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Summary. Discrete data, particularly count and contingency table data, are typically analysed
by using methods that are accurate to first order, such as normal approximations for maximum
likelihood estimators. By contrast continuous data can quite generally be analysed by using
third-order procedures, with major improvements in accuracy and with intrinsic separation of
information concerning parameter components.The paper extends these higher order results to
discrete data, yielding a methodology that is widely applicable and accurate to second order.The
extension can be described in terms of an approximating exponential model that is expressed
in terms of a score variable. The development is outlined and the flexibility of the approach is
illustrated by examples.
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1. Introduction

In models with continuous response variables, recent developments in likelihood theory lead to
p-value approximations for scalar parameters that are accurate to third order, and to marginal
likelihoods for scalar or vector parameters that are accurate to the same order. By comparison
the usual normal approximations for the distributions of quantities that are based on the maxi-
mum likelihood estimator or the likelihood root are accurate just to first order. In this paper we
show how the higher order methods can be extended to the analysis of discrete data, following
Davison and Wang (2002), who examined saddlepoint methods that give second-order approx-
imations by embedding the discrete problem in a continuous model, and Pierce and Peters
(1999), who argued that the continuous embedding model gives a more appropriate model for
inference than the original discrete model; broadly similar conclusions were reached by Severini
(2000a).

Recent likelihood theory shows that inference for a scalar component parameter ψ.θ/ has
a well defined p-value p.ψ/ for assessing ψ.θ/=ψ, and that a scalar or vector parameter ψ.θ/
has a marginal log-likelihood lÅ.ψ/. The p-value is obtained from the observed log-likelihood
l.θ/ and a canonical parameterization ϕ.θ/. In a full exponential family model ϕ.θ/ is the
canonical parameter; in more general models ϕ.θ/ is constructed using sample space deriva-
tives and approximate ancillarity. Furthermore with independent observations y1, . . . , yn we
have
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l.θ/=
n∑

i=1
li.θ/ .1/

where li.θ/= log{f i.yi; θ/} is the log-likelihood contribution from yi. The canonical reparam-
eterization ϕ.θ/ can similarly be expressed as a sum

ϕ.θ/=
n∑

i=1
ϕi.θ/ .2/

where ϕi.θ/ is a reparameterization contribution from the ith data component. The canoni-
cal reparameterization is defined only up to affine transformations, which have no effect on
the inference results. To compute the p-value for inference on a scalar parameter of interest
ψ.θ/=ψ, we use the p-value function

p.ψ/=Φ{r + r−1 log.q=r/} .3/

where Φ.·/ is the standard normal distribution function. Expression (3) has been prominent in
recent likelihood theory, accounts of which may be found in Barndorff-Nielsen and Cox (1994),
Severini (2000b) and Reid (2003). In expression (3) both r and q are determined by the pair
{l.θ/,ϕ.θ/} and the parameter of interest ψ : r is the likelihood root

r.ψ/= sgn.ψ̂−ψ/[2{l.θ̂/− l.θ̂ψ/}]1=2 .4/

where θ̂ is the maximum likelihood estimator, θ̂ψ is the constrained maximum likelihood esti-
mator for a given ψ.θ/=ψ and q is a maximum likelihood departure with a nuisance parameter
adjustment. An expression for q is given in Appendix A.1.

Under moderate regularity conditions and assuming that the log-likelihood has the usual
asymptotic properties as n→∞, the p-value and marginal log-likelihood are accurate to third
order when the distribution of y is continuous.

In this paper we show how to use these results for the analysis of discrete data. The accuracy
drops from third order to second order, and as in Davison and Wang (2002) the approximation
involves a continuous embedding model, which is described in Appendix B. As we can achieve
only O.n−1/ accuracy, we need only first-order approximate ancillary directions—whose con-
struction we outline in Section 2—and these are more easily obtained than the second-order
directions that are used for the continuous case. In Section 3 we show how these extended likeli-
hood methods apply to inference in a general model for discrete data, and we illustrate this with
2×2 tables, binary regression with non-canonical link and Poisson regression with a non-linear
component. In Section 4 we generalize to a model for overdispersion: the two-parameter nega-
tive binomial model.

As an initial example, suppose that we have n independent Bernoulli observations yi, with
probability of success pi related to a covariate xi by the logistic function

pi = exp.β0 +β1xi/={1+ exp.β0 +β1xi/}:

Exact inference for this binary regression model can be obtained by computing the con-
ditional distribution of Σyixi given Σyi, and the conditional distribution can be very well
approximated by the saddlepoint method; see for example Brazzale (2000). The arguments
of Davison and Wang (2002) apply to this setting to show that the saddlepoint approxima-
tion with a continuity correction approximates the exact conditional distribution function with
relative error O.n−1/, but more importantly that the saddlepoint approximation without con-
tinuity correction approximates a continuous embedding of the model, which in many ways is
more useful for inference and approximates the mid-p-value. These arguments hold for infer-
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ence about a linear function of the canonical parameter in full exponential families, includ-
ing the odds ratio for 2 × 2 tables (Strawderman and Wells, 1998), matched pairs and multi-
ple logistic regression. However, if the parameter of interest is a non-linear parameter of the
exponential family, as for example if the binary regression model is based on a non-canoni-
cal link function, then the nuisance parameters cannot be exactly eliminated by conditioning,
and the saddlepoint approach does not apply directly. In this setting the present approach
effectively eliminates the nuisance parameters, by marginalization over a nuisance parameter
distribution.

In the discrete case exact or approximate conditioning creates a distribution with a possibly
complex lattice structure, and the maximum likelihood estimates may be on the boundary of
the parameter space. For some discussion of these points see Albert and Anderson (1984) and
Frydenberg and Jensen (1989). Our development does not address this complication; the results
require the maximum likelihood estimate to be in the interior of the parameter space.

2. Canonical reparameterization

Consider independent variables y1, . . . , yn where yi is a di × 1 vector with model f i.yi; θ/ and
the common parameter θ is 1× k. If yi is continuous, the reparameterization component from
the ith observation is a 1×k vector

ϕi.θ/= @li.θ; yi/

@yiT

∣∣∣∣
yi0

×V i .5/

where T denotes matrix transpose and V i is a di × k weight matrix that describes how param-
eter change near the maximum likelihood value θ̂

0
influences the ith data component. The

first factor, the gradient of the log-likelihood at the observed data point y0, gives the canonical
parameter if the model is a curved exponential family. The second factor V i gives a linear adjust-
ment to the log-likelihood gradient; these weights V i implicitly implement conditioning on an
approximately ancillary statistic, reducing the dimension of the problem from that of the data
d1 + . . . + dn to that of the parameter k. The numerical arrays V i provide all the information
that is needed concerning this conditioning (Fraser and Reid, 2001). For the continuous case
the arrays V i are defined in Appendix A at expression (23) and lead to third-order inference. We
now address the modifications that are needed for inference in the discrete case.

Suppose first that a component yi is a canonical variable in the curved exponential family
model

f i.yi; θ/= exp{αi.θ/yi −ki.θ/}h.yi/, .6/

and let µi.θ/=E.yi; θ/ be its mean. It is shown in Fraser and Reid (2001), section 7, that vec-
tors V i tangent to an approximate ancillary can be derived by describing the effect of θ on the
variable yi through its mean µi.θ/:

V i = @

@θ
E.yi; θ/

∣∣∣∣
θ̂

0
= @

@θ
µi.θ/

∣∣∣∣
θ̂

0
=µi

θ.θ̂
0
/, .7/

say, which is a di ×k matrix. Then from expressions (5) and (6) we have

ϕi.θ/=αi.θ/V i: .8/

The co-ordinates of yi need not be linearly independent: any alternative co-ordinates will
lead to an equivalent ϕ.θ/ owing to linearity and the use of the mean of the co-ordinates.
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If the co-ordinates of yi are actual score variables for the parameter θ then µi
θ.θ/ is the expected

information iiθθ.θ/ for that co-ordinate model.
In equation (6) yi is the score variable for αi in the full exponential family model. We extend

this to more general settings by constructing ϕ.θ/ and V i with yi replaced by the locally defined
score variable

si = @

@θ
log{f.yi; θ/}

∣∣∣∣
θ=θ̂0

and computing V i as

V i = @

@θ
E.si; θ/

∣∣∣∣
θ=θ̂0

: .9/

We then have that the contribution of the ith observation to the local reparameterization is

ϕi.θ/= @li.θ; yi/

@si

∣∣∣∣
yi0

V i: .10/

We then sum over i as at equations (1) and (2) and use the pair {l.θ/,ϕ.θ/} to obtain the
p-value (3) as before. Although not illustrated in the examples here, we could also use {l.θ/,ϕ.θ/}
to construct the marginal log-likelihood lÅ.ψ/ as described in Fraser (2003). Fraser and Reid
(2001), section 7, justified this construction through the tangent exponential model approxima-
tion to the original model.

A possible reparameterization of the model would give a new score variable that is a linear
transformation of the initial score and would give a compensating linear transformation of the
co-ordinates of the V i; this has no effect on the resulting inference. In some models the calcu-
lations are easier if the score si is replaced by an affine transformation of it; we shall see this in
the example in Section 4. As shown in section 7 of Fraser and Reid (2001), V i is tangent to a
first-order ancillary statistic; in curved exponential families it is tangent to the likelihood root
for comparing the curved model with the full model. Inference based on a first-order ancillary
is sufficient to obtain a second-order approximation. In the discrete case we can only obtain a
second-order approximation in any case, as described in Appendix B and in Davison and Wang
(2002), and the use of expected values to define V i and hence ϕ.θ/ avoids the need to specify
a pivotal function, which would usually not be available for discrete models with a continuous
parameter.

3. Categorical data model

3.1. The log-likelihood and canonical parameter
Suppose that we have a response variable that can fall in one of d categories with corresponding
indicator variables y1, . . . , yd . Then y = .y1, . . . , yd/T has a multivariate Bernoulli distribution
with probabilities p1.θ/, . . . , pd.θ/ proportional to say exp{α1.θ/}, . . . , exp{αd.θ/}. The log-
likelihood contribution from this observation is

α.θ/y − log{A.θ/},

where A.θ/=Σj exp{αj.θ/} and α.θ/={α1.θ/, . . . ,αd.θ/}.
For a single observation from this multivariate Bernoulli model the derivative of the mean of

the score variable y is
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@

@θ
E.y; θ/=µθ.θ/

= [diag{p.θ/}−p.θ/pT.θ/]
@αT

@θ
:

The array in braces is the expected Fisher information for the canonical parameter of the full
dimensional Bernoulli model and has dimension d ×d; the derivative of α has dimension d ×k.

Now consider independent multivariate Bernoulli responses yi, with dimensions di, and with
log-odds parameters αi

1.θ/, . . . ,αi
d.θ/. For each observation yi we have from expression (7) the

ith weighting matrix

V i = [diag{pi.θ̂
0
/}−pi.θ̂

0
/piT.θ̂

0
/]

@αiT.θ̂
0
/

@θ

where θ̂
0

is the overall maximum likelihood estimate; then substituting in expression (5) we
obtain the reparameterization contribution ϕi.θ/.

We then compute l.θ/ and ϕ.θ/ by summing over i, as at equations (1) and (2), and use these
to compute the p-value approximation (3) from expressions (4) and (21). This gives a p-value
in this discrete case which is accurate to second order, O.n−1/, as a mid-p-value. If the param-
eters αi.θ/ do not depend on i then l.θ/ is the likelihood function for a d-category multinomial
distribution and ϕ is linear in the canonical parameter for that exponential family model.

We illustrate this on some versions of the 2×2 table, and then on some regression models for
discrete data.

3.2. 2�2 tables
Consider first a single multivariate Bernoulli variable y arrayed as a matrix

y =
(

y11 y12
y21 y22

)
,

∑
yjj′ =1,

with corresponding probabilities

p.θ/=
(

p11.θ/ p12.θ/
p21.θ/ p22.θ/

)
,

∑
pjj′ =1, .11/

so that

l.θ/=y11 log.p11/+y12 log.p12/+y21 log.p21/+y22 log.p22/;

the largest possible dimension for θ is k =3. Writing the mean as a column vector µ.θ/=p.θ/=
.p11, p12, p21, p22/T, we find that µθ.θ/ consists of three column vectors that are orthogonal to
a vector of 1s and the reparameterization can then be taken as

ϕ.θ/=
{

log
(

p12

p11

)
, log

(
p21

p11

)
, log

(
p22

p11

)}
:

With n independent observations y1, . . . , yn of this multivariate Bernoulli variable we have

l.θ/=∑yi
11 log.p11/+∑yi

12 log.p12/+∑yi
21 log.p21/+∑yi

22 log.p22/,

ϕ.θ/={n log.p12=p11/, n log.p21=p11/, n log.p22=p11/},

although the constant multiple n in the second expression is unnecessary as the inferences are
invariant to linear transformations of ϕ.
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Now suppose that the row probabilities in equation (11) are known, thus reducing the dimen-
sion of θ to 2. We write these probabilities as(

q1 p1
q2 p2

)
,

and let θ= .p1, p2/. The log-likelihood contribution from yi is then

li.θ/=yi
11 log.q1/+yi

12 log.p1/+yi
21 log.q2/+yi

22 log.p2/:

Writing the probability array in the vector form .q1, p1, q2, p2/T, we obtain

dµ.θ/

dθ
=




−1 0
1 0
0 −1
0 1


,

and thus ϕi.θ/={log.p1/− log.q1/, log.p2/− log.q2/}={log.p1=q1/, log.p2=q2/}. For n such
observations we have

l.θ/=n11 log.q1/+n12 log.p1/+n21 log.q2/+n22 log.p2/,

ϕ.θ/={log.p1=q1/, log.p2=q2/},

where we have omitted unneeded factors n1 and n2. This is the same log-likelihood and reparam-
eterization as is obtained in the modelling of the 2×2 table as a comparison of two binomials;
the familiar conditioning on row totals is here obtained automatically.

Finally we consider the more restricted model

p.θ/= 1
4

(
2+θ 1−θ
1−θ θ

)
, 0 <θ< 1:

This appears in discussions of ancillarity by Fisher (1956), Basu (1964) and Fraser (1979, 2004)
and has the unusual feature that the row totals and column totals are each ancillary statistics for
θ but the combination of them is not ancillary. The construction below, however, is conditional
on an approximate ancillary statistic that is not needed explicitly.

The log-likelihood contribution for a single observation is

l.θ/=y11 log.2+θ/+ .y12 +y21/ log.1−θ/+y22 log.θ/:

The mean function µ.θ/ is p.θ/, and we obtain

V =µθ.θ̂
0
/

= 1
4

(
1 −1

−1 1

)
,

yielding

ϕ.θ/= 1
4
{log.2+θ/−2 log.1−θ/+ log.θ/}:

For n independent observations of this form we have

l.θ/=n11 log.2+θ/+ .n12 +n21/ log.1−θ/+n22 log.θ/,

ϕ.θ/= n

4
{log.2+θ/−2 log.1−θ/+ log.θ/},

where the factor n=4 can be ignored.
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Note that V written in vector form is orthogonal to row differences and to column differences
and thus in principle agrees with conditioning on both the row totals and the column totals.

The calculations that are needed for more general contingency tables are analogous.

3.3. Numerical examples
We now give two numerical illustrations of the accuracy of these higher order procedures in
cases where an exact answer exists for comparison. We compute the ratio of the exact and
approximate p-value as the sample size increases, choosing a fixed quantile for the comparison.

The first illustration concerns a Poisson variable with mean ψ. We take y =ψ+ δψ1=2, for a
specified value of δ, and consider ψ→∞; here ψ plays the role of n in independent sampling.
The likelihood root r is readily computed and the maximum likelihood departure q equals√

y log.y=ψ/. We consider the behaviour of approximate significance probabilities as the sample
size, or equivalently here ψ, increases with δ fixed. Let pψ = pr.Y � y;ψ/ and p̃ψ denote exact
and approximate significance probabilities, and suppose that

p̃ψ =pψ.1+bψ−c/+o.ψ−c/

for some c as ψ→∞. Then a log–log-graph of |p̃ψ=pψ − 1| against ψ will be linear with slope
−c and intercept log |b|.

Fig. 1(a) shows such a graph (with δ= 2), comparing p̃ψ given by Φ.r/ and by Φ.rÅ/ with
the mid-p-value pr.Y �y−1;ψ/+ 1

2 pr.Y =y;ψ/, and comparing a continuity-corrected version
of rÅ with the exact value pr.Y � y;ψ/. The relative errors show the expected dependence on
sample size, and the good performance of the continuity-corrected version of rÅ supports the
arguments of Davison and Wang (2002). For ψ= 1 the relative errors of r and rÅ are around
3% and less than 1%, whereas the continuity-corrected version of rÅ, in which y is replaced by
y + 1

2 , has relative error around 0.2% as an approximation to pr.Y �y;ψ/.
For an example with a nuisance parameter consider the difference of log-odds for two binomial

observations, with denominators m1 = m2 = 2ψ, r1 =ψ and r2 =ψ+√
ψ, for ψ= 4, 9, 16, . . . ,
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Fig. 1. (a) Comparison of exact and approximate probabilities for tests on the Poisson mean and (b) differ-
ence of log-odds for two binomial variables, for the likelihood root r (+) and the modified likelihood root rÅ (�)
( , slope �1; - - - - - - -, slope � 1

2 ): here δD 2, corresponding to a significance level of around 0.025;
(a) also shows the dependence on ψ of the significance probability φ.rÅ/ for the continuity-corrected
observation y C 1

2 (c)
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with respective log-odds λ and λ+ψ. Again ψ plays the role of sample size, and calculations
analogous to those which were outlined for the Poisson model yield the results that are shown
in Fig. 1(b). Again we see the relative error of the approximation based on the likelihood root
r decreasing as ψ−1=2 and the relative error of the more refined approximation (3) decreasing
as ψ−1.

Other approximations that may be applied with discrete data, although not developed specifi-
cally for them, have been suggested by Skovgaard (1996) and by Severini (1999). In the examples
above straightforward calculations show that these yield rÅ and r respectively. Severini’s approx-
imation involves moment estimators of expected values and large sample sizes may be needed
to estimate these accurately.

3.4. Binary regression
Suppose that yi follows a Bernoulli distribution with success probability pi and a link function
g.pi/=λ+ψxi with two parameters ψ and λ. The corresponding log-likelihood contribution is

li.λ,ψ/=yi logit{pi.λ,ψ/}+ log{1−pi.λ,ψ/} .12/

where logit.u/= log{u=.1−u/}. Then since E.yi/=pi.λ,ψ/ we have

V i = @pi.λ,ψ/

@.λ,ψ/

∣∣∣∣
θ̂

0

= 1

g′{pi.λ̂0, ψ̂0/} .1 xi/

and

ϕi = logit{pi.λ,ψ/}V i: .13/

For the logistic regression model, the link function is logit{pi.λ,ψ/} =λ+ψxi, and equa-
tion (13) simplifies to

ϕi = .λ+ψxi/
1

pi.λ̂0, ψ̂0/{1−pi.λ̂0, ψ̂0/} .1 xi/,

and shows that ϕ.λ,ψ/ is just a linear transformation of .λ,ψ/, the canonical parameter of the
exponential family. As the inference is invariant to linear transformation, we can take ϕ.θ/ =
.λ,ψ/, with

l.θ/=λ
∑

xi +ψ
∑

yixi − log{1+ exp.λ+ψxi/},

and so equation (21) in Appendix A.1 simplifies to

q= .ψ̂−ψ/|jθθ.θ̂/|1=2|jλλ.θ̂ψ/|−1=2:

Higher order approximations based on this have been implemented in the S language by Brazzale
(2000).

The computations for vector covariates xi extend those above in an obvious way. If we use a
non-canonical link then l.θ/ and ϕ.θ/ are computed from expressions (12) and (13), although
the explicit expression for q seems unenlightening.

For a numerical assessment of the effect of higher order adjustments we examine data from
53 people with prostate cancer (Brown, 1980). The binary response indicates the presence of
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nodal involvement and depends on five dichotomous explanatory variables. We fit the model
with all covariates and assess how a positive response depends on one of these covariates, the
level of serum acid phosphatase. The corresponding regression parameter is denoted ψ; there
are six parameters in all, including a constant. Fitting a logistic regression model, for which
g.p/ = logit.p/, gives ψ̂= 1:684 with standard error 0.791; the signed likelihood ratio statistic
for testing ψ= 0 is r = 2:247, with p-value 0.012. The corresponding value of rÅ is 2.083, with
p-value 0.019. The model with complementary log–log-link function g.p/= log{− log.1−p/}
gives ψ̂=1:142 with standard error 0.618, and the values of r and rÅ for testing ψ=0 are 1.968
and 1.843, with corresponding p-values 0.025 and 0.033. The higher order correction is in the
same direction as with the logistic model but is more substantial. Examples 12.18 and 12.24 of
Davison (2003) also described the use of higher order approximations for the logistic regres-
sion model, using the software of Brazzale (2000) which implements approximate conditional
inference for logistic regression. As noted above the procedure that is outlined here recovers
this conditioning when the parameter of interest is linear in the canonical parameter of the
exponential family.

3.5. Extension to Poisson counts: smoking data
The method that was outlined for the multivariate Bernoulli model extends directly to the case of
Poisson counts, which we illustrate on the data in Table 1 on the relationship between smoking
and lung cancer in British male physicians. It shows the man-years at risk, T , and the number of
individuals dying of lung cancer, y, cross-classified by the number of cigarettes smoked daily, x,
and the number of years of smoking, t, taken to be age minus 20 years. Frome (1983) suggested
that the mean deaths per man-year be modelled as

λ.x, t/= exp.θ1/tθ2{1+ exp.θ3/ xθ4}, −∞<θ1, θ3 <∞, θ2, θ4 > 0; .14/

the death-rate in the absence of smoking is thus exp.θ1/tθ2 . One aspect of interest is the value of
θ4, as θ4 =1 would correspond to a linear increase in death-rate with x, and we shall investigate
this.

If we assume that the number of deaths in the ith cell is Poisson with mean µi.θ/=T λ.x, t/,
then the log-likelihood can be expressed as

Table 1. Lung cancer deaths in British male physicians (Frome, 1983/†

Years of Results for the following daily cigarette consumptions, x:
smoking, t

Non-smokers 1–9 10–14 15–19 20–24 25–34 �35

15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1

†The table gives (man-years at risk)=(number of cases of lung cancer), T=y, cross-classified by years of smoking,
taken to be age minus 20 years, and number of cigarettes smoked per day.
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l.θ/=
n∑

i=1
[yi log{µi.θ/}−µi.θ/],

where yi is the number of deaths in the ith cell of the table. The maximum likelihood esti-
mates and their standard errors based on the observed information matrix are θ̂1 =2:94 .0:57/,
θ̂2 =4:46 .0:33/, θ̂3 =−1:12 .1:00/ and θ̂4 =1:28 .0:2/. The value of the signed likelihood ratio
statistic r for testing θ4 =1 is 1.506, so the normal approximation to the distribution of r gives
a one-sided significance level for testing linear dependence of the death-rate on x as 0.066.

The canonical parameterization is

ϕ.θ/=
n∑

i=1
log{µi.θ/}×

(
@µi.θ/

@θ

∣∣∣∣
θ̂

0

)
;

from equation (14) we have

@µi.θ/

@θ
=Ti exp.θ1/t

θ2
i .1+ exp.θ3/x

θ4
i , {1+ exp.θ3/x

θ4
i } log.ti/,

exp.θ3/x
θ4
i , exp.θ3/x

θ4
i log.xi//

T,

where terms involving x are understood to vanish for non-smokers. The elements of equation (3)
are most simply obtained numerically. With θ4 =1 we have q=1:47, so rÅ =1:491, giving a sig-
nificance level of 0.068, which is only a small change from the value based on r.

4. A more complex model

In this section we illustrate the computations on a model which is not a curved exponential
family model, so the more general approach to computing ϕ.θ/ that was described at the end
of Section 2 is needed. We consider an overdispersed Poisson distribution, where the overdis-
persion is generated by assuming that the mean of the Poisson distribution follows a gamma
distribution with mean µ and shape parameter λ. The resulting density is the negative binomial

f.y; θ/= Γ.ν+y/

Γ.ν/y!
ννµy

.ν+µ/ν+y
, y =0, 1, . . . , µ, ν> 0: .15/

The log-likelihood function based on a single observation is

l.θ; y/=A.y +ν/−A.ν/+ν log.ν/+y log.µ/− .ν+y/ log.ν+µ/, .16/

where A.ν/= log{Γ.ν/} is the log-gamma function. We shall write ζ.ν/ for the digamma func-
tion A′.ν/. Differentiating equation (16) with respect to µ and ν at .µ̂0, ν̂0/ gives s = .s1, s2/

where

s1 = @l

@µ

∣∣∣∣
θ̂

0
= y

µ̂0 − .ν̂0 +y/

.ν̂0 + µ̂0/
,

s2 = @l

@ν

∣∣∣∣
θ̂

0
= ζ.ν̂0 +y/− ζ.ν̂0/+1+ log.ν̂0/− log.ν̂0 + µ̂0/− .ν̂0 +y/

.ν̂0 + µ̂0/
:

.17/

For the ith observation in a sample of size n from equation (15), we obtain V i from expression (9)
as



Likelihood for Discrete Data 505


ν̂0

µ̂0.µ̂0 + ν̂0/
0

0 ζ ′.ν̂0/− 1
ν̂0 −E{ζ ′.ν̂0 +yi/}+ 1

ν̂0 + µ̂0


: .18/

The expectation in the expression for V i
22 in matrix (18) is for a single observation from density

(15).
Note that si is affinely equivalent to the simpler form(

yi

ζ.ν̂0 +yi/− .yi + ν̂0/

.µ̂0 + ν̂0/

)
,

but by keeping the more complex form (18) we have that V i
αβ = .@=@θβ/E.si

α/ is the .α,β/th
element of the expected information matrix in a single observation from model (16). In this
example the parameters ν and µ are orthogonal so the array V i is diagonal.

We use V i to compute ϕ.θ/ as

ϕ1.θ/=∑ @l.θ; yi/

@si
1

V i
11

=
n∑

i=1

{
ζ.ν+yi0/+ log

(
µ

ν+µ

)}
.19/

ϕ2.θ/=∑ @l.θ; yi/

@si
2

V i
22

=
n∑

i=1

ζ.ν+yi0/+ log{µ=.ν+µ/}
ζ ′.ν̂0 +yi0/−1=.ν̂0 + µ̂0/

V i
22 .20/

where

@l.θ/=@si
α={@li.θ/=@yi}.@si

α=@yi/−1:

As usual we combine this with l.θ/ to compute rÅ.ψ/.
For a numerical illustration of these calculations, we take the data from Bissell (1972) on the

numbers of faults, y, in lengths of cloth, x (m×102). We suppose that yi follows the two-param-
eter negative binomial distribution (15), where now µ=µi =βxi, and we take the common shape
parameter ν to be the parameter of interest. Instead of .@si

1=@yi/−1V i
11 =1 as at equation (19) it

is now xi. The mean and variance of yi are βxi and βxi + .βxi/
2=ν.

The overall maximum likelihood estimate of ν is ν̂= 8:694 with standard error 4.207. The
95% confidence interval for ν based on the normal approximation to the distribution of the
likelihood root r.ν/ is (3.68, 28.41). Using the normal approximation to the distribution of
rÅ.ν/ the 95% confidence interval is (3.35, 24.13). Here the second-order correction moves the
interval towards the origin and so increases the fitted response variances. This move is in the
same direction as with normally distributed responses, for which higher order corrections cor-
respond to taking the appropriate denominator for a sum of squares, and hence tend to increase
maximum likelihood variance estimates.
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Appendix A: Details on the p-value formula

A.1. Computing q from ϕ
We now present the formulae that are needed to convert {l.θ/,ϕ.θ/} to approximate p-values; for further
details see Fraser et al. (1999) or Reid (2003). For inference on a scalar parameter of interest ψ.θ/ =ψ,
we use the p-value function that is defined at equation (3), with r the likelihood root. The complementing
function q is a nuisance parameter adjusted maximum likelihood departure,

q.ψ/= sgn.ψ̂−ψ/|χ.θ̂/−χ.θ̂ψ/|
{

|ĵϕϕ|
|j.λλ/.θ̂ψ/|

}1=2

: .21/

In equation (21) χ.θ/ is a surrogate for ψ.θ/ and is linear in ϕ.θ/,

χ.θ/= @ψ=@ϕ

|@ψ=@ϕ|
∣∣∣∣
θ̂ψ

ϕT.θ/, .22/

with @ψ=@ϕ obtained as (@ψ=@θ/.@ϕT=@θ/−1 and both θ and ϕ taken as row vectors. This linear surro-
gate has a contour or level surface that is tangent to ψ.θ/ at θ̂ψ. Formulae for the specialized observed
informations are recorded at Appendix A.3.

A.2. The maximum likelihood values
For the computation of r in equation (4) we need the profile log-likelihood. If θ= .ψ,λ/, where λ is
explicitly available, then this is obtained simply by substituting λ̂ψ for λ in the full log-likelihood. If an
explicit nuisance parameterization is not available, then we can typically compute the profile log-likelihood
lp.ψ/= l.θ̂ψ/ by maximizing l.θ/+α{ψ.θ/−ψ} over .θ,α/, which gives θ̂ψ and the Lagrange multipler α̂ψ.
The corresponding tilted likelihood or Lagrangian

l̃.θ/= l.θ/+ α̂ψ {ψ.θ/−ψ}
can be used for calculating q; see Fraser et al. (1999).

A.3. The informations and estimated variances
The expression in braces in equation (21) is the reciprocal of an estimate of the variance of |χ.θ̂/−χ.θ̂ψ/|,
and is a ratio of observed Fisher information matrices for the full parameter and for the nuisance parameter,
both recalibrated in terms of ϕ. They can be computed by rescaling the usual information determinants:

|ĵϕϕ|= |ĵθθ||@ϕT=@θ|−2,

||.λλ/.θ̂ψ/|= |jλλ.θ̂ψ/||ϕλT .θ̂ψ/ϕT
λT .θ̂ψ/|−1

where the parentheses enclosing λ are to indicate that the nuisance parameter has been calibrated locally
in terms of ϕ.θ/.

A.4. The weighting matrix V i for the continuous case
In the continuous case a full dimensional pivotal quantity can describe how the ith co-ordinate is influenced
by parameter change near the observed maximum likelihood value. For the ith co-ordinate let zi.yi; θ/ be
the ith pivotal quantity. The array V i is obtained from the total derivative for that co-ordinate pivotal:

V i = dyi

dθ

∣∣∣∣
yi0,θ̂

0
=−

(
@zi

@yi

)−1
@zi

@θ

∣∣∣∣∣
yi0,θ̂

0

, i=1, . . . , n, .23/
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where θ̂
0 = θ̂.y0/ is the maximum likelihood estimator obtained from the full data, and the leftmost deriv-

ative is calculated for a fixed value of the pivot.
The formulae that were given in Fraser (2003) can be used to convert {l.θ/,ϕ.θ/} to a marginal log-like-

lihood for ψ, whether ψ is scalar or vector.

Appendix B: A continuous approximation to the discrete model

We use a continuous model that can be made arbitrarily close to the discrete model, and we apply the
asymptotic methods to the continuous model; this gives the reduction of dimension and the separation of
component parameters. Also, as mentioned in Section 2 we determine the influence of the parameter on a
data point in terms of the mean of a locally defined score variable (Fraser and Reid, 2001). As the simplest
discrete model we examine in detail the component Bernoulli model

f.y; θ/= exp{yϕ.θ/}
exp{ϕ.θ/}+ exp{−ϕ.θ/} , y =−1, 1, .24/

and construct a corresponding continuous model with the same score parameter and score variable

fc.y; θ/=k−1
c {ϕ.θ/} exp{yϕ.θ/}

exp{ϕ.θ/}+ exp{−ϕ.θ/} , y ∈Sc, .25/

where

Sc = .−1± c/
⋃

.1± c/,

and c is an auxiliary parameter. The normalizing constant is

kc.ϕ/=2c
sinh.cϕ/

cϕ
=2c

{
1+ .cϕ/2

3!
+ .cϕ/4

5!
+ . . .

}
:

The multivariate Bernoulli and more general discrete models can be obtained by compounding the simple
Bernoulli model, possibly with appropriate conditioning.

The gradient of the log-likelihood of the continuous model with respect to y is ϕ.θ/, which is the
canonical parameter of the discrete model. The likelihood function and the distribution function for the
continuous model approximate that of the discrete model with error O.c2/ as c → 0. For the asymptotic
analysis we assume that we have n independent components from models of the type (25), with possi-
bly different ϕ-functions but a common parameter θ, and consider n → ∞; the effect of c can then be
made arbitrarily small. The p-value approximation is obtained from Cakmak et al. (1998), using Taylor
expansions in n−1=2 neighbourhoods of the observed data point.

The discrete model can be viewed as obtained by rounding to the nearest integer; the round-off is of
order O.n−1=2/ but by interpreting the p-value as a mid-p-value the effect is of order O.n−1/. The use of
the mid-p-value interpretation avoids the concern for continuity corrections.
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