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The setup
I Data: y = (y1, . . . , yn) x1, . . . , xn i = 1, . . . , n

I Model for the probability distribution of yi given xi

I Density (with respect to, e.g., Lebesgue measure)
I f (yi | xi) f (y | x) > 0,

∫
f (y | x)dy = 1

I joint density for y = f (y | x) =
∏

f (yi | xi) independence
I parameters for the density f (y | x ; θ), θ = (θ1, . . . , θd )

I often θ = (ψ, λ)

I θ could have dimension d > n (e.g. genetics)
I θ could have infinite dimension e.g.

E(y | x) = θ(x) ‘smooth’
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Definitions
I Likelihood function

L(θ; y) = L(θ; y1, . . . , yn) = f (y1, . . . , yn; θ) = Πn
i=1f (yi ; θ)

I Log-likelihood function:

`(θ; y) = log L(θ; y)

I Maximum likelihood estimator (MLE)

θ̂ = arg supθL(θ; y) θ̂(y)

I observed and expected information:

j(θ̂) = −`′′(θ̂; y), J(θ) = Eθ{−`′′(θ; y)}
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Example: time series studies of air pollution
I yi : number of deaths in Cambridge due to cardio-vascular

or respiratory disease on day i
I xi : 24 hour average of PM10 or O3 in Cambridge on day i ,

maximum temperature, minimum temperature, dew point,
relative humidity, day of the week, ...

I model: Poisson distribution for counts
I

f (yi ; θ) = {µi(θ)}yi exp{−µi(θ)}
I

logµ = α + ψPM10 + S(time,df1) + S(temp,df2)

I θ = (α,ψ, ...) with dimension ??
I S(time,df1) a ‘smooth’ function
I typically S(·,df1) =

∑df1
j=1 λjBj(·)

I Bj(·) known basis functions usually splines
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Example: clustered binary data
I latent variable:

zir = x ′irβ + bi + εir , bi ∼ N(0, σ2
b), εir ∼ N(0,1)

I r = 1, . . . ,ni : observations in a cluster/family/school...
i = 1, . . . ,n clusters

I random effect bi introduces correlation between
observations in a cluster

I observations: yir = 1 if zir > 0, else 0
I Pr(yir = 1 | bi) = Φ(x ′irβ + bi) = pi Φ(z) =

∫ z 1√
2π

e−x2/2dx

I likelihood θ = (β, σb)
L(θ; y) =

∏n
i=1 log

∫∞
−∞

∏ni
r=1 pi

yir (1− pi)
1−yirφ(bi , σ

2
b)dbi

I more general: zir = x ′irβ + w ′ir bi + εir
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Inference based on the log-likelihood function
I θ̂

.∼ Nd{θ, j−1(θ̂)} j(θ̂) = −`′′(θ̂; y)

I
√

n(θ̂ − θ)j1/2(θ̂)
L−→ Nd (0, Id )

I “θ is estimated to be 21.5 (95% CI 19.5− 23.5)”
I 19.5 21.5 23.5 θ̂ ± 2σ̂
I w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2

d
I “likelihood based CI for θ with confidence level 95% is

(18.6,23.0)” 18.6 21.5 23.0
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Bayesian inference
I treat θ as a random variable, with a probability distribution

and density π(θ)

I model interpreted as conditional distribution of y , given θ
I inference for θ based on posterior distribution

π(θ | y) =
exp `(θ; y)π(θ)∫
exp `(θ; y)π(θ)dθ

I “θ is estimated to be 21.5, and with 95% probability, θ is
between 18.6 and 23.0”

I “using a flat prior density for θ”
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Widely used
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The Review of Financial Studies

11 / 52



Outline Models, data and likelihood Likelihood inference Composite Likelihood Some questions

IEEE Transactions on Information Theory

2062 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006

Single-Symbol Maximum Likelihood Decodable
Linear STBCs

Md. Zafar Ali Khan, Member, IEEE, and B. Sundar Rajan, Senior Member, IEEE

Abstract—Space–time block codes (STBCs) from orthogonal de-
signs (ODs) and coordinate interleaved orthogonal designs (CIOD)
have been attracting wider attention due to their amenability for
fast (single-symbol) maximum-likelihood (ML) decoding, and
full-rate with full-rank over quasi-static fading channels. How-
ever, these codes are instances of single-symbol decodable codes
and it is natural to ask, if there exist codes other than STBCs
form ODs and CIODs that allow single-symbol decoding? In
this paper, the above question is answered in the affirmative by
characterizing all linear STBCs, that allow single-symbol ML
decoding (not necessarily full-diversity) over quasi-static fading
channels-calling them single-symbol decodable designs (SDD).
The class SDD includes ODs and CIODs as proper subclasses.
Further, among the SDD, a class of those that offer full-diversity,
called Full-rank SDD (FSDD) are characterized and classified. We
then concentrate on square designs and derive the maximal rate
for square FSDDs using a constructional proof. It follows that 1)
except for = 2, square complex ODs are not maximal rate and
2) a rate one square FSDD exist only for two and four transmit
antennas. For nonsquare designs, generalized coordinate-inter-
leaved orthogonal designs (a superset of CIODs) are presented and
analyzed. Finally, for rapid-fading channels an equivalent matrix
channel representation is developed, which allows the results of
quasi-static fading channels to be applied to rapid-fading channels.
Using this representation we show that for rapid-fading channels
the rate of single-symbol decodable STBCs are independent of the
number of transmit antennas and inversely proportional to the
block-length of the code. Significantly, the CIOD for two transmit
antennas is the only STBC that is single-symbol decodable over
both quasi-static and rapid-fading channels.

Index Terms—Diversity, fast ML decoding, multiple-input–mul-
tiple-output (MIMO), orthogonal designs, space–time block codes
(STBCs).

I. INTRODUCTION

S INCE the publication of capacity gains of multiple-input
multiple-output (MIMO) systems [1], [2] coding for MIMO

systems has been an active area of research and such codes
have been christened space–time codes (STCs). The primary

Manuscript received June 7, 2005; revised November 10, 2005. The work
of B. S. Rajan was supported in part by grants from the IISc-DRDO program
on Advanced Research in Mathematical Engineering, and in part by the
Council of Scientific and Industrial Research (CSIR, India) Research Grant
(22(0365)/04/EMR-II). The material in this paper was presented in part at the
2002 and 2003 IEEE International Symposia on Information Theory, Lausanne,
Switzerland, June/July 2002 and Yokohama, Japan, June/July 2003.

Md. Z. A. Khan is with the Wireless Communications Research Center, Inter-
national Institute of Information Technology, Hyderabad 500019, India (e-mail:
zafar@iiit.ac.in).

B. S. Rajan is with the Electrical Communication Engineering De-
partment, Indian Institute of Science, Bangalore 560012, India (e-mail:
bsrajan@ece.iisc.ernet.in).

Communicated by Ø. Ytrehus, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2006.872970

difference between coded modulation [used for single-input
single-output (SISO), single-iutput multiple-output (SIMO)]
and space–time codes is that in coded modulation the coding
is in time only while in space–time codes the coding is in
both space and time and hence the name. STC can be thought
of as a signal design problem at the transmitter to realize the
capacity benefits of MIMO systems [1], [2], though, several
developments toward STC were presented in [3]–[7] which
combine transmit and receive diversity, much prior to the results
on capacity. Formally, a thorough treatment of STCs was first
presented in [8] in the form of trellis codes [space–time trellis
codes (STTC)] along with appropriate design and performance
criteria.

The decoding complexity of STTC is exponential in band-
width efficiency and required diversity order. Starting from
Alamouti [12], several authors have studied space–time block
codes (STBCs) obtained from orthogonal designs (ODs) and
their variations that offer fast decoding (single-symbol de-
coding or double-symbol decoding) over quasi-static fading
channels [9]–[27]. But the STBCs from ODs are a class of
codes that are amenable to single-symbol decoding. Due to the
importance of single-symbol decodable codes, need was felt
for rigorous characterization of single-symbol decodable linear
STBCs.

Following the spirit of [11], by a linear STBC,1 we mean those
covered by the following definition.

Definition 1 (Linear STBC): A linear design, , is a
matrix whose entries are complex linear combinations of
complex indeterminates ,
and their complex conjugates. The STBC obtained by letting
each indeterminate to take all possible values from a complex
constellation is called a linear STBC over . Notice that

is basically a “design” and by the STBC we mean
the STBC obtained using the design with the indeterminates
taking values from the signal constellation . The rate of the
code/design2 is given by symbols/channel use. Every
linear design can be expressed as

(1)

where is a set of complex matrices called weight
matrices of . When the signal set is understood from the
context or with the understanding that an appropriate signal set

1Also referred to as a linear dispersion code [36]
2Note that if the signal set is of size 2 the throughput rateR in bits per second

per Hertz is related to the rate of the designR as R = Rb.

0018-9448/$20.00 © 2006 IEEE
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Cognitive Behavioral Therapy for
Posttraumatic Stress Disorder in Women
A Randomized Controlled Trial
Paula P. Schnurr, PhD
Matthew J. Friedman, MD, PhD
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EVENTS SUCH AS THE TERRORIST

attacks on September 11, 2001,
the war in Iraq, and Hurricane
Katrina have focused attention

on posttraumatic stress disorder
(PTSD), an anxiety disorder that can re-
sult from exposure to traumatic events
like combat, rape, assault, and disas-
ter. Posttraumatic stress disorder is
characterized by symptoms of reexpe-
riencing the traumatic event, avoiding
reminders of the event or feeling emo-
tionally numb, and hyperarousal.1 The
disorder is associated with psychiatric
and physical comorbidity, reduced
quality of life,2-4 and substantial eco-
nomic costs to society.5 Lifetime preva-
lence in US adults is higher in women
(9.7%) than in men (3.6%)6 and is es-
pecially high among women who have
served in the military.3,7 Thus, re-
search aimed at testing treatments for
PTSD in this population is important.

Author Affiliations: National Center for PTSD, White
River Junction, Vt (Drs Schnurr, Friedman, and Ber-
nardy and Ms Thurston); Dartmouth Medical School,
Lebanon, NH (Drs Schnurr, Friedman, and Ber-
nardy); Walter Reed Army Medical Center and Uni-
formed University of the Health Sciences (Dr Engel)
and VA Office of Women Veterans Health (Ms Turner),
Washington, DC; Department of Psychiatry, Univer-
sity of Pennsylvania, Philadelphia (Dr Foa); VA Medi-
cal Center and Brown University Medical Center,

Providence, RI (Dr Shea); VA Cooperative Studies Pro-
gram, Menlo Park, Calif (Mr Chow); VA National Cen-
ter for PTSD (Dr Resick), Boston University School of
Medicine (Dr Resick) and Suffolk University (Dr Or-
sillo), Boston, Mass; VA Readjustment Counseling Cen-
ter, Cheyenne, Wyo (Dr Haug).
Corresponding Author: Paula P. Schnurr, PhD, Na-
tional Center for PTSD (116D), VA Medical Center,
215 N Main St, White River Junction, VT 05009 (Paula
.Schnurr@Dartmouth.edu).

Context The prevalence of posttraumatic stress disorder (PTSD) is elevated among
women who have served in the military, but no prior study has evaluated treatment
for PTSD in this population. Prior research suggests that cognitive behavioral therapy
is a particularly effective treatment for PTSD.

Objective To compare prolonged exposure, a type of cognitive behavioral therapy,
with present-centered therapy, a supportive intervention, for the treatment of PTSD.

Design, Setting, and Participants A randomized controlled trial of female vet-
erans (n=277) and active-duty personnel (n=7) with PTSD recruited from 9 VA medi-
cal centers, 2 VA readjustment counseling centers, and 1 military hospital from
August 2002 through October 2005.

Intervention Participants were randomly assigned to receive prolonged exposure
(n=141) or present-centered therapy (n=143), delivered according to standard pro-
tocols in 10 weekly 90-minute sessions.

Main Outcome Measures Posttraumatic stress disorder symptom severity was the
primary outcome. Comorbid symptoms, functioning, and quality of life were second-
ary outcomes. Blinded assessors collected data before and after treatment and at 3-
and 6-month follow-up.

Results Women who received prolonged exposure experienced greater reduction
of PTSD symptoms relative to women who received present-centered therapy (effect
size, 0.27; P=.03). The prolonged exposure group was more likely than the present-
centered therapy group to no longer meet PTSD diagnostic criteria (41.0% vs 27.8%;
odds ratio, 1.80; 95% confidence interval, 1.10-2.96; P=.01) and achieve total re-
mission (15.2% vs 6.9%; odds ratio, 2.43; 95% confidence interval, 1.10-5.37; P=.01).
Effects were consistent over time in longitudinal analyses, although in cross-sectional
analyses most differences occurred immediately after treatment.

Conclusions Prolonged exposure is an effective treatment for PTSD in female vet-
erans and active-duty military personnel. It is feasible to implement prolonged expo-
sure across a range of clinical settings.

Trial Registration clinicaltrials.gov Identifier: NCT00032617
JAMA. 2007;297:820-830 www.jama.com

820 JAMA, February 28, 2007—Vol 297, No. 8 (Reprinted) ©2007 American Medical Association. All rights reserved.

 at University of Toronto Library, on May 28, 2007 www.jama.comDownloaded from 
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Physical Review D
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US Patent Office
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In the News

National Post, Toronto, Jan 30 2008
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“What was the cause of Franklin Delano Roosevelt’s paralytic
illness?” Goldman, et al. J Medical Biography 2003
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Variations on a theme
I partial likelihood, Cox, 1972; pseudo-likelihood Besag,

1974, quasi-likelihood Nelder & Wedderburn, 1974
I model part of the data; ignore the other part
I composite likelihood Lindsay, 1988
I profile (concentrated), marginal, conditional, modified

profile likelihood
I eliminating nuisance parameters: θ = (ψ, λ)

I prequential, predictive likelihood Dawid, 1984; Butler, 1986
I emphasis on predictive performance
I empirical, weighted, robust, bootstrap likelihood
I less dependence on the model
I nonparametric likelihood
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Composite likelihood
I Model: Y ∼ f (y ; θ), Y ∈ Y ⊂ Rp, θ ∈ Rd

I Set of events: {Ak , k ∈ K}

I Composite Likelihood: Lindsay, 1988

CL(θ; y) =
∏
k∈K

Lk (θ; y)wk

I Lk (θ; y) = f ({yr ∈ Ak}; θ) likelihood for an event
I {wk , k ∈ K} a set of weights
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Examples
I Composite Conditional Likelihood: Besag, 1974

CCL(θ; y) =
∏
s∈S

fs|sc (ys | ysc ), S set of indices

and variants by modifying events
I Composite Marginal Likelihood:

CML(θ; y) =
∏
s∈S

fs(ys; θ)ws ,

I Independence Likelihood:
∏p

r=1 f1(yr ; θ)

I Pairwise Likelihood:
∏p−1

r=1
∏p

s=r+1 f2(yr , ys; θ)

I tripletwise likelihood, ...
I pairwise differences:

∏p−1
r=1

∏p
s=r+1 f (yr − ys; θ)

I and even mixtures of CCL and CML
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Derived quantities
I log composite likelihood: c`(θ; y) = log CL(θ; y)

I score function: U(θ; y) = ∇θc`(θ; y) =
∑

s∈S wsUs(θ; y)
E{U(θ; Y )} = 0

I maximum composite likelihood est.: θ̂CL = arg sup c`(θ; y)
U(θ̂CL) = 0

I variability matrix: J(θ) = varθ{U(θ; Y )}
I sensitivity matrix: H(θ) = Eθ{−∇θU(θ; Y )}

I Godambe information (or sandwich information):

G(θ) = H(θ)J(θ)−1H(θ)

I J 6= H
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Inference
I Sample: Y1, . . . ,Yn, i.i.d., CL(θ; y) =

∏n
i=1 CL(θ; yi)

I √
n(θ̂CL − θ)

.∼ N{0,G−1(θ)} G(θ) = H(θ)J(θ)−1H(θ)

I w(θ) = 2{c`(θ̂CL)− c`(θ)} .∼
∑d

a=1 µaZ 2
a Za ∼ N(0,1)

I µ1, . . . , µd eigenvalues of J(θ)H(θ)−1

I w(ψ) = 2{c`(θ̂CL)− c`(θ̃ψ)} .∼
∑d0

a=1 µaZ 2
a

I constrained estimator: θ̃ψ = arg supθ=θ(ψ)c`(θ; y)

I µ1, . . . , µd0 eigenvalues of (Hψψ)−1Gψψ

I Kent, 1982
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Model selection
I Akaike’s information criterion Varin and Vidoni, 2005

AIC = −2c`(θ̂CL; y)− 2 dim(θ)

I Bayesian information criterion Gao and Song, 2009

BIC = −2c`(θ̂CL; y)− log n dim(θ)

I effective number of parameters

dim(θ) = tr{H(θ)G−1(θ)}

I these criteria used for model averaging Hjort and
Claeskens, 2008

I or for selection of tuning parameters Gao and Song, 2009
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Example: symmetric normal
I Yi ∼ N(0,R), var(Yir ) = 1, corr (Yir ,Yis) = ρ
I compound bivariate normal densities to form pairwise

likelihood

c`(ρ; y1, . . . , yn) = −np(p − 1)

4
log(1− ρ2)− p − 1 + ρ

2(1− ρ2)
SSw

−(p − 1)(1− ρ)

2(1− ρ2)

SSb

p

SSw =
n∑

i=1

p∑
s=1

(yis − ȳi.)
2, SSb =

n∑
i=1

y2
i.

`(ρ; y1, . . . , yn) = −n(p − 1)

2
log(1− ρ)− n

2
log{1 + (p − 1)ρ}

− 1
2(1− ρ)

SSw −
1

2{1 + (p − 1)ρ}
SSb

p
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... symmetric normal

a.var(ρ̂CL)

a.var(ρ̂ )
, p = 3,5,8,10

(Cox & Reid, 2004)
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Likelihood ratio test
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... symmetric normal +

I Yi ∼ N(µ1, σ2R) Rst = ρ

I µ̂ = µ̂CL, σ̂2 = σ̂2
CL, ρ̂ = ρ̂CL

I G(θ) = H(θ)J(θ)−1H(θ) = J(θ)

I pairwise likelihood is fully efficient

I also true for Yi ∼ N(µ,Σ)
(Mardia, Hughes, Taylor 2007; Jin 2009)
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Example: dichotomized MV Normal
Yr = 1{Zr > 0} Z ∼ N(0,R) r = 1, . . . ,p

`2(ρ) =
n∑

i=1

∑
s<r

{yr ys log P(yr = 1, ys = 1) + yr (1− ys) log P10

+ (1− yr )ys log P01 + (1− yr )(1− ys) log P00}

a.var(ρ̂CL) =
1
n

4π2

p2
(1− ρ2)

(p − 1)2 var(T ) T =
∑
s<r

(2yr ys − yr − ys)

var(T ) = p4(p1111 − 2p111 + 2p11 − p2
11 +

1
4

)+

p3(−6p1111...) + p2(...) + p(...)
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Example: clustered binary data
I likelihood

L(β, σb) =
n∏

i=1

∫ ∞
−∞

mi∏
r=1

Φ(x ′irβ + bi)
yir {1− Φ(x ′irβ + bi)}1−yir

φ(bi , σ
2
b)dbi

I pairwise likelihood

CL(β, σb) =
n∏

i=1

∏
r<s

Pyir yis
11 Pyir (1−yis)

10 P(1−yir )yis
01 P(1−yir )(1−yis)

00

I each Pr(yir = j , yis = k) evaluated using Φ2(·, ·; ρirs)

(Renard et al., 2004)
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... multi-level probit Renard et al. 2004
I computational effort doesn’t increase with the number of

random effects
I pairwise likelihood numerically stable
I efficiency losses, relative to maximum likelihood, of about

20% for estimation of β
I somewhat larger for estimation of σ2

b
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Markov chains Hjort and Varin, 2008
I comparison of likelihood

L(θ; y) =
∏

pr(Yr = yr | Yr−1 = yr−1; θ)

I adjoining pairs CML

CML(θ; y) =
∏

pr(Yr = yr ,Yr−1 = yr−1; θ)

I composite conditional likelihood (= Besag’s PL)

CCL(θ; y) =
∏

pr(Yr = yr | neighbours ; θ)
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... Markov chain example
I Random walk with p states and two reflecting barriers
I Transition matrix

P =


0 1 0 0 . . . 0

1− ρ 0 ρ 0 . . . 0
0 1− ρ 0 ρ . . . 0
...

...
...

...
...

...
0 . . . . . . 0 1 0


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... Markov chain example
Reflecting barrier with five states: efficiency of pairwise
likelihood (dashed line) and Besag’s pseudolikelihood (solid
line)
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Continuous responses
I Multivariate Normal:

Yi = (Y1i , . . . ,Yki i) ∼ N{β0 + β1xi , σ
2Ri(α)}

Zhao and Joe, 2005
I pairwise likelihood very efficient, but not ≡ max. lik. ARE
I multivariate longitudinal data; correlated series of

observations with random effects
Fieuws and Verbeke,2006

I correlation of full likelihood and pairwise likelihood
estimates of parameters near 1, relative efficiency also
near 1 simulations

I pairwise likelihood based on differences within clusters,
and connections to within and between block analysis

Lele and Taper, 2002; Oakes and Ritz, 2000
I and several papers on survival data, often using copulas
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Binary data
I Yr = 1{Zr > 0}, Z a latent normal r.v.
I generalizations to clustering, longitudinal data: Zhao and

Joe 2005, Renard et al 2004
I random effects or multi-level models: Bellio and Varin,

2005; deLeon, 2004
I missing data: Parzen et al, 2007; Yi, Zeng and Cook, 2008
I YZC: not necessary to model the missing data mechanism,

uses weighted pairwise likelihood, simulation results
promising
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... binary data
I questions re choice of weights with clustered data
I comparison of probit and logit
I not clear if marginal parameters and association

parameters should be estimated separately
I mixed discrete and continuous data: deLeon and Carriere,

2006; Molenberghs and Verbeke, 2005
I Hybrid pairwise likelihood: GEE for marginal parameters

and pairwise likelihood for association parameters: Kuk,
2007

I GEE:
n∑

i=1

DT
i V−1

i (yi − µi) = 0, Di = ∂µi/∂β
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Relation to Generalized Estimating Equations
I GEE specifies mean and variance, but not full model
I GEE is fully efficient in multivariate normal model with

nonzero correlations
I composite likelihood is fully efficient in a specific

multivariate binary model, with a particular dependence
model (ρir 6= 0, ρirs...all zero)

I composite likelihood seems to be more robust to outliers
than GEE

I Qu and Song, 2004 discuss robustness of quadratic inference functions

I composite likelihoods are often easier to maximize
I example: network tomography Liang and Yu, 2003
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And more...
I spatial data: multivariate normal, generalized linear

models, CML based on differences, CCL and
modifications, network tomography, data on a lattice, point
processes

I image analysis: Nott and Ryden, 1999
I Rasch model, Bradley-Terry model, ...
I space-time data
I block-based likelihoods for geostatistics

Caragea and Smith, 2007
I gene mapping (linkage disequilibrium)

Larribe and Lessard, 2008
I model selection using information criteria based on CL

Varin and Vidoni, 2005
I improvements of usual CL methods for specific models
I state space models, population dynamics: Andrieu, 2008
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Motivation for composite likelihood
I easier to compute:

I binary data models with random effects, multi-level models
(pairwise CML)

I spatial data: ”near neighbours” CCL – Besag, 1974;
Stein, Chi, Welty, 2004

I sparse networks: Liang and Yu 2003
I long sequences (large p) in genetics: Fearnhead, 2003;

Song, 2007
I access to multivariate distributions:

I survival data: Parner, 2001; Andersen, 2004, using
bivariate copulas

I multi-type responses, such as continuous/discrete, missing
data, extreme values, Oakes and Ritz, 2000; deLeon, 2005;
deLeon and Carriere, 2007

I more robust: model marginal (mean/variance) and
association (covariance) parameters only
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Questions about inference
I Efficiency of composite likelihood estimator:

I choice of weights: Lindsay, 1988; Kuk and Nott, 2000;
I assessment by simulation or direct comparison of a. var:

Maydeu-Olivares and Joe, 2005
I comparing two-stage to full pairwise estimation methods:

Zhao and Joe, 2005; Kuk, 2007
I ...

I Example: multivariate normal:
I Y ∼ N(µ ,Σ): pairwise likelihood estimates ≡ mles
I Y ∼ N(µ1 , σ2R),Rij = ρ: pairwise likelihood est. ≡ mles
I Y ∼ N(µ1 , R): loss of efficiency (although small)

I ? Why is CL so efficient (seemingly) ?
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Questions about inference
I When Is CML (marginal) preferred to CCL (conditional) ?

(always?)
I asymptotic theory: is composite likelihood ratio test

preferable to Wald-type test?
I estimation of Godambe information:

jackknife, bootstrap, empirical estimates
I estimation of eigenvalues of (Hψψ)−1Gψψ

I approximation of distribution of w(ψ)
.∼

∑
µaZ 2

a
I Satterthwaite type? (fχ2

d ): Geys et al, 1999
I saddlepoint approximation?: Kuonen, 2004
I bootstrap?

I large p, small n asymptotics: time series, genetics
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p →∞
I single long time series
I spatial models (p indexes spatial sites)
I usually assume decaying correlations, so p can play the

role of n
I population genetics: estimation of the population

recombination rate
I data is long sequence of alleles
I likelihood for each pair of segregating sites estimated by

simulation
I pairwise likelihood formed by combining these
I Fearnhead & Donnelly, 2001; McVean et al., 2002; Fearnhead, 2003;

Hudson, 2001
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... p →∞
symmetric normal

a.var(ρ̂CL) =
2

np(p − 1)

(1− ρ)2

(1 + ρ2)2 c(p2, ρ4)

O( 1
n ) O(1)

n −→∞ p −→∞
dichotomized mv normal:

a.var(ρ̂CL) =
1
n

4π2

p2
(1− ρ2)

(p − 1)2 var(T )

var(T ) = p4(p1111 − 2p111 + 2p11 − p2
11 +

1
4

)+

p3(−6p1111...) + p2(...) + p(...)

not consistent if p →∞,n fixed
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Questions about modelling
I Is CL useful for modeling when no multivariate distribution

exists that is compatible with margins?
I e.g. extreme values, survival data Parner, 2001
I Does theory of multivariate copulas help in understanding

this?
I How do we ensure identifiability of parameters?

– examples of trouble?
I Relationship to modelling via GEE?
I how to investigate robustness systematically?
I E.g. binary data using dichotomized MV Normal
I how to make use of objective function
I can we really think beyond means and covariances in

multivariate settings?
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.. References
I Firth, Reid and Varin (2010?). An overview of composite

likelihood methods. In preparation.
I Special issue of Statistica Sinica (editors Lindsay, Liang

and Reid):
http://www3.stat.sinica.edu.tw/statistica/
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