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Assessing Sensitivity to Priors
Using Higher Order Approximations
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Higher order likelihood methods lead to an easily implemented and highly accurate
approximation to both joint and marginal posterior distributions. This makes it quite
straightforward to assess the influence of the prior, and to assess the effect of
changing priors, on the posterior quantiles. We discuss this in the light of some
simple examples that illustrate in concrete form the potential for marginal posterior
densities from seemingly uninformative priors to be poorly calibrated.

Keywords Bayesian inference; Laplace approximation; Matching priors;
Posterior quantiles; p-Values.
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1. Introduction

We consider inference in parametric models based on the likelihood function. While
inference in a scalar parameter model is relatively straightforward, the incorporation
of nuisance parameters can make non-Bayesian inference more complicated. In
particular, it can be difficult to find a marginal or conditional likelihood function
that depends only on the parameter of interest and yet retains all the information
in the data. Bayesian inference is, in principle, much simpler, as the posterior
marginal distribution of the parameter of interest is taken to provide a complete
summary of the evidence in the data (and prior) about this parameter. Although
high-dimensional integration may be needed to compute this marginal posterior
distribution, this is a computational problem that has largely been solved by the
development of Markov chain Monte Carlo (MCMC) methods, which are now very
widely used in applications of Bayesian inference. Very accurate approximations,
based on the Laplace expansion of the posterior, can also be used to bypass needed
high-dimensional integrals.
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1374 Reid and Sun

Thus, given a model, the main difficulty is the choice of a prior density, and
this is arguably increasingly difficult as the dimension of the parameter increases.
One approach to constructing priors is to use posterior distributions from earlier
related experiments or data sets: this may be quite useful in repeated applications of
similar inference, such as might arise in on-line quality control experiments. A quite
different approach is the elicitation of subjective priors, from an expert or group
of experts, using systematic methods to construct priors that are consistent and
capture the main features of prior opinions in the form of a probability distribution.
This might be quite useful in certain decision-making contexts, particularly if the
subjectivity involved is not an issue.

In many scientific contexts, however, these two approaches may be either not
available or satisfactory, and some more ad hoc approach is needed. Development
of classes of priors variously called objective, noninformative, vague, and so on has
been considered. The general idea is to construct a somewhat arbitrary prior using a
rule that can be expected to give good posterior inference. A good posterior density
will be, first, a proper posterior, i.e., a density that integrates to 1, and proper
posteriors can often result from improper priors. Beyond that requirement there
does not seem to be a consensus on the meaning of good. One approach that is
rather well developed is the approach of reference posteriors developed by Berger
and Bernardo (1992). Very roughly speaking, a reference posterior is constructed
from a prior that maximizes the Kullback–Liebler distance from the prior to the
posterior; the prior that achieves this is called a reference prior. Another approach,
developed by Welch and Peers (1963), is to find a prior that leads to posterior
quantiles that are also confidence bounds under the model, either exactly or to
a high order of approximation. Such priors are usually called matching priors in
the literature. A survey of matching priors is given in Datta and Mukerjee (2004).
Approaches based on information distances are discussed in Clarke and Wasserman
(1995).

All these approaches have the distinct drawback that in a multi-parameter
model, the prior needs to be targeted on the parameter of interest, and different
priors for the full parameter are needed, depending on which parameter is of
interest. This targeting seems to be unavoidable and is related to the marginalization
paradox of Dawid et al. (1973). An exception to this requirement of targeting arises
in the location-scale model, where, as Peers (1965) pointed out, the conditions for
matching are satisfied simultaneously for both location and scale parameters. Peers
(1965) provided a condition under which this may be expected to hold. The practical
consequence of this is that a single prior for a vector parameter may not provide
well-calibrated inference for a particular parameter of interest. Alternatively, if the
inference is well calibrated for one parameter, it may not be for another. (We use
the term well-calibrated interchangeably with probability matching, to mean that
the probability associated with the posterior marginal distribution function has an
interpretation as a p-value in repeated sampling from the model.) This is well known
in the literature on the development of noninformative or objective priors but often
seems to be overlooked or ignored in applied work, where it is very common to
assign a flat prior to a vector parameter and proceed to marginalize to various
parameters of interest. A recent example is Gelman et al. (2007).

In this article we illustrate aspects of this lack of calibration on some relatively
simple and well-studied examples. We also show that higher order approximations
are a very quick and accurate method for computing posterior distribution functions
and for checking the sensitivity of the posterior to the choice of prior.
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Sensitivity to Priors 1375

In Sec. 2 we present the higher order approximation to the marginal posterior
distribution function and briefly describe its derivation. In Sec. 3 we study in detail
the simple, but instructive, example of inference for the length of the mean vector
of a multivariate normal. In Sec. 4 we present two logistic regression examples. We
find that the marginal posterior distribution of the ED50 in simple logistic regression
is not well calibrated when flat priors are used for the regression coefficients. We
conclude with a brief discussion.

2. Approximate Posterior Distributions

Let Y = �Y1� � � � � Yn� be a random vector of independent, identically distributed
observations from a density f�y � ��, where � = ��1� � � � � �k�

′ is a vector of unknown
parameters, and Yi is a scalar random variable. We write ���� y� = log f�y� �� for the
log-likelihood function based on the sample y = �y1� � � � � yn� and denote by �̂ the
maximum likelihood estimate, assumed to be obtained by solving the score equation

����� y�/�� = 0�

The observed Fisher information function is denoted by j��� = −�2���� y�/�� ��′;
it is a k× k matrix, and the dependence on y is suppressed in the notation. The
expected Fisher information is i��� = E	j���
, where the expectation is under the
model f�y� ��. The matrix i��� is O�n�, and j��� is Op�n�, in i.i.d. sampling. Finally,
we denote the prior by ����, and the posterior by ��� � y�:

��� � y� = exp	���� y�
����∫
exp	���� y�
����d�

� (1)

Often the normalizing constant for the posterior need not be computed explicitly,
as the inference depends on ratios of the posterior at different values of �.

For inference about component parameters we use the general notation � =
��� �, where � is the parameter of interest, usually scalar, and  is a nuisance
parameter. It is convenient to consider � as a component of �, although this is not
strictly necessary and may instead represent a constraint on �. Inference about � is
based on the marginal posterior density

�m�� � y� =
∫
exp	���� y�
����d∫
exp	���� y�
����d�

� (2)

Exact integration of the numerator is rarely possible and difficult to compute
numerically if the dimension of  is greater than about 3. Markov chain Monte
Carlo methods bypass this integration by obtaining samples from �m�� � y� using
simulation techniques.

When � is a scalar, Laplace approximation of integrals in (1) and (2) leads to
the following approximations (Tierney and Kadane, 1986):

��� � y� �= 1√
�2��k/2

exp	����− ���̂�
�j��̂��1/2 ����
���̂�

(3)
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1376 Reid and Sun

and

�m�� � y� �= 1√
�2��

exp	���̂��− ���̂�

�j��̂��1/2

�j��̂���1/2
���̂��

���̂�
� (4)

In (4) we have used the notation �̂� = ��� ̂��, where ̂� is the constrained maximum
likelihood estimate of  for fixed �, assumed to satisfy the equation �����/� = 0.
The function �p��� = ���̂�� is usually called the profile log-likelihood and sometimes
the concentrated log-likelihood. The Fisher information function is partitioned
according to the partition of � as

j��� =
(
j����� j����

j���� j���

)
� (5)

It is shown in Tierney and Kadane (1986) that the relative error in (4) is
O�n−3/2� even though the relative errors in the approximations of the numerator
and the denominator are just O�n−1�, because the constrained maximum likelihood
estimator ̂� is within Op�n

−1/2� of the full maximum likelihood estimator ̂ for �
within a

√
n neighborhood of �.

For inference about � it is more useful to have an expression for the cumulative
distribution function. First, if � is scalar, then

Pr�� ≤ � � y� �= ��r∗B� = �

(
r + 1

r
log

qB
r

)
(6)

r = sign�qB��2	���̂�− ����
�1/2 (7)

qB = −�′���j−1/2��̂�
���̂�

����
�

For a scalar parameter of interest � with nuisance parameter  we have

Pr�� ≤ � � y� �= ��r∗B� (8)

r = sign�qB��2	���̂�− ���̂��
�
1/2 (9)

qB = −�′p���j
−1/2
p ��̂�

�j��̂���1/2
�j��̂��1/2

���̂�

���̂��
� (10)

where r∗B is defined by (6). Note that qB takes the form of a score statistic, modified by
the prior ratio, and that r is the signed square root of the log-likelihood ratio statistic.

Approximations (6) and (8) have relative error O�n−3/2� for � in√
n-neighborhoods of �̂, and are often called r∗ approximations. The form given

here is originally due to Barndorff-Nielsen (1986, 1990) in a non-Bayesian context
and can be shown to be asymptotically equivalent to the Lugannani and Rice
(1980) version:

��r∗B�
�= ��r�+ ��r�

(
1
r
− 1

qB

)
� (11)

neither version seems to dominate the other in terms of numerical properties, but r∗B
is a convenient expression of an asymptotically pivotal statistic.
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Sensitivity to Priors 1377

The derivation of (6) from (3) involves changing the variable of integration
from � to r and then expressing the integrand as exp�−r∗2B /2� by exponentiating
the differential times the prior and completing the square. The derivation
of the Bayesian marginal posterior in the form given by (11) is due
to DiCiccio and Martin (1991). Several textbook treatments are now available; for
example, in Barndorff-Nielsen and Cox (1994, chap. 6), Severini (2000, chap. 7),
and Brazzale et al. (2007, chap. 8).

We can easily compare these approximate marginal posteriors under two
different priors, �1 and �2, say, as the only effect is through the prior ratio in qB.
Thus, for example,

r∗B��1 − r∗B��2 =
1
r
log

(
qB��1
qB��2

)
= 1

r

{
log

�1��̂�

�1��̂��
− log

�2��̂�

�2��̂��

}
� (12)

We will use (12) to compare priors in Sec. 4.

3. Normal Circle

In this section we study in detail a simple model for which exact calculations
are straightforward. This serves to illustrate several aspects of noninformative and
objective priors. Assume that y ∼ N��� I/n� follows a k× 1 multivariate normal
density, where I is the k× k identity matrix. The factor 1/n is used to distinguish the
sample size from the dimension of the parameter space; in the asymptotic theory k is
fixed and n → �. We suppose that the scalar parameter of interest is the length of �:

� = 	�	 = ��2
1 + · · · + �2

k�
1/2�

If we use the (improper) joint prior ����d� ∝ d�, a flat prior for the vector of
means, the marginal posterior for � is proper and can be computed exactly from
the noncentral �2 distribution:

Prm�� ≥ � � y� = Pr	�2k�n	y	2� ≥ n�2
� (13)

The r∗ approximation to this is also easily computed using (8)–(10) and is given by
��r∗B�, where

r∗B = √
n��̂− ��+ 1√

n��̂− ��
log

{(
�̂

�

)�k−1�/2}
(14)

and �̂ = 	y	 is the maximum likelihood estimate of �.
This approximation is extremely accurate; in Fig. 1 the difference between the

exact and approximate values is not visible. As a result we provide a small numerical
comparison in Table 1. The accuracy of the approximation does not appear to
degrade substantially with increasing numbers of nuisance parameters.

However, although the r∗B approximation is very close to the exact
noncentral �2, both probabilities give the wrong answer for this problem, in the
sense that the posterior quantiles at level � given by these formulas are not �-level
confidence bounds under the model. For this model there is an exact solution based
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1378 Reid and Sun

Figure 1. Exact and approximate p-value function and survivor function for �, for n = 1,
�̂ = 5, and k = 2� 5� 10. The normal approximation to r = √

n��̂− �� is the solid line in the
center. The three Bayesian marginal survivor functions are above this curve, and the three
frequentist p-value functions are below this curve.

on the marginal likelihood of �̂ = 	y	, which depends only on � and is also given
by the noncentral �2 distribution:

Prm��̂ ≥ �̂� = Pr	�2k�n�
2� ≥ n	Y	2
� (15)

This can also be approximated by a frequentist version of the r∗ approximation
��r∗F �, where

r∗F = √
n��̂− ��− 1√

n��̂− ��
log

{(
�̂

�

)�k−1�/2}
� (16)

The exact and approximate p-value functions given by these approximations are
also illustrated in Fig. 1. General formulas for r∗F are given in Brazzale et al. (2007,
chaps. 2 and 8). This suggests that the Bayesian confidence limits at the usual
�-levels will systematically uncover the true value; i.e., the true confidence level of
a 1− � posterior confidence limit will be less than 1− �, which can be verified by
evaluating (15) or (16) using quantiles obtained using (13) or (14).

Table 1
Comparison of the approximate survivor function for �, based on (8) with the

exact value based on the noncentral �2 distribution; n = 1, �̂ = 5

k Exact 0.99 0.95 0.75 0.5 0.25 0.05 0.01

5 0.9898 0.9495 0.7491 0.4991 0.2494 0.0499 0.00997
10 ��r∗B� 0.9897 0.9493 0.7486 0.4987 0.2494 0.0498 0.00997
20 0.9899 0.9500 0.7506 0.5012 0.2511 0.0504 0.01012
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Sensitivity to Priors 1379

The poor behavior of the flat prior ����d� ∝ d� for inference about 	�	 was
pointed out by Stein (1959) in the context of point estimation and is discussed in
Cox and Hinkley (1974, chap. 2), also in this context. It is also an example of
the marginalization paradox of Dawid et al. (1973). If we noted at the outset that
	y	 has a distribution only depending on �, then we could consider constructing
a posterior density based on 	y	 and using the marginal prior

∫
����d�, where the

integral is over the set of � with fixed length. This prior,

���� ∝ 	�	−�k−1�� (17)

is also the matching prior, in the sense of Peers (1965) and Tibshirani (1989), and
the reference prior, as discussed in Datta and Ghosh (1995). The marginalization
paradox arises because the marginal posterior obtained from the flat prior for the
full parameter is not consistent with the marginal posterior obtained this way.
A general discussion of reference priors for noncentrality parameters is given in
Berger et al. (1998).

We can see from (16) and (14) that, to order O�n−3/2�, using the prior (17) will
recover the formula for r∗F from that of r∗B. We can also use these expressions to
note that

r∗B − r∗F = k− 1√
n��̂− ��

log
(
�̂

�

)
= k− 1

�
√
n
+ O�n−1� (18)

in
√
n neighborhoods of �̂, from which we can see that the discrepancy is increasing

in k and decreasing with n, as we would expect.
Using the flat prior for � is clearly informative for the parameter � = 	�	, and

this example is simple enough that the choice ����d� ∝ d� is obviously poor. In
more complex models this is not always so clear. For example, Cox and Hinkley
(1974, chap. 10) discussed the following exponential regression example due to
Mitchell (1967): Yi ∼ N��i� �

2� where

�i = �0 + �1�
x0+ja

where x0 and a are known. The prior ���0� �1�� �� ∝ d�0d�1d log �d� for 0 ≤ � ≤ 1
leads to a marginal posterior for � that is improper, with unbounded spikes of mass
at the two points 0 and 1. Improper posteriors are usually taken in Bayesian work to
invalidate the prior, so from this point of view one could say that this prior would
never be used. However, one could readily construct a very close approximation to
this behavior through a slightly modified prior leading to a proper posterior.

It might be argued that in the context of the normal circle problem a flat prior
would not normally be used. In the next section we consider for the normal circle
example how to use (12) to check the sensitivity of the marginal posterior to the
choice of prior.

4. Checking Sensitivity to Priors

Suppose in the normal circle model we use instead a conjugate prior, say an
independence prior with

�i ∼ N�0� �2�� i = 1� � � � � k
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1380 Reid and Sun

and �2 assumed known. To assess the effect on the posterior, at least to O�n−3/2�,
we need only compute the prior ratio ���̂�/���̂��, which reduces to

���̂�

���̂��
= exp

{
− 1
2�2

��̂2 − �2�

}
(19)

where �̂ = �
∑

y2i �
1/2. The posterior based on this prior is plotted in Fig. 2(a) for

several choices of �2; as �2 → �, the posterior approaches that given by (13) as
expected. However, to duplicate the matching or reference prior we would need to
take the rather odd choice �2 = ��̂2 − �2�/	2�k− 1� log��̂/��
.

Figure 2. Comparison of the log-prior ratio log	���̂�/���̂��
 with that based on the
reference, or matching, prior ���� ∝ �−�k−1�, for �̂ = 5 and k = 10. (a) Independent N�0� �2�
prior for �i; (b) prior (20) with �2 = 4; (c) inverse gamma prior for �2, as at (21).
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Sensitivity to Priors 1381

It seems plausible, and is often argued, that the influence of the prior can be
decreased by using hierarchical priors. In this context we might, for example, use
the hierarchy

�i ∼ N�a� �2�� i = 1� � � � � k
(20)

a ∼ N�0� �2��

this leads to the prior ratio

���̂�

���̂��
= exp

{
− 1
2�2

��̂2 − �2�
k− 1
k

}
�

if we take � → �, which gives a very minor difference from the simple prior above.
In computing this ratio we have assumed that the observed data is �y1� 0� � � � � 0� to
eliminate the term

∑
yi from the prior ratio; this is without loss of generality since

we can always rotate the data to achieve this.
We next introduce an inverse gamma prior for the variance of �i: suppose we

take

�i ∼ N�0� �2�� i = 1� � � � � k
(21)

�−2 ∼ ���� ���

where � is the shape parameter and � the scale parameter for the gamma
distribution. The prior ratio then becomes

log
���̂�

���̂��
= −

(
�+ k

2

)
log

(
�̂2

�2

)

as � → �, which is plotted in Fig. 2(c) for various choices of �. This prior ratio
gets quite close to the reference, or matching prior (17) as � → 0. Datta and Ghosh
(1995) showed that the choice � = −1/2, � → � gives the reference prior exactly.

Finally, we combine the third and second prior as

�i ∼ N�a� �2�� a ∼ N�0� �2�� 1/�2 ∼ ���� �� (22)

leading to the prior ratio

log
���̂�

���̂��
= −

(
�+ k

2

)
log

�̂2

�2
�

as �� � → �, which is the same as for (21).
It is clear from this analysis that the hierarchical priors will not lead to good

coverage of posterior probability intervals except in very special cases and that
introducing a hierarchy of priors is not guaranteed to lead to priors with better
frequentist behavior. Of course, they are not designed with this goal in mind, but
they are widely used in linear models. In the next section we consider the use of flat
priors in logistic regression.
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1382 Reid and Sun

5. Logistic Regression

Our first example is a simple linear logistic regression: we assume that yi, i= 1� � � � � n
is a sample of independent Bernoulli observations and that

log	Pr�Yi = 1�/Pr�Yi = 0�
 = �+ �xi

where the xi are taken as fixed covariates. The parameter � = ��� �� is at least
approximately a location parameter, so it might be argued that the flat prior
���� ��d� d� ∝ d� d� is a reasonable starting point, and indeed this is the prior
given as the default in both R and Winbugs. Suppose our parameter of interest
� = −�/�, which is the ED50, the value of x for which the probability of success
is 1/2. In Tables 2 and 3 we show the behavior of selected quantiles of r∗F
and r∗B in simulations. As with the normal circle problem, the posterior quantiles
systematically uncover the true value of �, relative to the sampling distribution. The
intervals based on r∗F have good central coverage but some imbalance in the two
tails, which we think is due to the discreteness and the small sample size. The normal
approximation to r∗F was derived using the method outlined in Davison et al. (2006).
It is difficult to do a full set of simulations over the parameter space for ��� �� with
small values of n, as many parameter pairs lead to large numbers of samples for
which the maximum likelihood estimates cannot be obtained.

Our second example is multiple logistic regression and is based on the data
set urine in R; there are 77 binary observations, representing the presence or
absence of certain biological markers in the urine, and there are 6 covariates. The
data were discussed in Davison and Hinkley (1997), and r∗F formulas for inference
about components of the regression vector were developed in Brazzale (2000) and
implemented in the cond library of the hoa package.

Table 2
Empirical coverage of upper and lower 2.5% limits based on the posterior

marginal survivor function using a flat prior, ��r∗B�; the p-value function using the
frequentist solution, ��r∗F �; and the normal approximation to the log-likelihood
root, ��r�. This is based on 10,000 simulations of the simple logistic regression

model, based on a sample of size 15 from simulated data. The x sample was fixed
throughout at (0.60, 0.67, 0.74, 0.81, 0.88, 0.96, 1.03, 1.10, 1.17, 1.24, 1.31, 1.38,
1.46, 1.53, 1.60) for four choices of � and �, all giving � = 1. For each subtable
m is the number of simulations where the estimates of � and � could not be
obtained; these simulations were omitted from the estimation of the coverage

Left Center Right Left Center Right

� = 2� � = −2�m = 65 � = −0�8� � = 0�8�m = 14

��r� 0.0315 0.9254 0.0431 0.0210 0.9320 0.0470
��r∗F � 0.0232 0.9461 0.0306 0.0168 0.9494 0.0337
��r∗B� 0.0471 0.8992 0.0674 0.0405 0.8804 0.0790

� = 1�5� � = −1�5�m = 35 � = 3� � = −3�m = 165
��r� 0.0265 0.9294 0.0440 0.0341 0.9266 0.0393
��r∗F � 0.0204 0.9484 0.0312 0.0232 0.9497 0.0271
��r∗B� 0.0410 0.8892 0.0697 0.0440 0.8963 0.0598
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Table 3
Empirical coverage based on simulations as described in Table 2 for � �= 1; m is
the number of simulations omitted from the estimation of the coverage. The first

subtable has n = 15 and the second n = 30

Left Center Right Left Center Right

� = −2� � = 0�8�m = 174 � = −2� � = 1�2�m = 39

��r� 0.0094 0.9356 0.0551 0.0411 0.9348 0.0240
��r∗F � 0.0063 0.9527 0.0410 0.0300 0.9530 0.0170
��r∗B� 0.0206 0.8936 0.0857 0.0734 0.8969 0.0357

� = −2� � = 0�8 = −1�5�m = 0 � = −2� � = 1�2 = −3�m = 0
��r� 0.0158 0.9468 0.0374 0.0362 0.9399 0.0239
��r∗F � 0.0146 0.9525 0.0329 0.0313 0.9468 0.0219
��r∗B� 0.0187 0.9346 0.0467 0.0440 0.9291 0.0269

The model is

yi ∼ Bernoulli�pi�� logit�pi� = �0 + �1x1i + · · · + �6x6i� (23)

The parameter of interest is taken to be

� = exp��0 + �1x
∗
1 + · · · + �6x

∗
6�/	1+ exp��0 + �1x

∗
1 + · · · + �6x

∗
6�
�

the probability of success at a fixed value x∗ of the covariates. Figure 3 shows three
p-value functions for �, for different values of x∗ chosen so that �̂ is approximately

Table 4
Empirical coverage of upper and lower 2.5% limits based on the posterior

marginal survivor function using a flat prior, ��r∗B1�; a matching prior for �,
��r∗B2�; the p-value function using the frequentist solution, ��r∗F �; and the normal
approximation to the log-likelihood root, ��r�. This is based on 10,000 simulations
of the logistic regression model fitted to the urine data set from Davison and
Hinkley (1997). In the three subtables 273, 283, and 280 simulated data sets,

respectively, led to nonconvergence; these simulations were omitted

Left Center Right Left Center Right

�̂ = 0�86 �̂ = 0�51

��r� 0.0228 0.9278 0.0494 0.0343 0.9363 0.0306
��r∗F � 0.0296 0.9511 0.0192 0.0256 0.9552 0.0203
��r∗B1� (flat) 0.0177 0.8722 0.1101 0.0462 0.9087 0.0451
��r∗B2� (matching) 0.0274 0.9509 0.0217 0.0247 0.9532 0.0222

�̂ = 0�21

��r� 0.0469 0.9287 0.0244
��r∗F � 0.0198 0.9532 0.0269
��r∗B1� (flat) 0.0940 0.8841 0.0218
��r∗B2� (matching) 0.0260 0.9476 0.0263
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1384 Reid and Sun

Figure 3. Bayesian posterior survivor function for � = exp��Tx∗�/	1+ exp��Tx∗�
 (dotted
line), compared to the frequentist solution (solid line) and the normal approximation to the
log-likelihood root (dashed line). Also shown is the Bayesian solution using the matching
prior, as a dashed-dotted line; the differences between that and the frequentist solution are
not very visible on the plot. The values of �̂ from left to right are 0.21, 0.51, and 0.86.

0�8, 0�5, and 0�2, respectively. Again we see that the normal approximation to
the distribution of r∗B produces limits that uncover the true value, compared to
the normal approximation to the distribution of r∗F . The simulations summarized
in Table 4 verify that the frequentist approximation is very accurate. There is in
this example a matching prior for �, derived from the family of matching priors
proposed in Tibshirani (1989) and discussed in the context of logistic regression
in Staicu and Reid (2008), and Fig. 3 and Table 4 also show the results of using
this prior, instead of the flat prior on �. This confirms that the problem with the
coverage of intervals based on r∗B is not due to the approximation of the exact
marginal posterior distribution by ��r∗B� but rather due to the prior.

6. Discussion

The examples in the previous sections show that using flat priors for vector
parameters, and then marginalizing to scalar parameters that are nonlinear in the
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original parameters, leads to Bayesian marginal posterior limits that do not have an
interpretation as confidence limits. This observation has been made several times in
the literature, and in particular the development of reference priors and matching
priors takes due account of this. However, it is not widely emphasized and seems to
be overlooked in a great deal of applied work. The construction of priors with some
properties of calibration is important for settings in which there is an expectation
that posterior limits are well calibrated, but unfortunately the construction of such
targeted priors is difficult and needs to be undertaken separately for each parameter
of interest. This means that it is not usually suitable to use a single prior to construct
marginal posterior distributions for several different parameters of interest.

An example from the scientific literature of the failure of flat priors for several
parameters is given in Heinrich (2006).

In some special situations it might not be required that the posterior marginal
distribution have a frequency, or model-based, interpretation, in which case it would
seem appropriate to use informative priors and acknowledge the dependence of the
inference on the prior.

These are all small-sample results, in the sense that as n increases the effect of
the prior goes to zero. However, the size of n needed depends on the number of
nuisance parameters, as seen in the normal circle problem, where the discrepancy
between the Bayesian and frequentist versions of r∗ grows as k/

√
n. With discrete

data and a large number of nuisance parameters, as in the second example of Sec. 5,
the sample size needed to eliminate the effect of the prior may be rather large. In
personal communication Thomas Richardson has suggested that it might be possible
to check the coverage of Bayesian posterior intervals using a parametric bootstrap
approach. The r∗B approximation would be very useful for this as it is much faster
to calculate than MCMC approximations.
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