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Statistical Thinking

* Dramatic increase in resources now available
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Statistical Thinking !

* |If a statistic was the answer, what was the question?

SENSE ABOUT SCIENCE

AND STRAIGHT STATISTICS
MAKING SENSE OF STATISTICS

/

Percentages and risk



Statistical theory for 20xx

*» What should we be teaching?

* |If a statistic was the answer, what was the question?
Design of experiments and surveys

* Common pitfalls
Summary statistics: sufficiency etc.

* How sure are we?

Inference

Percentages and risk
Interpretation



Modelling is difficult and important
We can get a lot from the likelihood function

Not only point estimators 6
Not only (not at all!!) most powerful tests
Inferential quantities (pivots)

Inferential distributions (asymptotics)
A natural starting point, even for very complex models
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Higher order asymptotics

likelihood as pivotal
Bayesian and non-Bayesian inference
Partial, quasi, composite likelihood

Where are we headed?
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Likelihood as pivotal
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Likelihood as pivotal




» Likelihood root  7(8) = £+/[2{(6) — £(8)}]

@ Much better: 77(0) = 7(0) 4 log

e () can be q(0) or s(0) or ...



Can be nearly exact

» Likelihood root 7(0) = £+/[2{6(0) — £(0)}]

» Maximum likelihood estimate ¢(0) = (0 — 0)5'/2(0)
* Score function
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Can be nearly exact
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Pvalue functions

Likelihood as pivotal
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Can be nearly exact
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Using higher order approximations

» Excellent approximations for ‘easy’ cases

Exponential families, non-normal linear regression

* More work to construct for ‘moderate’ cases
Autoregressive models, fixed and random effects,
discrete responses

» Fairly delicate for ‘difficult” cases
Complex structural models with several sources of variation

» Best results for scalar parameter of interest

But we may need inference for vector parameters



Where does this come from?

Fig. 1 (left). Example of curved exponential family N(u,a?u?).
Fig. 2 (right). Ancillary subspace 4(u) and local coordinates (u, v).

4Amari, 1982, Biometrika; Efron, 1975, Annals

SSC 2010 Likelihood as pivotal




Differential geometry of statistical models
Theory of exponential families
Edgeworth and saddlepoint approximations

Key idea:

A smooth parametric model can be approximated
by a tangent exponential family model

Requires differentiating log-likelihood function

on the sample space
Permits extensions to more complex models



Where does this come from?

The second-order ancillary, with tangent vectors given by V , is constant along the solid

curve in the (y1, y2) plane.

FiG. 2.

Likelihood as pivotal

SSC 2010



To discrete data

Where differentiating the log-likelihood on the sample
space is more difficult

Solution: use expected value of score statistic instead
Relative error O(n~!) instead of O(n=3/2)

Still better than the normal approximation
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» To vector parameters of interest

* But our solutions require a single parameter

» Solution: use length of the vector, conditioned on the
direction

-0.2 0.0 0.2 0.4 0.6 0.8




» Extending the role of the exponential family
» By generalizing differentiation on the sample space

* |dea: differentiate the expected log-likelihood
Instead of the log-likelihood

* Leads to a new version of approximating exponential
family

* Can be used with pseudo-likelihoods



Higher order approximation requires
Differentiating the log-likelihood function

on the sample space

Bayesian inference will be different

Asymptotic expansion highlights the discrepancy
Bayesian posteriors are in general not calibrated
Cannot always be corrected by choice of the prior

We can study this by comparing Bayesian and
nonBayesian approximations



* Logistic regression with a single covariate

* On the logisticscale Pr(y; = 1) = a + Bx;
» Use flat priors for («, 3)

» Parameter of interestis ¥ = —a/f

» Empirical coverage of Bayesian posterior intervals:
0.90, 0.88, 0.89, 0.90

* Empirical coverage of intervals using ®(r*)
0.95, 0.95, 0.95, 0.95



Flat priors are not a good idea! 14

O

B=0.9 ewe=1/3... K=25... bre=111 w=161616

Fig. 6. 3 independent channels. Coverage for 90% credibil-
ity level upper limits, acceptance uncertainty = 34% /channel,
background uncertainty = 25% /channel.

Bayesian/nonBayesian



Flat priors are not a good idea!

Normal Circle, k=2, 5, 10
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Flat priors are not a good idea!
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Likelihood inference has desirable properties

Sufficiency, asymptotic efficiency

Good approximations to needed distributions

Derived naturally from parametric models

Can be difficult to construct,

especia
Many natura
data, quasi-li

ly in complex models
extensions: partial likelihood for censored

kelihood for generalized estimating

equations, composite likelihood for dependent data



Example: longitudinal study of migraine sufferers
Latent variable Y5 = z/,8 + U; + €;;
Observed variable
Yij € {1, .. .,h} Oy, -1 < Y;; < Oy,
E.g. no headache, mild, moderate, intense ...
x;; Covariates: age, education, painkillers, weather, ...

Ui, €;5 random effects between and within subjects

Serial correlation €;; = pe; j—1 + (1 — ,02)1/277ij



* Hard to compute

* Makes strong assumptions

* Proposal: use bivariate marginal densities
instead of full multivariate normal densities

* Giving a mis-specified model



» Composite likelihood function
CL(0;y) = H H //¢2(Zilazi2§R2)de'1dZi2
i=1j<k

n K
* More generally CL(0) = H H fy: € Ag)
i=1 k=1

» Sets A, index marginal or conditional (or ...)
distributions
* Inference based on theory of estimating equations
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» Pairwise likelihood estimator of 6 fully efficient

o If 0% =1, loss of efficiency depends on dimension p
» Small for dimension less than, say, 10

» Falls apartif p — oo for fixed sample size

Relevant for time series, genetics applications



CL(0) =TI, IT, f (i € Ax; 0)
éC’L g O
Vn(Bor, — 6) 5 N{0,G~1(8)}

G(0) = J(«9)H‘1 (0)J(0)
Godambe information

J(0) = E{—82CL(9)/96%}, H(0) = E{dCL(0)/00}?



Longitudinal data, binary and continuous: random
effects models

Survival analysis: frailty models, copulas

Multi-type responses: discrete and continuous;
markers and event times

Finance: time-varying covariance models

Genetics/bioinformatics: CCL for vonMises distribution:
protein folding; gene mapping; linkage disequilibrium

Spatial data: geostatistics, spatial point processes



* Image analysis

* Rasch model

* Bradley-Terry model
» State space models
» Population dynamics



What can we learn?

O

Partial, quasi, composite likelihood




Why are composite likelihood estimators efficient?
How much information should we use?
Are the parameters guaranteed to be identifiable?

Are we sure the components are consistent with a
‘true’ model?

Can we make progress if not?

How do joint densities get constructed?

What properties do these constructions have?
Is composite likelihood robust?



Composite likelihood ideas generated from applications
Likelihood methods seem too complicated

A range of application areas all use the same/similar
ideas

Abstraction provided by theory allows us to step back
from the particular application

Get some understanding about when the methods
might not work

As well as when they are expected to work well



Abstracts the main ideas
Simplifies the details
Isolates particular features

In the best scenario, gives new insight into what
underlies our intuition

Example: curvature and Bayesian inference
Example: composite likelihood

Example: false discovery rates



* Problem of multiple comparisons

Simultaneous statistical inference — R.G. Miller, 1966
» Bonferroni correction too strong
* Benjamini and Hochberg, 1995

* Introduce False Discovery Rate
An improvement (huge!) on “Type | and Type Il error”

* Then comes data, in this case from astrophysics

* Genovese & Wasserman collaborating with Miller and
Nichol
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False discovery rates

Acoustic Oscillations in the
Early Universe and Today

Christopher ). Miller,” Robert C. Nichol,” David J. Batuski?

During its first =100,000 years, the universe was a fully ionized plasma with
a tight coupling by Thompson scattering between the photons and matter. The
trade-off between gravitational collapse and photon pressure causes acoustic
oscillations in this primordial fluid. These oscillations will leave predictable
imprints in the spectra of the cosmic microwave background and the present-
day matter-density distribution. Recently, the BOOMERANG and MAXIMA
teams announced the detection of these acoustic oscillations in the cosmic
microwave background (observed at redshift = 1000). Here, we compare these
CMB detections with the corresponding acoustic oscillations in the matter-
density power spectrum (observed at redshift = 0.1). These consistent results,
from two different cosmological epochs, provide further support for our stan-
dard Hot Big Bang model of the universe.

The standard model of cosmology is the In-
flationary Hot Big Bang scenario. A key as-
pect of this model is the ease with which it
explains some critical observational facts
about the universe. For example, the exis-
tence of the cosmic microwave background
(CMB) radiation that fills all space is simply
the radio remnant of a hot early phase of the
universe, i.e., when it was only =100,000
years old. The model also provides a natural
explanation for Hubble’s famous expansion,
large-scale coherent structures in the mass
distribution (caused by quantum effects in the
early universe), as well as producing a flat
global geometry for the universe (7). In this
scenario, the distribution of matter on the
largest scales is connected, through well-es-
tablished physics, to the temperature fluctua-
tions in the CMB. Thus, any independent
agreement between the CMB (at redshift =
1000) and the matter-density distribution (at
redshift = 0.1) is naturally explained by the
Hot Big Bang Inflationary model.

The early universe was a plasma made up of
photons, electrons, and protons, along with the

"Department of Physics, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. 2Department of Physics
and Astronomy, University of Maine, Orono, ME
04469, USA.

22 JUNE 2001

so-called Dark Matter. During this period, the
gravitational force from potential wells (created
as a result of local curvature pertubations or
dark matter clumps) causes compressions in

this fluid. As the plasma collapses inward, it
meets resistance from photon pressure, revers-
ing the plasma direction and causing a subse-
quent rarefaction. This cycle of compression
and rarefaction results in acoustic oscillations,
where baryons act as a source of inertia. Com-
pression (rarefaction) of the plasma creates hot
(cold) spots in the temperature of the plasma.
Because the photons and baryons are coupled
through Thompson scattering, the matter-densi-
ty power spectrum will also exhibit these oscil-
lations. As the universe cooled and the photons
and matter decoupled, the acoustic oscillations
became frozen as oscillatory features in both
the temperature and matter-density power spec-
tra. These acoustic oscillations are a general
prediction from gravitational instability models
of structure formation (2, 3).

The recent results from the MAXIMA and
BOOMERANG CMB balloon experiments
provide evidence for the first two acoustic
peaks (4—8). These acoustic oscillations are
the peaks and valleys in Fig. 1A. The location
and amplitude of the first peak indicate that
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Fig. 1. We plot the CMB data from the MAXIMA and BOOMERANG experiments (A) alongside the

matter-density data (B). The solid line is the best fit model (..., = 0.24, Q)

baryons = 0-06, and

n, = 1.08 with H, = 69) using the matter-density data alone. The amplitudes in both plots remain
a free parameter. The solid line in (A) is not a fit to the CMB data (although the x? is 34 for 32 data

points). It is the resultant cosmological model using the best fit parameters from (B) and (2,

vacuum

0.8, consistent with the Type la supernovae results (78).

VOL 292 SCIENCE www.sciencemag.org

Downloaded from www.sciencemag.org on May 24, 2010
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Composite likelihood as a smoother
Calibration of posterior inference

Extension of higher order asymptotics to composite
likelihood

Exponential families and empirical likelihood

Semi-parametric and non-parametric models connected
to higher order asymptotics

Effective dimension reduction for inference
Ensemble methods in machine learning



“in statistics the problems always evolve relative to the
development of new data structures and new
computational tools” ... NSF report

“Statistics is driven by data” ... Don McLeish

“Our discipline needs collaborations” ... Hugh Chipman
How do we create opportunities?

How do we establish an independent identity?

In the face of bureaucratic pressures to merge?

Keep emphasizing what we do best!!



Speculation

* Engle

Variation, modelling, data, theory, data, theory
* Tibshirani

Cross-validation; forensic statistics

* Netflix Grand Prize

Recommender systems: machine learning, psychology,
statistics!

* Tufte
“Visual Display of Quantitative Information” -- 1983
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Thank you!!

2010 Annual Meeting in Québec City
38th Annual Meeting of the Statistical Society of Canada
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