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Composite likelihood methods have been receiving growing interest in a number of

different application areas, where the likelihood function is too cumbersome to be

evaluated. In the present paper, some theoretical properties of the maximum composite

likelihood estimate (MCLE) are investigated in more detail. Robustness of consistency of

the MCLE is studied in a general setting, and clarified and illustrated through some

simple examples. We also carry out a simulation study of the performance of the MCLE

in a constructed model suggested by Arnold (2010) that is not multivariate normal, but

has multivariate normal marginal distributions.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The likelihood function plays a critical role in statistical inference in both frequentist and Bayesian frameworks.
However, with the current explosion in the size of data sets and the increase in complexity of the dependencies among
variables in many realistic models, it is often impractical or cumbersome to construct the full likelihood. In these
situations, composite likelihoods, which are usually constructed by compounding some lower dimensional likelihoods, can
be considered as a convenient surrogate. Suppose Y is a p-dimensional random vector with probability density function
f ðy; yÞ for some q-dimensional parameter vector y 2Y, and suppose fA1, . . . ,AKg is a set of events with associated likelihood
functions Lkðy; yÞpf ðy 2 Ak; yÞ ðk¼ 1,2, . . . ,KÞ. Following Lindsay (1988), the composite likelihood function is defined as

CLðy; yÞ ¼
YK

k ¼ 1

Lkðy; yÞwk , ð1Þ

where fwkg is a set of non-negative weights. Note that Lkðy; yÞ might depend only on a sub-vector of y. The choice of the
component likelihoods Lkðy; yÞ and the weights fwkgmay be critical to improve the accuracy and efficiency of the resulting
statistical inference (Lindsay, 1988; Joe and Lee, 2009; Varin et al., 2011). From the above definition it is easy to see that
the full likelihood is a special case of composite likelihood; however, composite likelihood will not usually be a genuine
likelihood function, that is, it may not be proportional to the density function of any random vector.

The most commonly used versions of composite likelihood are composite marginal likelihood and composite
conditional likelihood. Two examples of composite conditional likelihood functions are the pairwise composite conditional
likelihood function,

LPCðy; yÞ ¼
Yp

r ¼ 1

Y
sar

f ðyrjys; yÞwrs , ð2Þ
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and the full conditional likelihood composite likelihood function,

LFCðy; yÞ ¼
Yp

r ¼ 1

f ðyrjyð�rÞ; yÞwr , ð3Þ

where yð�rÞ denotes the random vector with yr deleted. Two particularly useful composite marginal likelihood functions are
the independence marginal likelihood function,

Lindðy; yÞ ¼
Yp

r ¼ 1

f ðyr ; yÞwr , ð4Þ

and the pairwise likelihood function

Lpairðy; yÞ ¼
Yp�1

r ¼ 1

Yp

s ¼ rþ1

f ðyr ,ys; yÞwrs : ð5Þ

With a sample of independent observations y¼ ðyð1Þ, . . . ,yðnÞÞ, the overall composite log-likelihood function is

c‘ðy; yÞ ¼
Xn

i ¼ 1

c‘ðy; yðiÞÞ ¼
Xn

i ¼ 1

logCLðy; yðiÞÞ, ð6Þ

and the maximum composite likelihood estimator (MCLE) is defined by

ŷCL ¼ argmax
y

c‘ðy; yÞ: ð7Þ

Composite likelihood methods have proved useful in a range of complex applications, including models for spatial
processes, models for statistical genetics and models for clustered data; several of these are surveyed in Varin et al. (2011).
In addition to computational convenience, inference based on the composite likelihood may have good properties. For
example, because each of the components of the composite likelihood is based on a density, the estimating equation
obtained from the derivative of the composite log-likelihood function is unbiased. In modelling only lower dimensional
marginal or conditional densities, composite conditional or marginal likelihood inference is widely viewed as robust, in the
sense that the inference is valid for a range of statistical models consistent with the component densities. In the following
sections we will study the consistency and robustness of the maximum composite likelihood estimator in more detail.

2. Aspects of robustness for the MCLE

This section and the next is a complement to the discussions on the robustness of composite likelihood inference in
Varin (2008) and Varin et al. (2011). To formulate ideas about robustness we distinguish between the true data-generating
model, and the model used for inference, following Kent (1982). We suppose the random vector Y has distribution function
G(y); the marginal distribution function for a sub-vector Yk � Y is GkðykÞ and the corresponding density function is
gkðykÞ,k¼ 1, . . . ,K , with respect to some dominating measure m. Now consider the family of modelled distributions for Yk,
with common support and family of density functions ffkðyk; yÞ; y 2 Ogwith respect to the same dominating measure m. We
restrict attention to the unweighted composite marginal likelihood:

CLðy; yÞ ¼
YK

k ¼ 1

fkðyk;yÞ: ð8Þ

The family of densities is correctly specified if there exists y0 2 O such that f ðy; y0Þ ¼ gðyÞ; if no such y0 exists, the model is
misspecified. The composite marginal likelihood (8) is correctly specified if all component families ffkðyk; yÞ; y 2 Og are
correctly specified.

If the full model is misspecified, then as in Kent (1982) and White (1982), we define y�ML as the parameter which
minimizes the Kullback–Leibler divergence between the specified full model and the true model gð�Þ. Similarly, for
misspecified composite likelihood, y� is a parameter point which minimizes the composite Kullback–Leibler divergence
(Varin and Vidoni, 2005):

y� ¼ argmin
y

Eg log

QK
k ¼ 1 gkðYkÞ

CLðy;YÞ

( )
¼ argmin

y

XK

k ¼ 1

Eg log
gkðYkÞ

fkðYk; yÞ

� �
: ð9Þ

Consistency of the maximum composite likelihood estimator is claimed in several papers, although without detailed
proof; see for example Lindsay (1988), Molenberghs and Verbeke (2005) and Jin (2009). Asymptotic results on misspecified
full likelihood functions, as in White (1982), cannot be applied to the case of composite likelihood directly, since the
composite likelihood function will not usually be a genuine likelihood function, as mentioned in Section 1. In the Appendix
we adapt Wald’s classical approach (Wald, 1949) to establish the result that the MCLE converges almost surely to y�

defined in (9), taking model misspecification into account. The regularity conditions are analogous to those given in Wald’s
proof, but applied to the component likelihoods without explicit assumptions on the full likelihood.



Table 1
Model specification.

Model Full likelihood Composite likelihood

Correctly specified f ðy; y0Þ ¼ gðyÞ fkðy; y0Þ ¼ gkðyÞ for all k

ŷML-y0 ŷCL-y0

Misspecified f ðy; yÞagðyÞ, fkðy; yÞagkðyÞ for some k

ŷML-y�ML ŷCL-y�
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Given consistency, the usual results on estimating equations, and some further regularity conditions, imply that the MLE and
MCLE are asymptotically normally distributed as the sample size n-1. The MLE has asymptotic variance determined by the
expected Fisher information, and the asymptotic variance of the MCLE is calculated as the inverse of the Godambe information
matrix GðyÞ ¼HðyÞJðyÞ�1HðyÞ (Lindsay, 1988; Varin, 2008) where HðyÞ ¼ Ef�ryuðy;YÞg, JðyÞ ¼ varyfuðy;YÞg and
uðy;YÞ ¼ryc‘ðy;YÞ with c‘ðyÞ defined as (6). Here ry is the operation of differentiation with respect to the parameter y.

Model specifications under different mechanisms and their impact on the convergence of the resulting maximum
likelihood estimators are illustrated schematically in Table 1. The first row illustrates the result that has been most
studied: when the model and sub-models are correctly specified, the resulting MCLE and MLE are both consistent for the
true parameter value, under some regularity conditions, and the MCLE will be less efficient than the MLE, although a
number of examples indicate that the loss of efficiency can be quite small.

The interesting case for studying robustness is when the components of composite likelihood, such as lower
dimensional marginal densities, are correctly specified, but the full likelihood is misspecified; we call this robustness of
consistency. In this case the MLE will not usually be consistent for the true parameter value. On the other hand the MCLE,
which is calculated from the composite likelihood making use of the correctly specified lower dimensional margins only,
still converges to the true parameter value without depending on the joint model. However, the asymptotic variance of the
MCLE may vary dramatically according to different true joint models.

Finally, if both the composite and the full likelihood are not correctly specified, the MCLE or MLE will converge not to
the true parameter, but to y� or to y�ML.

Jin (2009, Ch. 5) considered robustness of efficiency, in a particular construction for multivariate binary data, through
simulations comparing the efficiency of the MCLE to that of the MLE.

3. Some examples

We illustrate some of the points above with some simple examples constructed to highlight aspects of robustness.

Example 1 (Estimation of association parameters). This example is due to Andrei and Kendziorski (2009). Suppose
Y1 �Nðm1,s2

1Þ, Y2 �Nðm2,s2
2Þ and e�Nð0,1Þ are independent random variables. Let Y3 ¼ Y1þY2þbY1Y2þe, ba0. We can

show that all full conditional distributions i.e. f ðY1jY2,Y3Þ, f ðY2jY1,Y3Þ and f ðY3jY1,Y2Þ are normal, but the joint distribution is
not multivariate normal due to the non-zero interaction term bY1Y2. If we misspecify the joint model as multivariate
normal, b will be estimated as 0 directly. If we use the full conditional distribution f ðY3jY1,Y2Þ, the MCLE of b is
b̂CL ¼

Pn
i ¼ 1 y1iy2iðy3i�y1i�y2iÞ=

Pn
i ¼ 1ðy1iy2iÞ

2, which is consistent for b. We can also use f ðY1jY2,Y3Þ or f ðY2jY1,Y3Þ, but the
resulting MCLE cannot be expressed in a closed form and some numerical methods are needed.

Example 2 (Estimation of the correlation). The random vector ðY1,Y2,Y3,Y4Þ
0 follows a multivariate normal distribution with

mean vector ð0,0,0,0Þ0 and covariance matrix

S¼

1 r0 2r0 2r0

r0 1 2r0 2r0

2r0 2r0 1 r0

2r0 2r0 r0 1

0
BBBB@

1
CCCCA:

Suppose we know the correlation between Y1 and Y2 is the same as the correlation between Y3 and Y4. If we model the joint
distribution of ðY1,Y2,Y3,Y4Þ

0 as multivariate normal with zero mean vector and all correlations equal, the covariance
matrix is then misspecified and the resulting MLE will not be consistent for r0. On the other hand, if we only use the
correct information about the pairs ðY1,Y2Þ and ðY3,Y4Þ and construct the composite likelihood

CLðr; y1,y2,y3,y4Þ ¼ f12ðy1,y2;rÞf34ðy3,y4;rÞ ð10Þ

where both f12 and f34 are the density functions for a bivariate normal with mean vector ð0,0Þ0 and covariance matrix

S¼
1 r
r 1

 !
,

then by Corollary 1 in the Appendix, the resulting MCLE is consistent for r0.
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It is of interest to note that the parameter constraint needed to ensure that the covariance matrix is non-negative
definite in the correct full likelihood is �1=5rrr1=3, whereas in the composite likelihood (10) the parameter constraint
is �1rrr1. The composite likelihood (10) can also be thought as the full likelihood for a multivariate normal
distribution with a block diagonal covariance matrix, which is obviously different from the true full model.

From this example we can see that even if different parameter constraints are imposed or the composite likelihood is
compatible with different full models, the MCLE will be consistent as long as all of the component likelihoods are correctly
specified.

Example 3 (No compatible joint density exists). Suppose the true model for the random vector ðY1,Y2,Y3Þ is multivariate
normal with mean vector ðm0,m0,m0Þ

0
ðm040Þ, and covariance matrix equal to the identity matrix. Now consider the

following pairwise likelihood

CLðm; y1,y2,y3Þ ¼ f12ðy1,y2;mÞf13ðy1,y3;mÞf23ðy2,y3;mÞ ð11Þ

where both f12 and f23 are the density functions for a bivariate normal density with unknown mean vector ðm,mÞ0 and
covariance matrix equal to the 2�2 identity matrix. However, f13ðy1,y3;mÞ is misspecified as

f13ðy1,y3;mÞ ¼
1

m exp �
y1

m

� �
1ffiffiffiffiffiffi
2p
p exp �

ðy3�mÞ2

2

 !

It is easy to see the no compatible joint density exists for the composite likelihood (11) since from f12 and f13 we get
different marginal densities for Y1.

The MCLE of m from the composite likelihood function (11) can be obtained by solving the score equation

5nm3�Snm2þnm�S1n ¼ 0 ð12Þ

where Sn ¼
Pn

i ¼ 1ðY1iþ2Y2iþ2Y3iÞ and S1n ¼
Pn

i ¼ 1 Y1i. As n-1, a direct argument using the consistency of sample means
for the population mean shows that the unique real root of (12) converges to m0. The asymptotic variance of m̂CL can be
calculated using the Godambe information function GðyÞ, and the ratio of the asymptotic variance of m̂ML to that of m̂CL is
r¼ f5þð1=m2Þg2=3½8þf1þð1=m2Þg2�. It is easy to check rr1 and equality holds only for m¼ 1.

From this artificial example, we can see that although no compatible joint density exists, the limit of the MCLE may still
be meaningful, even consistent for the true value of parameter. In general the MCLE converges to y� which minimizes the
composite Kullback–Leibler divergence whether the specified sub-models are compatible or not. If the specified sub-
models are very close to the corresponding true sub-models, we can imagine that y� should be a good estimate of the true
parameter value even if those specified sub-models are incompatible.

Example 4 (A class of distributions with normal margins, Arnold, 2010). Suppose the random vector Y ¼ ðY1,Y2, . . . ,YpÞ has
the following density function:

f ðYÞ ¼fpðY ;m,SÞþgðm,SÞ
Yp

i ¼ 1

Yi

 !
IAðYÞ, ð13Þ

where fðpÞðY ;m,SÞ is the density function of p-dimensional multivariate normal with mean vector m and covariance matrix
S, gð�Þ is a function of parameters chosen to guarantee that f ðYÞZ0, A¼ fY : �trYirt,i¼ 1,2, . . . ,pg, t is a threshold
parameter, and IAðYÞ ¼ 1 if Y 2 A and 0 otherwise. All kop dimensional sub-vectors of Y follow k-dimensional multivariate
normal distributions with corresponding mean vectors and covariance matrices. When t¼ 0, f ðYÞ becomes fðpÞðY ;m,SÞ. This
example also provides a general approach to construct a density with the same margins as a pre-specified density. In
model (13), depending on the complexity of the function gð�Þ, the calculation of the MLE may be very difficult. In the
simulation study, we let t¼1, m¼ 0 and S¼ ð1�rÞIpþrJp, where Ip is identity matrix, Jp is a p� p matrix with all entries
equal to 1, and r is the common correlation coefficient for pZ3. Since ADfY : Y 0Yrpg, we can choose the function g as

gðm,SÞ ¼ inf
Y 0Y rp

fðpÞðY;m,SÞr inf
Y2A

fðpÞðY ;m,SÞ

To calculate gðm,SÞ, we use the fact that

sup
Y 0Y rp

Y 0S�1Y ¼ plp,

where lp is the largest eigenvalue of S�1, and is 1=ð1�rÞ if 0rro1, and 1=f1þðp�1Þrg if 1=ð1�pÞorr0.
We begin with p¼3 and consider three different estimators of r: the MLE r̂; the MCLE, r̂CL obtained by maximizing the

pairwise likelihood (5) with equal weights, and the simple unbiased estimator based on the method of moments,

~r ¼ 2S2

npðp�1Þ
, where S2 ¼

Xn

i ¼ 1

Xp

s4 r

Y ðiÞr Y ðiÞs :

The last two estimators are free of the function gð�Þ and are more computationally convenient than the MLE.



Table 2

Performances of r̂ , r̂CL and ~r when n¼100, M¼10 000, p¼3 and t¼1.

True value of r �0.49 �0.25 0 0.25 0.5 0.75 0.99

Sim. mean of r̂CL �0.4924 �0.2512 �0.0012 0.2515 0.4986 0.7487 0.9899

Sim. mean of r̂ �0.4900 �0.2481 0.0019 0.2489 0.4983 0.7502 0.9900

Sim. mean of ~r �0.4908 �0.2479 �0.0015 0.2521 0.4998 0.7511 0.9874

Sim. variance of r̂CL 0.0008 0.0013 0.0036 0.0037 0.0024 0.0006 10�6

Sim. variance of r̂ 10�6 0.0012 0.0036 0.0036 0.0023 0.0059 10�6

Sim. variance of ~r 0.0025 0.0023 0.0035 0.0057 0.0092 0.0155 0.0215

Sr̂ =Sr̂CL
0.0025 0.9231 1.0000 0.9730 0.9583 0.9833 1.0000

Sr̂CL
=S ~r 0.3334 0.5614 1.0252 0.6521 0.2599 0.0402 10�5
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Fig. 1. The ratio of the simulated variances, Sr̂ =S ~rCL
, as a function of r. The lines shown are for p¼3,6,8 (descending).
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We used rejection sampling to generate n sample points from the joint distribution (13), using the fact that

f ðYÞrfðpÞðY ;m,SÞ 1þ IAðYÞ
Yp

i ¼ 1

Yi

( )
r2fðpÞðY ;m,SÞ:

We used numerical methods to calculate r̂ and r̂CL, solving the relevant score equations, and calculated simulation means
and variances of r̂, r̂CL and ~r. In Table 2 the notations Sr̂ , Sr̂CL

and S ~r are used for the simulation variances. The ratios
Sr̂CL

=S ~r and Sr̂=Sr̂CL
are used to compare the efficiencies of the three estimators.

The results for sample size n¼100, simulation size M¼10 000, threshold t¼1 and dimension p¼3 are presented in
Table 2. All three methods produce accurate point estimates. With the exception of r¼�0:49, var(r̂CLÞ is very close to
var(r̂Þ, and var(r̂CLÞ seems smaller than var( ~r) for any value of r except r¼ 0. We also performed the simulation for values
of t ¼2,4,8 and observed the same phenomenon. Fig. 1 illustrates the efficiency of r̂CL with increasing p. For p¼6 and 8,
Sr̂CL

=S ~r exhibits the same pattern as that at p¼ 3; see Fig. 1.
4. Discussion

This paper sets out some issues in the study of robustness of composite likelihood inference; specifically emphasizing
robustness of consistency. Robustness in inference usually means obtaining the same inferential result under a range of
models. In point estimation the range of models is often considered to be small-probability perturbations of the assumed
model, to reflect the sampling notion of occasional outliers.
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In composite likelihood, the range of models is, loosely speaking, all models consistent with the specified set of
sub-models fkðy 2 Ak; yÞ. For example if pairwise likelihood is used, the range of models is those consistent with the
assumed bivariate distributions. In many, or even most, applications of composite likelihood, it is not immediately clear
what that range of models looks like, and indeed whether there is even a single model compatible with the assumed
sub-models.

The Wald assumptions set out in the Appendix are sufficient to ensure consistency of the MCLE, although they may be
stronger than necessary. The most restrictive of these assumptions is (A7): that there exists a unique point y� 2 O that
minimizes the Kullback–Leibler divergence (9). For each component likelihood the assumption that there is a unique
y�k 2 Ok would be more closely analogous to the usual Wald assumption for the MLE.

However, even in cases where both the MLE and the MCLE are not consistent, the MCLE might still be more reliable
than the MLE, since mis-specifying a high dimensional complex joint density may be much more likely than mis-specifying
some simpler lower dimensional densities.

The MCLE also has a type of robustness of efficiency. In computing the asymptotic variance, the composite likelihood is
always treated as a ‘‘misspecified’’ model even if all component likelihoods are correctly specified. On the other hand, the
inverse of the Fisher information matrix IðyÞ ¼ Ef�‘00ðyÞg, which is used as the asymptotic variance of the MLE, is sensitive
to model misspecification.

Composite likelihood also has a type of computational robustness, discussed in Varin et al. (2011); there is some
evidence from applied work that the composite likelihood surface is smoother, and hence easier to maximize, than the
likelihood surface.

There is also some evidence that composite likelihood inference is robust to missing data, although there is still much
work to be done in this area. Recent papers discussing this include Yi et al. (2011), Molenberghs et al. (2011) and He and
Yi (2011).
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Appendix A. Consistency of the MCLE

A.1. Introduction and assumptions

For analytical simplicity we only treat the composite marginal likelihoods with equal weights; however, the results
obtained here should be easily generalized to more general situations.

Following Wald (1949) we introduce some notation for the needed assumptions. For any y and for r,r40 let f ðy; y,rÞ ¼
supff ðy; y0Þ : Jy0�yJrrg, where J � J means Euclidean norm; jðy,rÞ ¼ supff ðy; yÞ : JyJ4rg; f �ðy; y,rÞ ¼maxff ðy;y,rÞ,1g;
j�ðy,rÞ ¼maxfjðy,rÞ,1g.

For each k 2 ð1,2, . . . ,KÞ, we make the following assumptions, analogous to Assumptions 1–8, in Wald (1949):
(A0):
 The parameter space O is a closed subset of q-dimensional Cartesian space.

(A1):
 fkðYk; y,rÞ is a measurable function of Yk for any y and r.

(A2):
 The density function fkðYk; yÞ is distinct for different values of y, i.e. if y1ay2 then m½fYk : fkðYk; y1ÞafkðYk; y2Þg�40R R

(A3):
 For sufficiently small r and sufficiently large r, the expected values logf �k ðYk; y,rÞgkðYkÞdmðYkÞ and logj�kðYk,rÞgk

ðYkÞdmðYkÞ are finite. R

(A4):
 For any y 2 O, there exist a set Bk

y, such that Bk
y
gkðYkÞdmðYkÞ ¼ 0 and fkðYk; y

0
Þ-fkðYk; yÞ as y0-y for Yk 2 Bk

y (the
complement set of Bk

yÞ.

(A5):
 The expectation of loggkðYkÞ exists.R

(A6):
 There exists a set Ak, such that Ak

gkðYkÞdmðYkÞ ¼ 0 and limJyJ-1fkðYk; yÞ ¼ 0 for Yk 2 Ak .

(A7):
 There exists a unique point y� 2 O which minimizes the composite Kullback–Leibler divergence defined in (9).
A.2. The main theorem
Theorem 1. Assume that Y ð1Þ, . . . ,Y ðnÞ are independently and identically distributed with distribution function G(Y). Under the

regularity conditions (A0)–(A7), the maximum composite likelihood estimator ŷCL converges almost surely to y� defined in (9).

Before we prove Theorem 1, we state the following lemmas. By the expected value Egð�Þ, we shall mean the expected value
determined under the true distribution GðYÞ.
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Lemma 1. For any yay�, we have

Eg

XK

k ¼ 1

logfkðYk; yÞ

( )
oEg

XK

k ¼ 1

logfkðYk; y
�
Þ

( )
rEg

XK

k ¼ 1

loggkðYkÞ

( )
ð14Þ

Lemma 2.

lim
r-0

Eg

XK

k ¼ 1

logfkðYk; y,rÞ
( )

¼ Eg

XK

k ¼ 1

logfkðYk; yÞ

( )
ð15Þ

Lemma 3.

lim
r-1

Eg

XK

k ¼ 1

logjkðYk,rÞ

( )
¼�1 ð16Þ

The three Lemmas follow immediately from Assumption (A7) and Lemmas 1–3 in Wald (1949).

Proof of Theorem 1. First we shall prove that

Pr lim
n-1

supy2o
Qn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; yÞQn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; y

�
Þ
¼ 0

( )
¼ 1 ð17Þ

for any closed subset o which belongs to O and does not contain y� defined in (A7).
From Lemma 3, for each i, we can choose r040 such that

Eg

XK

k ¼ 1

logjkðY
ðiÞ
k ,r0Þ

( )
oEg

XK

k ¼ 1

logfkðY
ðiÞ
k ; y

�
Þ

( )
ð18Þ

Let o0¼{y : y 2 o and JyJrr0}Do. From Lemma 1 and 2, for each y 2 o0, we can find a ry such that

Eg

XK

k ¼ 1

logfkðY
ðiÞ
k ; y,ryÞ

( )
oEg

XK

k ¼ 1

logfkðY
ðiÞ
k ; y

�
Þ

( )
ð19Þ

Since o0 is compact, by the finite-covering theorem there exists a finite number of points fy1, . . . ,yhg in o0 such that
Sðy1,ry1

Þ [ . . . [ Sðyh,ryh
Þ+o0, where Sðy,rÞ denotes the sphere with center y and radius r. Clearly, we have

sup
y2o

Yn

i ¼ 1

YK
k ¼ 1

fkðY
ðiÞ
k ; yÞr

Xh

l ¼ 1

Yn

i ¼ 1

YK
k ¼ 1

fkðY
ðiÞ
k ;yl,ryl

Þ

( )
þ
Yn

i ¼ 1

YK
k ¼ 1

jkðY
ðiÞ
k ,r0Þ ð20Þ

Hence (17) is proved if we can show that

Pr lim
n-1

Qn
i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ;yl,ryl

ÞQn
i ¼ 1

QK
k ¼ 1 fkðY

ðjÞ
k ; y

�
Þ
¼ 0

( )
¼ 1, ðl¼ 1, . . . ,hÞ ð21Þ

and

Pr lim
n-1

Qn
i ¼ 1

QK
k ¼ 1 jkðY

ðiÞ
k ,r0ÞQn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; y

�
Þ
¼ 0

( )
¼ 1: ð22Þ

Proving the above two equations is equivalent to showing that for l¼ 1, . . . ,h

Pr lim
n-1

Xn

i ¼ 1

log
YK

k ¼ 1

fkðY
ðiÞ
k ;yl,ryl

Þ�log
YK

k ¼ 1

fkðY
ðiÞ
k ; y

�
Þ

" #
¼�1

( )
¼ 1 ð23Þ

and

Pr lim
n-1

Xn

i ¼ 1

log
YK

k ¼ 1

jkðY
ðiÞ
k ,r0Þ�log

YK
k ¼ 1

fkðY
ðiÞ
k ; y

�
Þ

" #
¼�1

( )
¼ 1 ð24Þ

These equations follow immediately from (18) and (19) and the strong law of large numbers.
Let ynðY ð1Þ, . . . ,Y ðnÞÞ be any function of the observations Y ð1Þ, . . . ,Y ðnÞ such thatQn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; ynÞQn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; y

�
Þ
Zc40 for all n and all Y ð1Þ, . . . ,Y ðnÞ ð25Þ
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If we can show that

Pr lim
n-1

yn ¼ y�
n o

¼ 1 ð26Þ

the proof of Theorem 1 is completed since the maximum composite estimator ŷCL satisfies (25). To prove (26) it is
sufficient to show that for any e40 the probability is one that all limit points y of the sequence fyng satisfy that Jy�y�Jre.
If there exists a limit point y0 such that Jy0�y

�
J4e, we have

sup
Jy�y�JZ e

Yn

i ¼ 1

YK
k ¼ 1

fkðY
ðiÞ
k ; yÞZ

Yn

i ¼ 1

YK
k ¼ 1

fkðY
ðiÞ
k ; ynÞ for infinitely many n ð27Þ

Then

supJy�y�JZe
Qn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; yÞQn

i ¼ 1

QK
k ¼ 1 fkðY

ðiÞ
k ; y

�
Þ

Zc40 for infinitely many n ð28Þ

According our previous result (17) this is an event with probability zero. We have shown that the probability is one that all
limit points y of the sequence fyng satisfy that Jy�y�Jre. Thus Eq. (26) is obtained. &

Since the ordinary likelihood function is a special case of composite likelihood, the consistency of maximum likelihood
estimator under a misspecified model (Theorem 2.2 in White, 1982) follows immediately from Theorem 1.

Corollary 1. If the composite likelihood (8) is correctly specified, under the assumptions (A0)–(A6), the maximum composite

likelihood estimator ŷCL converges to the true parameter point y0 almost surely.
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