of the log of the partial likelihood
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function. This has been extended to many types
of processes evolving in time, and many types of
incompletely observed data.

Model (23) is a semi-parametric model, and
general likelihood theory for such models can be
accessed through Refs 37 and 38.

Many other likelihood-like functions can be
constructed using the density of just part of the
data. Besag39 proposed a pseudo-likelihood function
for spatial data, composed of the product of the
conditional densities of each point, conditioned on
its immediate neighbors. This was one of a class
of such likelihoods now often referred as composite
likelihoods, after Lindsay.40

Example 8 One way to model correlated binary
data is to start with an unobserved latent variable
modeled, for example, as

zir = xT
irβ + wT

irbi + εir, bi ∼ N(0, 0b),
εir ∼ N(0, 1),

where r = 1, . . . , ni indexes observations in a cluster,
i = 1, . . . , n indexes clusters, and xir and wir are
covariates associated with the rth individual in the
ith cluster. If we observe yir = 1 if zir ≥ 0, the joint
likelihood for y is

L(θ; y) =
n∏

i=1

log
∫ ∞

−∞

ni∏

r=1

pyir
ir (1 − pir)1−yirφ(bi, 0b)dbi,

where pir = 2(xT
irβ + wT

irbi), 2(·) is the standard
normal distribution function, and φ(·; µ, 0) is the
normal density function with mean vector µ and
covariance matrix 0. The integral in the likelihood is
difficult to evaluate for models with random effect bi of
dimension more than two or three, and an alternative
investigated by Renard et al.41 in this setting is the
joint likelihood of all possible pairs of observations
within each cluster. This pairwise likelihood is an
example of a composite likelihood. Renard et al.41

show that inference based on the pairwise likelihood is
quite efficient relative to that based on full likelihood.
There is a large literature on the relative efficiency of
composite likelihood methods; see Ref 42.

A somewhat different approach to the
likelihood-based analysis of complex data is based on
the quasi-likelihood of Wedderburn.43 This approach
starts by specifying parametric forms for the mean
and variance of the response, for example

E(yi | xi) = µ(xT
i β), var(yi | xi) = ϕV(µi),

where µ(·) and V(·) are known functions, and ϕ is an
additional scale parameter for the variance function.

Inference for β is based on the estimating equation

n∑

i=1

V(µi)
−1/2{yi − µ(xT

i β)} = 0,

which would be the score equation for a generalized
linear model with these first two moments, if such a
model existed. The theory of quasi-likelihood infer-
ence is developed by McCullagh.44 This was extended
to the analysis of longitudinal data by Liang and
Zeger45 under the description generalized estimating
equations, or GEE. Liang and Zeger proposed using
what they called a ‘working covariance’ function for
V(·) and showed that the estimates of the parame-
ters in the mean were consistent even if the working
covariance function was not correct. At the time of
writing the relationship between GEE methods and
composite likelihood methods is not clear.

If the mean function is modeled with both fixed
and random effects, as in Example 8, then this quasi-
likelihood approach also involves integration. Breslow
and Clayton46 show that Laplace approximation
to this integral leads to a version of penalized
quasi-likelihood for generalized linear mixed models.
Green47 gives a general discussion of inference based
on penalized likelihood functions, in the context where
the parameter governing the distribution of the ith
observation can be expressed as

θ i = xT
i β + m(wi)

with m(·) a ‘smooth’ function of the form (3). A
different approach to quasi-likelihood estimation of
variance components has been developed by Nelder
and Lee; see, for example, Refs 48 and 49.

Owen50 initiated a literature on a type of non-
parametric likelihood called empirical likelihood. In
the simplest case where y1, . . . , yn are i.i.d. from a
density f , the usual non-parametric likelihood puts
mass 1/n on each of the observations. This is not
exactly a likelihood function in the strict sense since
the density is not dominated by a sigma-finite measure.
Owen showed that if we assume that all the possible
densities for f have a common parameter, for example
the mean, µ, then the empirical maximum likelihood
estimator, which maximizes

n∏

i=1

pi, subject to
∑

piyi = µ, and
∑

pi = 1

is consistent and asymptotically normal, and further
that likelihood ratio tests of the form (7) or (14) can
be based on the empirical likelihood.
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Empirical likelihood enables the use of
likelihood-based arguments in a non-parametric set-
ting. It has been extended and generalized consider-
ably since Owen’s original paper: see, for example,
Ref 51.

In Owen’s50 empirical likelihood, the emphasis
is on inference for a small or at least finite number of
parameters that are assumed to have an appropriate
interpretation without specifying the parametric form
of the model. Another version of non-parametric like-
lihood inference is the theory of using likelihood-like
arguments with parameters that are functions, for
example maximum likelihood estimation of a log-
concave density from an independent sample from
such a density. The theory for this is considerably
more complex: for recent results on consistency of
such estimators see Ref 52 and references therein.
Some of the theoretical work is closely related to that

for semi-parametric models such as the proportional
hazards model of Example 7, and a good introduction
is Ref 53 (Ch. 21).

CONCLUSION
The likelihood function and derived quantities based
on the likelihood function are the basis for all sta-
tistical inference based on mathematical modeling.
Derived quantities based on the likelihood function
provide estimates of unknown parameters, estimates
of uncertainty, and methods for testing hypotheses
and selecting models. The large number of extensions
to likelihood suggested for tackling particular com-
plex models arising in applications are a testament
to the central role of likelihood and ideas based on
likelihood in statistical inference.

REFERENCES

1. Wood S. Generalized Additive Models: An Introduction
with R. New York: Chapman & Hall/CRC; 2006.

2. Hastie T, Tibshirani RJ, Friedman J. The Elements
of Statistical Learning. 2nd ed. New York: Springer-
Verlag; 2009.

3. Fisher RA. Statistical Methods and Scientific Inference.
Edinburgh: Oliver & Boyd; 1956.

4. Edwards AF. Likelihood (Expanded Edition). Balti-
more: Johns Hopkins University Press; 1992.

5. Azzalini A. Statistical Inference. London: Chapman
& Hall; 1998.

6. Davison AC. Statistical Models. Cambridge: Cambridge
University Press; 2003.

7. Cox DR, Hinkley DV. Theoretical Statistics. London:
Chapman & Hall; 1974.

8. Barndorff-Nielsen OE, Cox DR. Inference and Asymp-
totics. London: Chapman & Hall; 1994.

9. Casella G, Robert CP. Monte Carlo Statistical Methods.
New York: Springer-Verlag; 1999.

10. Gilks WR, Richardson S, Spiegelhalter D. Markov
Chain Monte Carlo in Practice. New York: Chapman
& Hall/CRC; 1996.

11. Berger JO. Statistical Decision Theory and Bayesian
Analysis. New York: Springer-Verlag; 1985.

12. Berger JO. The case for objective Bayes analy-
sis. Bayesian Stat 2006, 1:385–402, doi:10.1214/06-
BA115.

13. Goldstein M. Subjective Bayesian analysis: princi-
ples and practice. Bayesian Stat 2006, 1:403–420,
doi:10.1214/06-BA116.

14. Venables WN, Ripley BD. Modern Applied Statistics
with S. New York: Springer-Verlag; 2003.

15. Dempster A, Laird N, Rubin D. Maximum likelihood
from incomplete data via the EM algorithm. J R Stat
Soc B 1977, 39:1–38.

16. Little RJA, Rubin DB. Statistical Analysis with Missing
Data. 2nd ed. New York: John Wiley & Sons; 2002.

17. McLachlan GJ, Krishnan T. The EM Algorithm and
Extensions. New York: John Wiley & Sons; 2007.

18. Claeskens G, Hjort NL. Model Selection and Model
Averaging. Cambridge: Cambridge University Press;
2008.

19. Kass RE, Wasserman L. Formal rules for selecting prior
distributions: a review and annotated bibliography. J
Am Stat Assoc 1996, 91:1343–1370.

20. Searle SR, Casella G, McCulloch CE. Variance Com-
ponents. New York: John Wiley & Sons; 1992.

21. Fraser DAS. Inference and Linear Models. New York:
McGraw-Hill; 1979.

22. Barndorff-Nielsen OE. On a formula for the distribu-
tion of the maximum likelihood estimator. Biometrika
1983, 70:343–365.

23. Fraser DAS. Likelihood for component parameters.
Biometrika 2003, 90:327–339.

24. Cox DR, Reid N. Parameter orthogonality and approx-
imate conditional inference (with discussion). J R Stat
Soc B 1987, 49:1–39.

25. Diciccio TJ, Martin MA, Stern SE, Young GA. Infor-
mation bias and adjusted profile likelihoods. J R Stat
Soc B 1996, 58:189–203.

524  2010 John Wi ley & Sons, Inc. Volume 2, September /October 2010



WIREs Computational Statistics Likelihood inference

26. Chang H, Mukerjee R. Probability matching prop-
erty of adjusted likelihoods. Stat Probab Lett 2006,
76:838–842.

27. Barndorff-Nielsen OE. Conditionality resolutions.
Biometrika 1980, 67:293–310.

28. Cox DR. Local ancillarity. Biometrika 1980,
67:279–286.

29. Durbin J. Approximations for densities of sufficient
statistics. Biometrika 1980, 67:311–333.

30. Hinkley DV. Likelihood as approximate pivotal.
Biometrika 1980, 67:287–292.

31. Daniels HE. Saddlepoint approximations in statistics.
Ann Math Stat 1954, 46:631–650.

32. Pace L, Salvan A. Principles of Statistical Inference:
From a Neo-Fisherian Perspective. Singapore: World
Scientific; 1997.

33. Severini TA. Likelihood Methods in Statistics. Oxford:
Oxford University Press; 2001.

34. Brazzale AR, Davison AC, Reid N. Applied Asymp-
totics. Cambridge: Cambridge University Press; 2007.

35. Cox DR. Regression models and life tables (with
discussion). J R Stat Soc B 1972, 34:187–220.

36. Cox DR. Partial likelihood. Biometrika 1975,
62:269–276.

37. Murphy SA, van der Vaart AW. On profile likelihood
(with discussion). J Am Stat Assoc 2000, 95:449–485.

38. Murphy SA, van der Vaart AW. Semiparametric likeli-
hood ratio inference. Ann Stat 1997, 25:1471–1509.

39. Besag JE. Spatial interaction and the statistical analysis
of lattice systems (with discussion). J R Stat Soc B 1974,
34:192–236.

40. Lindsay BG. Composite likelihood methods. Contemp
Math 1988, 80:220–239.

41. Renard D, Molenberghs G, Geys H. A pairwise like-
lihood approach to estimation in multilevel probit
models. Comput Stat Data Anal 2004, 44:649–667.

42. Varin C. On composite marginal likelihoods. Adv Stat
Anal 2008, 92:1–28.

43. Wedderburn RWM. Quasi-likelihood functions, gener-
alized linear models, and the Gauss–Newton method.
Biometrika 1974, 61:439–447.

44. McCullagh P. Quasi-likelihood functions. Ann Stat
1983, 11:59–67.

45. Liang K-Y, Zeger S. Longitudinal data analysis using
generalized linear models. Biometrika 1986, 73:13–22.

46. Breslow N, Clayton D. Approximate inference in gen-
eralized linear mixed models. J Am Stat Assoc 1993,
88:9–25.

47. Green PJ. Penalized likelihood for general semi-
parametric regression models. Int Statist Rev 1987,
55:245–259.

48. Lee Y, Nelder JA. Hierarchical generalised linear mod-
els: a synthesis of generalised linear models, random-
effect models and structured dispersions. Biometrika
2001, 88:987–1006.

49. Nelder JA, Lee Y. Likelihood, quasi-likelihood and
pseudolikelihood: some comparisons. J R Stat Soc B
1992, 54:273–284.

50. Owen AB. Empirical likelihood ratio confidence
intervals for a single functional. Biometrika 1988,
75:237–249.

51. Hjort NL, McKeague IW, van Keilegom I. Extend-
ing the scope of empirical likelihood. Ann Stat 2009,
37:1079–1111.

52. Balabdaoui F, Rufibach K, Wellner JA. Limit distribu-
tion theory for maximum likelihood estimation of a
log-concave density. Ann Stat 2009, 37:1299–1331.

53. van der Vaart AW. Asymptotic Statistics. Cambridge:
Cambridge University Press; 1998.

Volume 2, September /October 2010  2010 John Wi ley & Sons, Inc. 525


