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Abstract: A survey of recent developments in the theory and application of com-

posite likelihood is provided, building on the review paper of Varin (2008). A range

of application areas, including geostatistics, spatial extremes and space-time mod-

els as well as clustered and longitudinal data and time series are considered. The

important area of applications to statistical genetics is omitted, in light of Larribe

and Fearnhead (2009). Emphasis is given to the development of the theory, and

the current state of knowledge on efficiency and robustness of composite likelihood

inference.
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1. Introduction

The University of Warwick hosted a workshop on the topic of Composite

Likelihood in April, 2008. The workshop was prompted by the rapidly increasing

literature on the topic in recent years, the impression that the applications of

composite likelihood were outpacing the available theory, and the expectation

that an overview and assessment of the theory, methods, and implementation of

composite likelihood methods was warranted. One of the positive outcomes of

this workshop is the special issue of Statistica Sinica devoted to this topic.

This paper is intended as a review of recent work in the area of composite

likelihood, a review of the contributions presented at the Warwick workshop, and

an overview of developments since then. It complements and extends the review

of Varin (2008); in particular adding more details on various types of composite

likelihood, constructed from marginal and conditional inference, adding yet more

application areas, and considering spatial aspects in greater detail. A review of

composite likelihood in statistical genetics is given in Larribe and Fearnhead

(2009).
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2. Composite likelihood inference

2.1 Definitions and notation

Consider an m-dimensional vector random variable Y with probability den-

sity function f(y; θ), for some unknown p-dimensional parameter vector θ ∈ Θ.

Denote by {A1, . . . ,AK} a set of marginal or conditional events with associ-

ated likelihoods Lk(θ; y) ∝ f(y ∈ Ak; θ). Following Lindsay (1988) a composite

likelihood is the weighted product

CL(θ; y) =
K∏
k=1

Lk(θ; y)wk , (2.1)

where wk are nonnegative weights to be chosen. If the weights are all equal

then they can be ignored: selection of unequal weights to improve efficiency is

discussed in the context of particular applications in §3 and §4.

Although the above definition allows for combinations of marginal and con-

ditional densities (Cox and Reid, 2004), composite likelihoods are typically dis-

tinguished in conditional and marginal versions.

Composite conditional likelihoods Perhaps the precedent of composite likeli-

hood is the pseudolikelihood proposed by Besag (1974) for approximate inference

in spatial processes. This pseudolikelihood is the product of the conditional den-

sities of a single observation given its neighbours,

LC(θ; y) =
m∏
r=1

f(yr|{ys : ys is neighbour of yr}; θ). (2.2)

More recent variants of Besag’s proposal involve using blocks of observations

in both conditional and conditioned events, see Vecchia (1988) and Stein et al.

(2004).

Liang (1987) studied composite conditional likelihoods of type

LC(θ; y) =
m−1∏
r=1

m∏
s=r+1

f(yr|yr + ys; θ), (2.3)

and applied them to stratified case-control studies. Further work on this proposal

may be found in Hanfelt (2004), Wang and Williamson (2005) and Fujii and

Yanagimoto (2005).
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Molenberghs and Verbeke (2005) in the context longitudinal studies, and

Mardia et al. (2008) in bioinformatics, constructed composite likelihoods by pool-

ing pairwise conditional densities

LC(θ; y) =
m∏
r=1

m∏
s=1

f(yr|ys; θ), (2.4)

or by pooling full conditional densities

LC(θ; y) =
m∏
r=1

f(yr|y(−r); θ), (2.5)

where y(−r) denotes the vector of all the observations but yr.

Composite marginal likelihoods The simplest composite marginal likelihood

is the pseudolikelihood constructed under working independence assumptions,

Lind(θ; y) =
m∏
r=1

f(yr; θ), (2.6)

sometimes refereed in the literature as the independence likelihood (Chandler

and Bate, 2007). The independence likelihood permits inference only on marginal

parameters. If parameters related to dependence are also of interest it is necessary

to model blocks of observations, as in the pairwise likelihood (Cox and Reid, 2004;

Varin, 2008)

Lpair(θ; y) =
m−1∏
r=1

m∏
s=r+1

f(yr, ys; θ), (2.7)

and in its extensions constructed from larger sets of observations, see Caragea

and Smith (2007).

For continuous symmetric responses with inference focused on the depen-

dence structure, Curriero and Lele (1999) and Lele and Taper (2002) proposed

composite marginal likelihoods based on pairwise differences,

Ldiff(θ; y) =
m−1∏
r=1

m∏
s=r+1

f(yr − ys; θ). (2.8)

Terminology Composite likelihoods are referred to with several different names,

including pseudolikelihood (Molenberghs and Verbeke, 2005), approximate like-

lihood (Stein et al., 2004), and quasi-likelihood (Hjort and Omre, 1994; Glasbey,
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2001; Hjort and Varin, 2008). The first two are too generic to be informative, and

the third is a possible source of misunderstanding as it overlaps with a well es-

tablished alternative (McCullagh, 1983; Wedderburn, 1974). Composite marginal

likelihoods in time series are sometimes called split-data likelihoods (Rydén, 1994;

Vandekerkhove, 2005). In the psychometric literature, methods based on com-

posite likelihood are called limited information methods. We will consistently

use the phrase composite (marginal/conditional) likelihood in this review, and

use the notation LC(·) and c`(·) for the likelihood and log-likelihood function,

respectively. If needed we will distinguish marginal, LMC, and conditional, LCC,

composite likelihoods.

2.2 Derived quantities

The maximum composite likelihood estimator θ̂CL locates the maximum of

the composite likelihood, or equivalently of the composite log-likelihood c`(θ; y) =∑K
k=1 `k(θ; y)wk, where `k(θ; y) = logLk(θ; y). In standard problems θ̂CL may be

found by solving the composite score function u(θ; y) = ∇θc`(θ; y) which is a

linear combination of the scores associated with each log-likelihood term `k(θ; y).

Composite likelihoods may be seen as misspecified likelihoods, where mis-

specification occurs because of the working independence assumption among the

likelihood terms forming the pseudolikelihood. Consequently, the second Bartlett

identity does not hold, and we need to distinguish between the sensitivity matrix

H(θ) = Eθ {−∇θ u(θ;Y )} =
∫
{−∇θ u(θ; y)}f(y; θ)dy (2.9)

and the variability matrix

J(θ) = varθ {u(θ;Y )} , (2.10)

and the Fisher information needs to be substituted by the Godambe information

matrix (Godambe, 1960)

G(θ) = H(θ)J(θ)−1H(θ), (2.11)

also referred to as the sandwich information matrix. We will reserve the notation

I(θ) = varθ{∇θ log f(Y ; θ)} for the expected Fisher information; of course if c`(θ)

is a true log-likelihood function then G = H = I.

2.3 Asymptotic theory
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In the case of n independent and identically distributed observations Y1, . . . , Yn

from the model f(y; θ) on Rm, and n→∞ with m fixed, some standard asymp-

totic results are available from Kent (1982), Lindsay (1988) and Molenberghs

and Verbeke (2005, Ch. 9), which we now summarize. Since

CL(θ; y) =
n∏
i=1

CL(θ; yi), and c`(θ; y) =
n∑
i=1

c`(θ; yi),

under regularity conditions on the component log-densities we have a central limit

theorem for the composite likelihood score statistic, leading to the result that

the composite maximum likelihood estimator, θ̂CL is asymptotically normally

distributed:
√
n(θ̂CL − θ)

d→ Np{0,G−1(θ)}, (2.12)

where Np(µ,Σ) is the p-dimensional normal distribution with mean and variance

as indicated, and G(θ) is the Godambe information matrix in a single observation,

defined at (2.11).

The ratio of G(θ) to the expected Fisher information I(θ) determines the

asymptotic efficiency of θ̂CL relative to the maximum likelihood estimator from

the full model. If θ is a scalar this can be assessed or plotted over the range of

θ; see, for example, Cox and Reid (2004, Fig. 1).

Suppose scientific interest is in a q-dimensional subvector ψ of the parameter

θ = (ψ, τ). Composite likelihood versions of Wald and score statistics for testing

null hypothesis H0 : ψ = ψ0 are easily constructed, and have the usual asymptotic

χ2
q distribution, see Molenberghs and Verbeke (2005). The Wald-type statistic is

We = n(ψ̂CL − ψ0)TGψψ(θ̂CL)(ψ̂CL − ψ0),

where Gψψ is the q × q submatrix of the Godambe information pertaining to ψ.

The score-type statistic is

Wu =
1
n
uψ {ψ0, τ̂CL(ψ0)}T H̃

ψψ
G̃ψψH̃

ψψ
uψ {ψ0, τ̂CL(ψ0)} ,

where Hψψ is the q × q submatrix of the inverse of H(θ) pertaining to ψ, and

H̃ = H{ψ0, τ̂CL(ψ0)}. As in ordinary likelihood inference We and Wu suffer from

practical limitations: We is not invariant to reparametrization, while Wu may

be numerically unstable. In addition, estimates of the variability and sensitivity
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matrices H(θ) and J(θ) are needed. While they can sometimes be evaluated

explicitly, it is more usual to use empirical estimates. As H(θ) is a mean, its

estimation is straightforward, but the estimation of J(θ) requires some internal

replication; see §5.

The composite likelihood ratio statistic

W = 2
[
c`(θ̂CL; y)− c` {ψ0, τ̂CL(ψ0); y}

]
(2.13)

seems preferable, but it has the drawback of a non-standard asymptotic distri-

bution

W
d→

q∑
j=1

λjZ
2
j ,

where Z1, . . . , Zq are independent normal variates and λ1, . . . , λq are the eigen-

values of the matrix (Hψψ)−1Gψψ. This result may be derived under the general

framework of misspecified likelihoods, see Kent (1982) and the book length ex-

position of White (1994).

Geys et al. (1999) proposed the adjusted composite likelihood ratio statistic

W ′ = W/λ̄ with an approximate χ2
q distribution, where λ̄ denotes the average

of the eigenvalues λj ; Rotnitzky and Jewell (1990) suggested this for the inde-

pendence likelihood. The mean of W ′ coincides with that of its asymptotic χ2
q

distribution, but higher order moments differ. A better solution is provided by

a Satterthwaite (1946) adjustment W
′′

= νW/(qλ̄) with approximate χ2
ν distri-

bution. Here the effective degrees of freedom ν =
∑q

j=1 λ/
∑q

j=1 λ
2 is chosen so

that both the mean and the variance of W
′′

coincide with that of the approximate

distribution.

Chandler and Bate (2007) proposed a different type of adjustment for the

independence likelihood: essentially stretching the composite log-likelihood on

the θ-axis, about θ̂CL to ensure, at least approximately, that the second Bartlett

identity holds, and thus that the usual χ2
q approximation can be used. Vertical

rescaling is another possibility, discussed briefly in Chandler and Bate (2007,

§6), and extended to composite likelihood in Pace et al. (2009). In the scalar

parameter case, vertical rescaling is the same as dividing the composite log-

likelihood ratio statistic by J−1H.

Saddlepoint approximations for quadratic forms are derived in Kuonen (1999),

and seem directly applicable to W , but we are not aware of detailed discussion
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of this application.

The computational simplicity of composite likelihood functions in typical

situations allows use of the parametric bootstrap. This has the advantage of

working also in non-standard settings, such as when the parameter under the

null hypothesis lies on the boundary of the parametric space (Bellio and Varin,

2005), but it has the drawback of requiring the specification of a joint model for

the data, thus losing in model robustness.

Analogues of the Akaike (AIC) and the Bayesian (BIC) information crite-

ria for model selection are easily derived in the framework of composite like-

lihoods. They have usual forms AIC = −2c`(θ̂CL; y) + 2dim(θ) and BIC =

−2c`(θ̂CL; y) + dim(θ) log n, where dim(θ) is an effective number of parameters,

estimated from the sensitivity matrix and the Godambe information: dim(θ) =

tr
{

H(θ)G(θ)−1
}
. Formal derivation of these information criteria may be found

in Varin and Vidoni (2005) for the composite AIC criterion and in Gao and Song

(2009a) for the composite BIC criterion.

These criteria may be used for model averaging (Claeskens and Hjort, 2008),

or for selection of tuning parameters in shrinkage methods. See Gao and Song

(2009a) for examples of the Lasso penalty with composite marginal likelihoods.

The inference in the previous section follows directly from the usual asymp-

totic theory, under standard regularity conditions. It is also of interest to consider

the case where n is fixed and m increases, as in the case of a single (n = 1) long

time series or a spatial dataset. In this case the asymptotic theory depends on

the availability of internal replication: for example in an autoregressive model of

small-ish order, there is sufficient independence in a single long series to obtain

a central limit result.

The asymptotic variance for pairwise likelihood and a modified version of it

was treated in Cox and Reid (2004), using Taylor series expansions. Since the

validity of these expansions depends on the consistency of θ, which does not hold

in general for m → ∞, the argument was purely informal, and a more rigorous

treatment is needed. Cox and Reid (2004) also suggested that it may be possible

to choose a 6= 0 in the composite log-likelihood `C(θ) = `pair(θ) − am`ind(θ) to

ensure consistency as m → ∞ for fixed n, but to our knowledge no examples of

this strategy have been investigated.
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3. Applications

3.1 Gaussian random fields

Geostatistical models for large datasets are increasingly common, partic-

ularly with the use of automatic collection methods such as remote sensing,

and composite likelihood methods for approximate inference are very appeal-

ing. A typical model in geostatistics applications is a Gaussian random field

Y = {Y (s) : s ∈ S ⊂ IR2} with mean function µ(s) and covariance matrix Σ(θ)

whose entries reflect spatial correlation; Cressie (1993) gives several examples of

parametric spatial correlation functions. Classical geostatistics estimation of θ

is based on various methods of curve fitting to the sample variogram (Cressie,

1993). These methods have been strongly criticised, as there is considerable

arbitrariness in tuning the fitting algorithms, and the resulting estimates are of-

ten inefficient (Diggle and Ribeirio, 2007, §6.3). Maximum likelihood estimation

would be more efficient, but requires the inversion of the covariance matrix Σ(θ),

usually with a computational cost of order O(n3). This cost is prohibitive with

many modern spatial, or spatio-temporal, data sets.

Stemming from the work by Besag (1974), Vecchia (1988) proposed approx-

imating the full likelihood with the composite conditional likelihood

LCC(θ; y) = f(y1; θ)
n∏
i=2

f(yi|Bi; θ)

where Bi is a subset of {yi−1, . . . , y1} chosen so as to make feasible the computa-

tion of LC. Vecchia (1988) suggested restricting B(yi) to a number of neighbours

of yi.

Stein et al. (2004) further developed this proposal, and used it to approximate

the restricted likelihood function. The authors show that statistical efficiency can

be improved using blocks of observations in place of single observations,

LCC(θ; y) = f(z1; θ)
b∏
i=2

f(zi|B′i; θ)

where z1, . . . , zb are b blocks of data and B′i is a subset of {zi−1, . . . , z1} (Stein

et al., 2004).

Difficulties with the composite likelihoods of Stein et al. (2004) and Vecchia

(1988) arise with the selection of the observation order and of the conditioning
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sets Bi and B′i. To overcome such complications, in the pair of papers Caragea

and Smith (2006; 2007) three different likelihood approximations all based on

splitting the data into blocks are proposed. The first method, the “big blocks

likelihood”, consists in estimating θ from the joint density of the block means.

The second method is denoted “small blocks” and it is the composite marginal

likelihood formed by the product of densities for all the observations in each

block,

LMC(θ; y) =
b∏
i=1

f(zi; θ),

where z1, . . . , zb are b blocks of data. Hence, while the big blocks likelihood

captures large-sample properties of the process but ignores the within blocks

dependence, the small blocks method does the opposite. A proposed compromise

between the two, called a hybrid method, is to use the big blocks likelihood

multiplied by the composite conditional likelihood formed by the product of

conditional densities of the observations within blocks, conditioned on the block

mean. Efficiency studies indicate poor performance of the big blocks method,

while the small blocks and the hybrid methods work similarly with high efficiency.

A major reason for concern with maximum likelihood estimation is the dif-

ficulty in checking the assumption of multivariate normality. This difficulty is

also shared by these blockwise strategies. In contrast, the pairwise likelihood

(2.7) and the composite likelihood of differences (2.8) just require bivariate nor-

mality for pairs of observations, which is much simpler to validate. Pairwise

likelihood was suggested for inference in geostatistical models first in Hjort and

Omre (1994) and then further developed for image models by Nott and Rydén

(1999). The composite likelihood based on differences (2.8) was proposed by

Curriero and Lele (1999) and recently applied to three dimensional spatial fields

in Mateu et al. (2007).

3.2 Spatial extremes

The rise in hazardous environmental events leads to much interest in statis-

tical modelling of spatial extremes. A flexible approach to this problem is pro-

vided by max-stable models obtained from underlying Gaussian random fields

constructed by building on unpublished work of Smith (1990). Despite the at-

tractive properties of these models, both classical and Bayesian inference are
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impractical because of the curse of dimensionality with the likelihood computa-

tion, see Davison and Gholamrezaee (2009). At present time, only expressions

for bivariate marginal densities have been derived. Thus, pairwise likelihood in-

ference is naturally considered as a surrogate for impossible ordinary likelihood

analysis in Davison and Gholamrezaee (2009) and Padoan et al. (2009). In both

of those papers, computations are carried out with the R (R Development Core

Team, 2009) package SpatialExtremes by Ribatet (2009), which seems to be

the first publicly available software implementing composite likelihood methods.

A related approach is followed by Smith and Stephenson (2009) where the

pairwise likelihood is used in place of the unfeasible ordinary likelihood for

Bayesian inference in max-stable spatial processes.

3.3 Serially correlated random effects

In longitudinal and panel studies, random effects models are popular choices

for modelling unobserved heterogeneity. In these models the outcomes are mod-

elled as independent variables conditionally upon a subject-specific random effect,

usually assumed to be constant for all the measurements. The latter assumption

may be unrealistic in most cases: better models should take into account also for

the possible serial dependence within subject-specific measurements.

Consider longitudinal counts Yij observed at occasion j = 1, . . . ,mi for sub-

ject i = 1, . . . , n. This type of data may be naturally modelled as conditionally

independent Poisson variables

Yij |Ui ∼ Po{Ui exp(x′ijβ)}, (3.1)

where Ui is a random effect, xij is a covariate vector and β are unknown regres-

sion coefficients. A common assumption is that U1, . . . , Un are independendent

Gamma variables with unit mean. Accordingly, the marginal distribution of

Yij is negative binomial. To account for serial dependence Henderson and Shi-

makura (2003) suggest to extend the above model by assuming instead different

Gamma-distributed random effects Uij for each measurement,

Yij |Uij ∼ Po{Uij exp(x′ijβ)},

and specify the joint distribution of Uij as as to describe the serial dependence.

For example, Henderson and Shimakura (2003) propose an autoregressive depen-
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dence of type

cor(Uij , Ui′k) =

ρ|j−k| if i = i′

0 if i 6= i′.

Unfortunately, the higher model flexibility of the above formulation is paid in

terms of computational complexity. The likelihood function involves a number of

terms exponentially increasing with the series length mi. Likelihood computation

is impractical except in low dimensions. Hence, Henderson and Shimakura (2003)

propose that inference be based on the pairwise likelihood

Lpair(θ; y) =
n∏
i=1

1
mi − 1

mi−1∏
j=1

mi∏
k=j+1

Pr(Yij = yij , Yik = yik; θ).

The weights 1/(mi − 1) are used to match the ordinary likelihood in the case of

independence, as suggested in LeCessie and van (1994).

A further development of the Henderson and Shimakura work is provided

by Fiocco et al. (2009) who modified the autoregressive Gamma process Uij

to enhance numerical stability when large counts are involved. Furthermore,

Fiocco et al. (2009) suggest a two-step composite likelihood analysis where first

regression and oversdispersion parameters are estimated from the independence

likelihood, and then dependence parameters are obtained separately from the

pairwise likelihood. In their simulation studies, Fiocco et al. (2009) found that

this two-step approach loses little in efficiency with respect to joint estimation of

all the parameters from the pairwise likelihood.

A motivation similar to that of Henderson and Shimakura (2003) and Fiocco

et al. (2009) underlies the work by Varin and Czado (2010) who suggested an

autoregressive mixed probit model for ordinal and binary longitudinal outcomes.

The response Yij is viewed as a censored version of a continuous unobserved

variable Y ∗ij ,

Yij = yij ↔ αyij−1 < Y ∗ij ≤ αyij , yij ∈ {1, . . . , h},

where−∞ ≡ α0 < α1 < . . . < αh−1 < αh ≡ ∞ are suitable threshold parameters.

The unobserved Y ∗ij is modelled with a normal linear mixed model

Y ∗ij = x′ijβ + Ui + εij ,
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where U1, . . . , Un are n independent normal distributed random effects with zero

mean and variance σ2. To account for serial dependence, the errors εij are as-

sumed to be generated from autoregressive process of order one,

εij = ρεi,j−1 + (1− ρ2)1/2 ηij

where ηij are independent standard normal innovations. Accordingly, the likeli-

hood function is a product of n rectangular normal probabilities,

L(θ; y) =
n∏
i=1

∫ α̃yi1

α̃yi1−1

. . .

∫ α̃yimi

α̃yim−1

φm (zi1, . . . , zim; R) dzi1 . . . dzimi ,

where α̃yij = (αyij − x′ijβ)/
√

(σ2 + 1) and φmi(·; R) is a m-dimensional normal

density with standard margins and correlation matrix R with entries

Rij =
σ2 + ρ|i−j|

σ2 + 1
.

With the exception of longitudinal studies with a small number of measurements

mi, the evaluation of the likelihood requires time-consuming Monte Carlo meth-

ods with possible numerical instabilities. Hence, Varin and Czado (2010) propose

the use of pairwise likelihood inference based on pairs of observations less than

q units apart,

L(q)
pair(θ; y) =

n∏
i=1

mi−1∏
j=q

q∏
d=1

Pr(Yij = yij , Yij−d = yij−d; θ).

The bivariate densities Pr(Yij = yij , Yij−d = yij−d; θ) are easily computed with

very precise deterministic quadrature methods available in standard statistical

software, thus avoiding the need for simulations.

3.4 Spatially correlated random effects

The numerical difficulties described in case of serially correlated random

effects further increase with spatially correlated random effects. Consider a gen-

eralized linear model with linear predictor

g{E(Y (s)} = x(s)′β + u(s), s ∈ S ⊂ IR2,

where {u(s) : s ∈ S} is a zero-mean stationary Gaussian random field. Models

of this type are termed generalized linear geostatistical models in Diggle and
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Ribeirio (2007). Given n observed locations s1, . . . , sn, the likelihood function is

expressed in terms of a single n dimensional integral,

L(θ; y) =
∫

IRn

n∏
i=1

f{y(si)|u(si); θ}f{u(s1), . . . , u(sn); θ}du(s1) . . . du(sn),

whose approximation may be difficult even for moderate n. Typical solutions are

based on simulation algorithms such as Monte Carlo expectation-maximization

or Markov chain Monte Carlo algorithms, see Diggle and Ribeirio (2007) for

references. For large data sets, simulation methods become very demanding and

thus pairwise likelihood represents an effective alternative. This was first studied

by Heagerty and Lele (1998) for binary data with probit link. The authors

proposed a weighted pairwise likelihood

L(q)
pair(θ; y) =

n−1∏
i=1

n∏
j=i+1

f{y(si), y(sj); θ}w(|si−sj |2;q),

with dummy weights, w(d; q) = 1 if the distance d is less than q and 0 otherwise,

used to exclude pairs of observations more than q units apart. Varin et al. (2005)

investigate pairwise likelihood for generalized linear models and suggest that

excluding pairs formed by observations too distant may be not only numerically

efficient but also statistically efficient. Apanasovich et al. (2008) consider pairwise

likelihood inference for logistic regression with a linear predictor expressed by the

sum of a nonparametric term and a spatially correlated random effect accounting

for short range dependence.

3.5 Joint mixed models

Correlated random effects are also used for joint modelling of multivariate

longitudinal profiles. Let (Y (1)
ij , . . . , Y

(D)
ij )′ be a vector of D outcomes for subject

i = 1, . . . , n at occasion j = 1, . . . ,mi. A possible modelling strategy for data

of this type consists in assuming a mixed model for each single outcome and

then modelling the association among the outcomes with a suitable covariance

matrix for the random effects. Suppose for ease of exposition a random intercept

generalized linear model for each outcome,

g{E(Y (d)
ij )|u(d)

i } = x′ijβ + u
(d)
i , d = 1, . . . , D,

where u(d)
i is a random effect specific for outcome d and subject i (i = 1, . . . , n).

The various univariate mixed models can be combined by assuming aD-dimensional
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multivariate normal distribution for all the random effects, u(1)
i , . . . , u

(D)
i , of a

single subject, i = 1, . . . , n.

With the assumption of independence among different subjects, the likeli-

hood is

L(θ; y) =
n∏
i=1

Li(θ; y(1)
i , . . . , y

(D)
i ),

with y
(d)
i = (y(d)

i1 , . . . , y
(d)
imi

)′ indicating the vector of all observations of outcome

d for subject i. When the dimension D of the outcomes increases, the number

of random effects parameters,
(
D
2

)
+ D, grows quadratically, making the maxi-

mization of the likelihood quickly out of reach even in the case of normal linear

mixed models where the likelihood has an analytic form.

Molenberghs and Verbeke (2005, §25) proposed to alleviate these computa-

tional difficulties by the method of “pairwise fitting”. Consider the composite

marginal likelihood constructed from all pairs of outcomes,

LMC(θ1,2, . . . , θD−1,D; y) =
D−1∏
r=1

D∏
s=r+1

L(θr,s; y(r), y(s)), (3.2)

where L(θr,s; y(r), y(s)) is the likelihood based on outcomes r and s only. In con-

trast to previously discussed composite likelihoods, here different pair-specific

parameters are assumed, i.e. θr,s is the subset of θ pertaining to the assumed

distribution of (y(r), y(s)). This separate parameterization is necessary to allow

distinct maximization of each term L(θr,s; y(r), y(s)) forming the composite like-

lihood (3.2), and thus resolve the computational difficulties associated with joint

maximization.

Let ω = (θ1,2, . . . , θD−1,D)T be the vector containing all the
(
D
2

)
pair-specific

parameters. Then, ω̂ = (θ̂1,2, . . . , θ̂D−1,D)T locates the maximum of the compos-

ite likelihood (3.2). Accordingly, we have

√
n(ω̂ − ω) d−→ N{0,G−1(ω)}.

Obviously, there is a one-to-many correspondence between ω and the original

parameter θ, for example, θr,s and θr,t have some components of θ in common. A

single estimate of θ may be then obtained by averaging all the corresponding pair-

specific estimates in ω̂. If we denote by A the weight matrix such that θ̂ = Aω̂,
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then inference will be based on the asymptotic distribution

√
n(θ̂ − θ) d−→ N{0,ATG−1(ω)A}.

Further details and applications of the pairwise fitting method can be found in

a series of papers by S. Fieuws and his colleagues (Fieuws and Verbeke, 2006;

Fieuws et al., 2006; Fieuws, Verbeke, Maes and Vanrenterghem, 2007; Fieuws,

Verbeke and Molenberghs, 2007). Barry and Bowman (2008) applied this method

to longitudinal shape analysis.

3.6 Time-varying correlation matrices

Engle et al. (2009) propose composite likelihood methods for risk manage-

ment with high dimensional portfolios. Consider a K dimensional vector of log-

returns rt observed at times t = 1, . . . , T. Risk management models assume that

rt is the martingale difference sequence

E(rt|Ft−1) = 0, Cov(rt|Ft−1) = Ht,

where Ft−1 is the information up to time t−1 and Ht is a time-varying covariance

matrix. Models proposed for Ht are parametrized in terms of dynamics parame-

ters of interest θ and of nuisance parameters λ. Standard inference is based on a

two-step approach. First, nuisance parameters are estimated using a method of

moments. Then, parameters of interest are obtained by maximizing a misspec-

ified likelihood constructed under working assumptions of multinormality with

the nuisance parameters kept fixed at their moment-based estimates.

There are two sources of difficulty with the above fitting method. First, the

method needs the inversion of T correlation matrices Ht, each requiring O(K3)

operations. Secondly, even if these inversions were possible, the precision of the

resulting estimators for θ would quickly fail because the dimension of nuisance

parameters grows as the number of assets K increases.

In order to overcome these difficulties, Engle et al. (2009) investigate the

use of composite marginal likelihoods formed by summing up (misspecified) like-

lihoods of subsets of assets. This approach resolves the numerical difficulties

connected with the inversion of high dimensional matrices. Furthermore, the

authors assume many low-dimensional nuisance parameters specific to each sub-

set of assets to overcome the Neyman-Scott-type difficulty. A similar idea is



16 CRISTIANO VARIN, NANCY REID AND DAVID FIRTH

employed in Pakel et al. (2009) for composite likelihood analysis of a panel of

GARCH models.

3.7 Marginal regression models with missing data

Statistical analysis of longitudinal data is complicated by the likely occur-

rence of missing responses. The popular method of generalized estimating equa-

tions (GEEs) by Liang and Zeger (1986) provides valid inference under the as-

sumption of ignorable missing data (missing completely at random). Complica-

tions arise when such an assumption cannot be trusted. If the weaker assumption

of missing-at-random is valid, then GEEs can be saved with the use of inverse

probability weights as in Robins (1995). A difficulty with this strategy is that

it requires correct specification of the missing data process, something that can

be awkward in practice. Alternatively, one may base inference on the observed

likelihood. However, this strategy suffers from lack of robustness because it relies

on correct specification of the joint distribution of all observed responses.

In this context, composite likelihood methods are attractive as a compro-

mise between advantages from likelihood-type analysis and robustness to model

specification of GEEs. In the following lines, we summarize composite likelihood

inference for marginal regression in presence of noningnorable missing data.

If only parameters in the univariate margins are of interest, Troxel et al.

(2003) suggest basing inference under missing at random assumptions on the

following independence likelihood

Lind(β, γ; y, r) =
n∏
i=1

mi∏
j=1

{f(yij , rij |xi;β, γ)}rij
{∫

yij

f(yij , rij |xi;β, γ)dyij

}1−rij

=
n∏
i=1

mi∏
j=1

{f(yij |xi;β)πij(γ)}rij
{∫

yij

f(yij |xi;β)dyij(1− πij(γ))

}1−rij

where β are marginal regression parameters, rij indicates whether observation

j on subject i has been observed or not and πij(γ) is the probability of having

observed it modelled as a function of parameter γ. The independence likelihood

of Troxel et al. (2003) thus requires only the correct specification of univariate

margins f(yij |xi;β) and of observation probabilities πij(γ). See also Parzen et al.

(2006).

In situations where the association between responses is substantial, this
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independence likelihood may lead to sensible, but inefficient, inferences on re-

gressors β. For such situations, Parzen et al. (2007) suggest to incorporate in-

formation about dependence by moving to the pairwise likelihood

Lpair(β, α, γ; y, r) = L1 × L2 × L3 × L4,

with

L1 =
n∏
i=1

mi−1∏
j=1

mi∏
k=j+1

{f(yij , yik, rij , rik|xi;β, α, γ)}rijrik ,

L2 =
n∏
i=1

mi−1∏
j=1

mi∏
k=j+1

{∫
yij

f(yij , yik, rij , rik|xi;β, α, γ)dyij

}(1−rij)rik

,

L3 =
n∏
i=1

mi−1∏
j=1

mi∏
k=j+1

{∫
yik

f(yij , yik, rij , rik|xi;β, α, γ)dyij

}rij(1−rik)

,

L4 =
n∏
i=1

mi−1∏
j=1

mi∏
k=j+1

{∫
yij

∫
yik

f(yij , yik, rij , rik|xi;β, α, γ)dyijdyik

}(1−rij)(1−rik)

,

where α is a vector of association parameters involved in the joint distribution

of a pair of responses.

The above pairwise likelihood may improve in efficiency with respect to the

independence likelihood, at the cost of requiring correct specification of bivariate

margins both of responses and of missingness indicators. In particular, the spec-

ification of the missing data mechanism even only for pairs is a critical aspect.

Yi et al. (2009) show how to overcome this. They assume that given any pair of

responses (yij , yik) and covariates xi, the missing data process does not comprise

information on parameter β and α. With this assumption, inference can rely on

the pairwise likelihood constructed from the observed pairs of responses only,

Lpair(β, α; y) =
n∏
i=1

mi−1∏
j=1

mi∏
k=j+1

f(yij , yik|xi;β, α)rijrik ,

without requiring specification of the missing process distribution. The basic as-

sumption made by Yi et al. (2009) was implicitly used also in Parzen et al. (2007),

who thus could have avoided modelling the bivariate distribution of missingness

indicators. Note that inferences from the observed pairwise likelihood are valid

without assuming the missing at random mechanism.
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4. Properties

4.1. Introduction

The motivation for the use of any version of composite likelihood is usually

computational: to avoid computing, or in some cases modelling, the joint distri-

bution of a possibly high-dimensional response vector. This is particularly true in

applications of composite likelihood to mixed and random effects models, where

the likelihood requires integration over the distribution of the random effects, as

described in Section 3. Within this context, where composite likelihood is essen-

tially a mis-specified model, interest has often focused on the relative efficiency of

estimation from composite likelihood relative to the full likelihood. In §4.1 below

we summarize the main results on efficiency of composite likelihood estimation.

Another motivation for the use of composite likelihood is a notion of robust-

ness: in this case robustness under possible misspecification of the higher order

dimensional distributions. For example, if pairwise likelihood is used for depen-

dent binary data, it is not necessary to choose a model for joint probabilities of

triples and quadruples, and to the extent that a number of possibilities for these

could be consistent with the modelled joint probabilities of pairs, composite like-

lihood is by construction robust against these alternatives. This is a different

notion of robustness than that in robust point estimation, and closer in spirit to

the type of robustness achieved by generalized estimating equations. However,

for many high-dimensional models, it is not clear what types of higher-order joint

densities are indeed compatible with the modelled lower order marginal densities,

so it is difficult to study the robustness issue in any generality. In §4.2 below we

summarize what seems to be known about robustness in the literature.

Composite likelihood has also been used to construct joint distributions, in

settings where there are not obvious high dimensional distributions at hand. One

example of this is the area of spatial extremes, discussed in §3.2. Another is in

the use of frailty models in survival data, see for example Fiocco et al. (2009).

Another feature of composite likelihood, noted for example in Liang and

Yu (2003), is that the likelihood surface is much smoother than the full joint

likelihood, and thus easier to maximize. Renard et al. (2004) use the term com-

putational robustness; in simulations they found that pairwise likelihood is more

robust to convergence than their comparison method based on penalized quasi-
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likelihood. Computational aspects are considered in more detail in §5.

4.2 Relative efficiency

The seemingly high efficiency of composite likelihood methods in many ap-

plications has contributed to the increased interest in, and literature on, these

methods. Three possible types of efficiency comparisons are: (i) asymptotic

efficiency computed by an analytical calculation of G(θ) and comparison with

the Fisher information I(θ), (ii) estimated asymptotic efficiency using simulation

based estimates of G(θ) and I(θ), and (iii) empirical efficiency using simulation

based estimates of var(θ̂CL) and var(θ̂). The first gives the clearest interpreta-

tion, although under the model assumption of the ‘asymptotic ideal’, whereas the

third is closer to what may be achieved with finite sample sizes. A drawback of

simulation based studies is that many aspects of the model must be specified in

advance, so the relevance of the results to other, slightly different, models is not

always clear. When θ is a vector an overall summary of the comparison of G(θ)

with I(θ) can be computed using the ratio of the determinants, but more usually

the diagonal components corresponding to particular parameters of interest are

compared.

In exceptional cases pairwise likelihood estimators are fully efficient, and even

identical to the maximum likelihood estimators. Mardia et al. (2007) show that

composite conditional estimators are identical to maximum likelihood estimators

in the multivariate normal distribution with arbitrary means and covariances,

and Zi (2009) gives the same result for pairwise likelihood. Mardia et al. (2009)

provide an explanation for this, by showing that composite conditional estima-

tors are fully efficient in exponential families that have a certain closure property

under subsetting. Under further restrictions, composite marginal estimators are

also fully efficient. An interesting special case is the equi-correlated multivariate

normal distribution: a single observation vector has mean µ and covariance ma-

trix σ2{(1− ρ)I + ρ11T } where I is the identity matrix of dimension m and 1 is

an m-vector of 1’s. With µ and σ unknown, both pairwise maximum likelihood

estimators and composite conditional maximum likelihood estimators are iden-

tical to the maximum likelihood estimator. If µ is fixed the same result holds,

but if σ2 is fixed, then ρ̂CL is not fully efficient. Although this model is not

covered by the closure result of Mardia et al. (2009), they adapt their discussion
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to show why the result continues to be true. It is possible that the method of

Mardia et al. (2009) may also be adapted to explain the relatively high efficiency

of composite likelihood methods in more complex applications, at least in some

special cases. For example, while the bivariate von Mises distribution is not in

the class of exponential families treated in Mardia et al. (2009), that paper shows

that it is close to that class for most parameter values: this clarifies some results

presented in Mardia et al. (2008) on this model.

The quadratic exponential distribution was proposed as a model for mul-

tivariate binary data in Cox (1972), and as noted in Cox and Reid (2004) its

likelihood function is equal to the pairwise likelihood function for binary data

generated by a probit link. This provides a simple example where pairwise likeli-

hood has full efficiency. Two-way contingency tables also have pairwise likelihood

estimators equal to maximum likelihood estimators (Mardia et al., 2009).

Hjort and Varin (2008) also study in detail properties of composite condi-

tional and composite marginal likelihoods in a simplified class of models. In their

case they restrict attention to Markov chain models, and both theoretical anal-

ysis and detailed calculations provide strong evidence that composite marginal

likelihood inference is both efficient and robust, and preferable to composite con-

ditional likelihood inference. In their case the full likelihood is given by

`(θ) =
∑
a,b

ya,b log pa,b(θ), (4.1)

where ya,b is the number of transitions from a to b, pa,b(θ) is the stationary

transition probability function, and a, b range over the number of states in the

Markov chain. This is a curved exponential family model, so the theory of Mardia

et al. (2009) does not apply. The pairwise log-likelihood function is

c`(θ) =
∑
a,b

ya,b log pa,b(θ) +
∑
a

ya+ log pa(θ), (4.2)

where ya+ =
∑

b ya,b and pa(θ) is the equilibrium probability that the chain is in

state a. equation (4.2) is interpreted in Hjort and Varin (2008) as a penalized log-

likelihood, with a penalty function that is targetted on matching the equilibrium

distribution. This provides a different explanation of the efficiency and robustness

of pairwise likelihood inference.
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The papers by Mardia et al. (2009) and Hjort and Varin (2008) seek to

establish some general results about composite likelihood, albeit in relatively

specialized settings. The rest of the literature that we have reviewed on composite

likelihood is typically concerned with comparisons in particular models motivated

by applications. In the paragraphs below we highlight recent work on efficiency

that seems to us to be particularly useful.

In models for clustered data, where observations yij , j = 1, . . . , ni within the

ith cluster are correlated, asymptotic relative efficiency can often be assessed by

obtaining analytical expressions for G(θ) and J(θ). Within this context, extensive

studies of asymptotic relative efficiency are available, and there is also a litera-

ture on the choice of weights, usually related to cluster size, for achieving optimal

efficiency. Joe and Lee (2009) investigate the choice of weights for clustered data

in detail, and show that the best choice of weights depends on the strength of the

dependence within clusters. The models investigated analytically are the multi-

variate normal, where direct comparisons to the maximum likelihood estimator

can be made, and the multivariate binary, created by dichotomizing multivariate

normal observations. The weights 1/(ni − 1), recommended in Kuk and Nott

(2000), LeCessie and van (1994) and Zhao and Joe (2005), are suitable for the

limiting case of independence within clusters, but the weights 1/{ni(ni− 1)} are

optimal for very strong dependence. A compromise suggested in Joe and Lee

(2009) is 1/[(ni− 1){1 + 0.5(ni− 1)}], which works well for a range of parameter

values and models. Most applications to date however have used the simpler

weights 1/(ni− 1). Joe and Lee (2009) also show that the best choice of weights

depends on which parameter is to be estimated, providing further detail on the

earlier results of Kuk and Nott (2000) and others that unweighted pairwise like-

lihood can be preferable for inference about the association parameters, whereas

weighting improves on the estimation of the parameters in the mean.

When modelling clustered data the parameters in the one-dimensional mar-

gins are usually regression coefficients and variances, and the association param-

eters only appear in the two-dimensional margins. This suggests using separate

approaches for inference on these two sets of parameters, and several suggestions

along these lines have appeared in various contexts. Zhao and Joe (2005) explores

using the independence likelihood for the marginal parameters and pairwise like-
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lihood for the association parameters, although in most cases the full pairwise

likelihood method turns out to be more efficient. Kuk (2007) suggests a quite

promising hybrid method that uses optimal score functions for the marginal pa-

rameters, and pairwise likelihood for the association parameters, regarded as

nuisance parameters. This hybrid method is shown to be related to, but better

than, alternating logistic regression (Carey et al., 2003), and is illustrated on or-

dinal count data, as well as negative binomial count data; the latter application

is also treated in Henderson and Shimakura (2003). For further discussion of this

approach see Varin (2008).

The same data structure yij , j = 1, . . . , ni may arise as longitudinal data,

in which case serial dependence of the observations is usually part of the model.

In this case the inferential problem is more similar to time series analysis, with

the difference that longitudinal data is typically n independent short time series,

rather than a single long time series. Asymptotic efficiency for longitudinal data

is studied analytically in Joe and Lee (2009), where again a two stage method

is compared to pairwise likelihood. The weighting schemes typically proposed

in time series analysis downweight observations that are far apart in time, and

Joe and Lee (2009) find that choosing weights so that the pairwise likelihood is

constructed only from adjacent pairs is preferable to the full pairwise likelihood

involving all possible pairs in the sequence.

For time series models both marginal and conditional composite likelihoods

have been proposed, with a possible weighting scheme chosen to downweight

observations that are far apart in time. Explicit comparison of the simulation

variance for composite marginal likelihood of different orders is illustrated in

Varin and Vidoni (2006), where again it is shown that including too distant

observations in the composite marginal formulation can lead to a loss of efficiency.

Simulations of non-stationary time series are presented in a particular model for

ecology in Lele (2006), where the pairwise likelihood is shown to be more efficient

than the independence likelihood.

There are a number of investigations of asymptotic relative efficiency for

clustered and longitudinal data that rely on simulations, rather than analytical

calculations of the asymptotic variances. Such studies can consider more com-

plex models for marginal and association parameters, but it is difficult to gain
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an overall picture of the results. Examples of simulation studies that show high

relative efficiency for pairwise likelihood in binary data include Renard et al.

(2002), Renard et al. (2004), Fieuws and Verbeke (2006) and Feddag and Bacci

(2009). The last paper considers a multidimensional Rasch model proposed for

longitudinal studies in item response theory. In all these papers pairwise like-

lihood has good simulation-based efficiency relative to inference based on the

full likelihood function, or in some cases approximations to it, but there is likely

to be a statistical ‘file-drawer’ problem, in that situations for which composite

likelihood performs poorly are perhaps unlikely to be published, at least until a

method can be developed that seems to work well.

Sparse clustered binary data may arise in finely stratified studies, and two

versions of composite likelihood are suggested in Hanfelt (2004) and in Wang and

Williamson (2005), using Liang (1987)’s composite conditional likelihood (2.3).

Simulations in Wang and Williamson (2005) compare composite likelihood es-

timators of marginal and association parameters to estimators derived from an

estimating equations approach. The two methods have comparable efficiency;

the authors note that the composite likelihood equations for the association pa-

rameters very often have multiple roots, which makes numerical work based on

composite likelihood rather difficult in this setting. It would be useful to have

an explanation for this, as most authors who comment on numerical aspects of

composite likelihood estimation report that composite likelihood functions are

well-behaved and relatively easy to maximize.

In the approach of Hanfelt (2004) to sparse binary data there are an increas-

ing number of nuisance parameters, and an adaptation of the estimating equation

for the association parameter derived from the composite conditional likelihood is

needed. Hjort and Varin (2008) note that in the Neyman-Scott model of several

normal groups with common mean but separate variances the pairwise likelihood

based on differences gives consistent inference for the common variance, even as

the number of groups increases. Composite likelihood inference with very large

numbers of nuisance parameters is also considered in Engle et al. (2009) and

Pakel et al. (2009).

Heagerty and Lele (1998) proposed the use of pairwise likelihood in spatial

binary data generated through a multivariate probit model. Limited simulations
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there suggest that the pairwise likelihood estimator is efficient for estimating

parameters in the mean, but somewhat less efficient in estimation of variance

parameters. See Bhat, Sener and Eluru (2009) for an extension to regression

analysis of spatially correlated ordinal responses. A general approach to spatial

generalized linear mixed models is presented in Varin et al. (2005), and simu-

lations are presented showing that pairwise likelihood inference for both mean

and variance parameters in a Poisson random effects model had high efficiency

relative to full maximum likelihood. Several computational issues arise in fitting

pairwise and full log-likelihoods in spatial generalized linear mixed models and

the authors describe an EM-type algorithm; see Section 5.

Caragea and Smith (2007) used analytical calculations of asymptotic effi-

ciency, as well as simulations, to choose among three possible composite likeli-

hood approaches for Gaussian random fields, as described in §3.1 above. Their

conclusions were broadly that a method that uses groups of nearby observations

(“small blocks”) is more efficient than a version closer to independence likelihood,

and that for estimating regression parameters a hybrid method was slightly bet-

ter. Simulations of spatial point processes presented in Guan (2006) show that

adaptive estimation the weights assigned to the likelihood of each pair can be

effective.

While most simulation studies show that some version of composite likelihood

has high efficiency, a warning is presented in Oliveira (2004), where a new spatial

model for rainfall is proposed. This model is based on a mixture of discrete

and continuous spatial processes, to represent both the occurrence and amount

of rainfall, and it is noted that simulations indicate very poor performance of

pairwise likelihood for estimating parameters in the spatial correlation functions.

Simulation efficiency of pairwise likelihood in general state space models is

considered in Varin and Vidoni (2009) and Joe and Lee (2009), and Andrieu

et al. (2005) develop a version of composite likelihood adapted to sequential

Monte Carlo inference.

4.3 Robustness

Many authors refer to composite likelihood inference as robust, because com-

posite likelihood requires only model assumptions on the lower dimensional con-

ditional or marginal densities, and not detailed specification of the full joint
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distribution. Thus if there are several joint distributions with the same lower

dimensional marginal or conditional distributions, the inference will be the same

for all members of that family. There are rather few papers investigating ro-

bustness in more detail, usually through simulations from a mis-specified model.

For example, Lele and Taper (2002) investigated the behaviour of θ̂CL from the

likelihood based on pairwise differences, (2.8), in their case a one-way random

effects model, first assuming normality for the distribution of the random effects,

and then simulating the random effects under non-normal distributions. They

concluded that composite likelihood estimators and restricted maximum likeli-

hood (REML) estimators of variance components behaved similarly under model

misspecification. The REML likelihood is the likelihood function for the marginal

distribution of the residuals, which for normal theory models is the same as the

likelihood based on pairwise differences, so may be very close to (2.8) in the mod-

els that Lele and Taper (2002) studied. Wang and Williamson (2005) present

simulations of sparse clustered binary data, under a model for which the cor-

relation structure is misspecified, and their results also indicate that composite

likelihood methods continue to have high efficiency.

In longitudinal data analysis it is not unusual to have missing observations,

and modelling this can be important for valid inferences. This is considered in

detail in Parzen et al. (2007), and again in Yi et al. (2009), as discussed in Section

3.4 above. The fact that some versions of composite likelihood are indeed robust

to the specification of the missing data mechanism is another very attractive

feature of composite likelihood.

The inverse of the Godambe information, G(θ), is often called the robust

variance estimate, as it is computed under the assumption that the model is mis-

specified, and composite likelihood models are by definition misspecified. How-

ever the use of G−1(θ) as a variance estimator does not guarantee, for example,

that the composite likelihood estimator will have high efficiency under a range

of models consistent with the composite likelihood; these need to be investigated

on their own merits.

Liang and Qin (2000) use a specialized version of composite conditional like-

lihood for a number of non-standard regression models, where modelling of the

distribution of the explanatory variables may be needed. Their simulations ad-
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dress robustness to misspecification of this aspect of the modelling, noting that

the composite maximum likelihood estimator continues to have small bias, but

somewhat larger variance, under this misspecification.

Finally, Kent (1982) called the log-likelihood ratio statistic W robust if its

asymptotic distribution was χ2
p, rather than the more complex form given after

(2.13), and discussed a special class of exponential family models that guaranteed

this result; this line of argument is developed further in Mardia et al. (2009).

4.4 Identifiability

It is not clear whether or not composite likelihood methods give meaningful

results if there is no joint distribution compatible with the component densi-

ties used to construct the composite likelihood. In the case that the composite

likelihood is constructed from conditional distributions, the Hammersley-Clifford

theorem specifies when there is a genuine joint distribution consistent with these

conditional distributions, and this was used in Besag (1974) in his development

of pseudo-likelihood for spatial data. This issue is pursued in Wang and Ip

(2008), where the key notion of interactions is defined, and their role in ensuring

the compatibility of conditional and joint distributions is emphasized; see also

Arnold et al. (2001).

There is not an analogous result for composite marginal likelihood, although

there is likely to be a connection to the theory of construction of joint distribu-

tions using copulas. Several papers on the use of composite marginal likelihood

use a copula construction (Bhat, Sener and Eluru, 2009; Tibaldi et al., 2004; An-

dersen, 2004) but many applications of composite marginal likelihood do not. For

example, the development of composite likelihood for spatial extremes described

in §3.2 uses pairwise marginals as a proxy for a genuine joint distribution.

However we may consider the composite Kullback-Leibler divergence,

CKL(g, f ; θ) =
K∑
k=1

wkEg {log g(y ∈ Ak)− log f(y ∈ Ak; θ)} , (4.3)

consisting of the linear combination of the Kullback-Leibler divergences for each

term of the composite likelihood. Under some regularity conditions the max-

imum composite likelihood estimator θ̂CL will be consistent for the parameter

value minimizing CKL, and inference about this pseudo-parameter may be of

useful for particular applications. We could also view the estimating equation
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from the composite likelihood as a reasonable specification of knowledge about

parameters of lower dimensional marginal distributions, in the spirit of general-

ized estimating equations; see Varin (2008). This might be especially true for

estimating parameters in the mean function.

Joe and Lee (2009) notes in passing that unless the component likelihoods

in a composite likelihood construction are “rich enough to identify the param-

eter”, the composite likelihood estimator will not be consistent. Presumably if

a full joint distribution exists in which the parameters of the components are

(subvectors of the) parameters of the full joint distribution this guarantees iden-

tifiability. However it is seems possible that the parameters of the component

densities could be identifiable under weaker conditions.

In the approach outlined in §3.3.3, each component marginal density has its

own parameter θrs, say, and the estimator used for the notional parameter θ of

interest is a linear combination of the pairwise estimators θ̂rs. The connection of

this to identifiability of joint densities is not clear.

5. Computational aspects

5.1. Standard errors

Standard errors and confidence interval computation require the estimation

of the Godambe matrix and its components. Again, it is useful to distinguish

between the case of n large with m fixed, and vice-versa. The first case is simpler

with easily computed sample estimates of the sensitivity and variability matrices.

The sample estimate of the sensitivity matrix is given by

Ĥ(θ) = − 1
n

n∑
i=1

∇u(θ̂CL; yi)

where u(θ; yi) = ∇c`(θ; yi). Computation of Hessians can be avoided by exploiting

the second Bartlett identity, which remains valid for each individual likelihood

term forming the composite likelihood. This yields the alternative estimate

Ĥ(θ) =
1
n

n∑
i=1

m∑
j=1

u(θ̂CL; yij)u(θ̂CL; yij)T.

The sample estimate of the variability matrix is expressed by the outer product
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of the composite scores computed at θ̂CL,

Ĵ(θ) =
1
n

n∑
i=1

u(θ̂CL; yi)u(θ̂CL; yi)T.

The above empirical estimates of H and J may be imprecise when n is not suf-

ficiently large compared to the dimension of θ. This is well known in the longi-

tudinal literature where resampling methods, such as jackknife or bootstrap, are

often used to obtain more robust estimates of the covariance matrix of θ̂CL; see

for example Lipsitz et al. (1994). The jackknife covariance matrix is given by

varjack(θ̂CL) =
n− 1
n

n∑
i=1

(θ̂(−i)
CL − θ̂CL)(θ̂(−i)

CL − θ̂CL)T,

where θ̂(−i)
CL is the composite likelihood estimator of θ with yi deleted. Zhao and

Joe (2005) use varjack for estimation of the standard errors of maximum pairwise

likelihood estimators with clustered data. A further possible advantage of the

jackknife method is the possibility to obtain an approximate bias correction of

θ̂CL.

In certain applications the computation of the set of θ̂(−i)
CL can be excessively

expensive, and then it may be convenient to consider a first order approximation

where θ̂(−i)
CL is approximated with a single step of the Newton-Raphson algorithm.

More difficult is the case of m large when n is fixed, with the extreme sit-

uation of n = 1 when a single time-series or spatial process is observed. While

the sample estimate of the sensitivity matrix H has the usual form, difficulties

arise for the variability matrix J. A sample estimate of the latter is possible only

if the data can be grouped into pseudo-independent replicates. Considering a

temporal or spatial process with good mixing properties, a sample estimate of J

can be obtained by splitting the region under study into subregions treated as

approximately independent:

Ĵws(θ) =
1
k

k∑
i=1

|Si|u(θ̂CL; y ∈ Si)u(θ̂CL; y ∈ Si)T,

where S1, . . . ,Sk are k possibly overlapping subregions and |A| denotes the di-

mension of set A. Heagerty and Lele (1998) term this method window subsam-

pling and use it for pairwise likelihood inference with spatial binary data. For
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more details and guidance on the choice of the subregions, we refer to Lumley

and Heagerty (1999).

When conditions for ensuring the validity of window subsamping or other

empirical estimates are not satisfied, estimation of J must be done under model

assumptions. In certain contexts, it may be possible to compute J explicitly.

For example, in the case of the pairwise likelihood, model-based estimation of

J typically requires computation of four-dimensional expectations. More often

Monte Carlo simulations are necessary either by estimating the J matrix with

Ĵmc(θ) =
1
B

B∑
i=1

u(θ̂CL; y(b))u(θ̂CL; y(b))T,

where y(1), . . . , y(B) are independent draws from the fitted model, or by direct

estimation of the covariance matrix of θ̂CL from repeated fitting of simulated

data.

5.2 Composite likelihood Expectation-Maximization algorithm

The expectation-maximization (Dempster et al., 1977; EM) algorithm and

its variants are popular methods to obtain maximum likelihood estimates in

a number of situations. Examples include missing data, censored data, latent

variables, finite mixture models, and hidden Markov models. See McLachlan

and Krishnan (2008) for a book length exposition.

The EM algorithm can be straightforwardly extended to maximization of

composite likelihoods. This can be useful for models where the expectation step

involves high-dimensional integration, thus making impractical the use of a stan-

dard EM algorithm. The first example of the use of a composite EM algorithm

seems to be the pairwise EM algorithm proposed by Liang and Yu (2003) in

network tomography, see also Castro et al. (2004). Varin et al. (2005) consider

an approximate version of the same algorithm for inference in spatial generalized

linear mixed models discussed in §3.4. Gao and Song (2009b) discussed properties

of a general composite marginal likelihood EM algorithm and gives an illustra-

tion of the pairwise version for multivariate hidden Markov models applied to

time-course microarray data.

Here we briefly summarize only the pairwise EM algorithm. Let x1, . . . , xm

be the complete data and y1, . . . , ym the observed data. Denote by θ(0) a starting

value for θ. Given θ(k), the pairwise EM algorithm iterate at step k, the following
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iterate θ(k+1) is the value such that

Q(θ(k+1)|θ(k)) ≥ Q(θ|θ(k)), for any θ ∈ Θ,

where Q(θ|θ(k)) is the sum of bivariate conditional probabilities

Q(θ|θ(k)) =
m−1∑
r=1

m∑
s=r+1

wr,sE{log f(xr, xs; θ)|yr, ys; θ(k−1)}.

As shown in detail by Gao and Song (2009b), it is easy to prove that this algorithm

shares the three key properties of standard EM algorithms, namely (i) the ascent

property

Lpair(θ(k+1); y) ≥ Lpair(θ(k); y), k = 1, 2, . . .

(ii) convergence to a stationary point of the objective function and (iii) conver-

gence rate depending on the curvature of the objective function.

5.3 Low-dimensional integration versus high-dimensional integration

In many applications, the motivation for composite likelihood inference is to

substitute awkward high-dimensional integration involved in full likelihoods with

low-dimensional integrals. The latter can often be computed with accurate de-

terministic quadrature rules. For example, Bellio and Varin (2005) approximate

integrals involved in logistic regression models with random effects using normal

scale mixtures and bivariate quadrature rules.

In contrast, high-dimensional integrals typically require Monte Carlo sim-

ulation methods with various potential difficulties. First , the computational

time may be too large for practical purposes. Secondly, the simulation error may

be substantial and difficult to evaluate, making the optimization of the approxi-

mated likelihood troublesome. A third reason for concern regards reproducibility

of results, especially for a non-technical audience.

A possible advantage of simulated maximum likelihood versus composite like-

lihood methods is the possibility to base inference on the standard asymptotic

results, without the need to compute the more difficult Godambe information

or to modify the chi-squared distribution of the likelihood ratio test. However,

some authors suggest the use of the Godambe information also for simulated

maximum likelihood to take into account the simulation error due to the use of

a finite number of draws; see for example McFadden and Train (2000). Thus,
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the potential simplicity of maximum likelihood inference is lost when using sim-

ulations to approximate the likelihood. For a comparison between simulated

maximum likelihood based on quasi-Monte Carlo rules and pairwise likelihood

for ordinal probit models see Bhat, Varin and Ferdous (2009).

6. Relations with other approaches

In many applications of marginal or conditional composite likelihood, the ap-

proach of generalized estimating equations originated in Liang and Zeger (1986)

is a natural alternative. This approach defines an estimating equation through

a model for the mean, and accommodates correlation among observations, and

non-homogeneous variances, by weighting the estimating equation appropriately.

Liang and Zeger (1986) showed that as long as the estimating equation for the

mean is correctly specified, the resulting estimator will be consistent, and sug-

gested using a working covariance matrix to this end. Many refinements have

since been suggested, and the method is very convenient for semi-parametric

modelling of complex data. A possible drawback of the method is that there is

no objective function, which can be useful for comparing multiple roots of the

estimating equation. For clustered binary data Molenberghs and Verbeke (2005,

Ch. 9) give a detailed comparison of the estimating equations from pairwise like-

lihood, with weight 1/(ni−1) for clusters of size ni, to two versions of generalized

estimating equations, GEE1 and GEE2, where the latter requires modelling of

the first four moments of the data, and argue that pairwise likelihood is a com-

promise between the two, with computational complexity similar to GEE1, but

efficiency closer to GEE2.

Many of the more complex applications of composite likelihood, particularly

in longitudinal or clustered data, provide comparisons using simulation studies

to some type of estimating equation, usually a generalized estimating equation;

see for example Geys et al. (2001), Hanfelt (2004), and Zhao and Ma (2009).

Hybrid methods that combine features of composite likelihood with generalized

estimating equations, as in Kuk (2007) seem quite promising. In the other di-

rection, Oman et al. (2007) used a generalized estimating equation approach to

simplify the computation of pairwise likelihood.

In its most general form composite likelihood encompasses many types of

likelihood-like functions suggested in the statistical literature, including partial
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likelihood for censored survival data and its many extensions, as well as nonpara-

metric likelihoods for counting processes. For example, Wellner and Zhang (2007)

and Wellner and Zhang (2000) propose non-parametric and semi-parametric es-

timators for panel count data using an independence likelihood, and Andersen

(2004) uses pairwise likelihood in the proportional hazards model. Other exten-

sions to likelihood composition include the weighted likelihood of Zidek and Hu

(1997) and the partitioning of likelihood for maximization by parts in Kalbfleisch

et al. (2005).
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