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1. INTRODUCTION

It is a pleasure and an honour to contribute to the celebration of Professor Thompson’s career in
statistics. In this paper I will discuss some aspects of likelihood inference for complex problems,
attempting to highlight some of the application areas that have benefitted from Mary’s expertise,
including stochastic processes and survey sampling.

By way of introduction, we may consider why the likelihood function plays such an important
role in statistics. At a theoretical level, we can rely on the Lehmann–Scheffé results and say that
the likelihood function captures all the information in the data, because it is a function of the
sufficient statistics. This intuitive result has been mathematically generalized in various ways; for
example, Fraser & Naderi (2007) prove a measure-theoretic result which they summarize as “the
likelihood map is sufficient,” building on Barndorff-Nielsen et al. (1996). From a more practical
point of view, the likelihood function provides a set of summary statistics with known limiting
distributions, and this leads to the construction of approximately pivotal functions that are easily
used for inference based on the limiting normal distribution of these statistics. In some models,
for example location models, the likelihood function gives exact inference, a result first derived
in Fisher (1934). Developments of higher order approximations, based on refining the normal
approximation to the standard summary statistics, show that combining the likelihood function
with some extra information about its derivative on the sample space can give extremely accurate
approximations to P values and confidence limits. Bayesian inference is based on the likelihood
function combined with a prior, and in some cases the resulting inferences can be made very close
to those from a non-Bayesian point of view by careful choice of the prior, although the resulting
inference is not conventionally Bayesian.
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In the remainder of this Introduction I will set this out a little more precisely, and in Section
2 describe the extension of sufficiency embedded in higher order approximation. In Section 3
I look at a more complex model, and in Section 4 consider the role of composite likelihood in
finding a compromise between computational tractability and the benefits of likelihood inference.
I touch briefly on likelihood inference in sample surveys, and approximate Bayesian computation
in Section 5.

1.1. Notation and Definitions
The likelihood inference that I discuss in this paper is essentially parametric, although there is
an important literature on nonparametric likelihood inference and semi-parametric inference. We
assume that we have amodel f (y; θ) for an observation y ∈ Rn, depending on a parameter θ ∈ Rd .
The log-likelihood function is simply �(θ; y) = log f (y; θ), although more precisely �(θ; y) =
log f (y; θ) + c(y) is an equivalence class of functions on the parameter space, up to additive
terms that depend on the observations alone. The additive term is usually ignored, with the
understanding that only differences in log-likelihoods are relevant. The maximum likelihood
estimator θ̂ = arg sup �(θ; y) is the point estimate associated with the likelihood function, and the
log-likelihood ratio statisticw(θ0) = 2{�(θ̂; y) − �(θ0; y)} provides a widely available test statistic
for the hypothesis that θ = θ0.

A more modern approach that downplays the traditional dichotomy of hypothesis testing
and point estimation is to use asymptotic results to suggest distributional approximations, and
to summarize this by describing a set of approximate pivotal quantities. For example, in regular
models, under smoothness conditions on the family of models {f (y; θ); θ ∈ Rd}, and (most easily)
assuming the distribution of the components of y are independent, we have the asymptotic result

i1/2(θ)(θ̂ − θ)
L−→ Nd(0, I), n → ∞, (1)

where i(θ) = E{−∂2�(θ; y)/∂θ∂θT } is the expected Fisher information in an observation Y from
f (y; θ). Defining the observed Fisher information by

j(θ̂) = − ∂2�(θ; y)
∂θ∂θT

∣∣∣∣
θ=θ̂

, (2)

we can use (1) to derive the distribution approximation

q(θ) = j1/2(θ̂)(θ̂ − θ)
.∼ N(0, I). (3)

This approximation, valid under the model f (y; θ), is usually called a first-order approximation
as it is based on the limiting result (1). More precisely if the components of y are independent
and identically distributed then j(θ̂) is Op(n) and the relative error in using the normal density
defined in (3) to the exact density isO(n−1/2) in moderate deviation regions, |θ̂ − θ| < δ/

√
n. In

Equation (3), j1/2(θ̂)(θ̂ − θ) is an approximate pivot, a function of the data and the parameter with
a known distribution. This can be used to construct P values or confidence limits for components
of θ in the usual way, for example θ̂k ± zα/2{j−1(θ̂)k,k}1/2 is an approximate 1 − α confidence
interval for θk, where zα/2 is the upper critical point of a standard normal, and j−1(θ̂)k,k is the kth
diagonal element of j−1(θ̂).

An approximate pivot based on the limiting distribution of the likelihood ratio statistic is

w(θ) = 2{�(θ̂) − �(θ)} .∼ χ2d (4)
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and in the special case that d = 1 we have

r(θ) = sign(θ̂ − θ)[2{�(θ̂) − �(θ)}]1/2 .∼ N(0, 1), (5)

where r(θ) is often called the likelihood root.
Fisher’s (1934) result giving the exact distribution of the maximum likelihood estimator in

a location model is an exact pivot. Suppose y = (y1, . . . , yn) are independent and identically
distributed with the distribution of each component given by f0(yi − θ), θ ∈ R. There is a one-to-
one transformation of y to (θ̂, a1, . . . , an), where ai = yi − θ̂, the vector a is constrained to Rn−1

by the score equation defining θ̂, and a is ancillary; its distribution does not depend on θ. All
the information about θ is contained in the conditional distribution of the maximum likelihood
estimator, given a, and this has the exact density given by the renormalized likelihood function:

f (θ̂ | a; θ) = exp{�(θ; y)}∫
exp{�(θ; y)} dθ =

exp
{∑

�0(θ̂ + ai − θ)
}

∫
exp

{∑
�0(θ̂ + ai − θ)

} , (6)

where �0(·) = log f0(·) and the final expession makes explicit the dependence of the right hand
side on (θ̂, a). In other words, the likelihood function itself serves as a pivot (Hinkley, 1980).

2. HIGHER ORDER APPROXIMATION

The result in (6) holds, as an approximation, much more generally, as was outlined in a
series of papers in Biometrika in 1980; the general result is often called Barndorff-Nielsen’s
p∗ approximation, after Barndorff-Nielsen (1980, 1983), and is concisely expressed as

p∗(θ̂ | a; θ) = c(θ, a)|j(θ̂)|1/2 exp{�(θ; θ̂, a) − �(θ̂; θ̂, a)}, (7)

where c(θ, a) is a normalizing constant for the density, often obtained numerically. This approx-
imation to the conditional distribution of θ̂, given a, has relative error O(n−3/2) in continuous
models, for θ̂ in moderate deviations around θ; the derivation of this result is given in Skovgaard
(1990). Note that to construct this approximation it is necessary to find a transformation from y

to (θ̂, a), where a is an ancillary statistic. This is quite easy in the location model, as at (6), and
indeed in any transformation model, and this step is not needed in a full exponential family model,
since the sufficient statistic has the same dimension as θ, but in general models it can be difficult
to find such an ancillary statistic.

Since in any case we are often interested in the p∗ approximation in order to compute tail area
probabilities, or P values, an approximation to the integral of p∗(θ̂) with respect to θ̂ is of more
interest than an approximation to the density function. This approximation is actually simpler,
and can be obtained without finding an explicit form for an exact or approximately ancillary
statistic. We avoid the specification of the transformation from (y1, . . . , yn) to (θ̂, a) by defining
a sample-space derivative of the log-likelihood function

ϕ(θ) ≡ �;V (θ; y0) = ∂

∂V (y)
�(θ; y)

∣∣∣∣
y=y0

. (8)

This is a directional derivative at the observed data point, y0 determined by the n vectors, each
of length p, that make up the n× p matrix V ; this directional derivative captures the aspect of
the ancillary statistic that is needed to compute a P-value. The construction of the matrix V is
described in detail in Brazzale, Davidson, & Reid (2007, Ch. 8), and illustrated there on a range
of regression models. For completeness a brief description is given in the Appendix.
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Figure 1: Comparison of the exact Cauchy density with a tangent exponential model approximation.

The reparametrization ϕ(θ) defined above can be used to define a tangent exponential family
model on Rd :

fTEM(s; θ)ds = exp{ϕ(θ)′s+ �0(θ)}h(s) ds, (9)

where s is a score variable on R, �0(θ) = �(θ; y0) is the observed log-likelihood function, and
ϕ(θ) = ϕ(θ; y0) is the directional derivative. The tangent exponential model is a p∗-type approx-
imation to the conditional density, given an approximate ancillary statistic. Conditioning on the
approximate ancillary statistic is implemented via the direction vectors that make up the matrix
V used to define ϕ. Although (9) approximates the conditional model only toO(n−1), when used
to derive a P-value, that is, a distribution function at y0, the resulting approximation is accurate
to O(n−3/2); see, for example, Fraser & Reid (1993) and Andrews, Fraser, & Wong (2005).

As an approximation to the density, f (y; θ0), (9) is accurate only at the observed data point
y0; see Figure 1 for an illustration of the approximation to the Cauchy density. As an approx-
imation to the log-likelihood function �(θ; y0), it reproduces this function and its sample space
derivative exactly. It is this property that enables use of the tangent exponential model to obtain
approximations to P values that have relative error O(n−3/2) for continuous distributions. An
illustration of the P-value approximation for the Cauchy is given in Brazzale, Davidson, & Reid
(2007, Ch. 3.1).

In the case that θ is a scalar parameter, the P-value approximation derived from (9) is given by

p(θ) = �(r∗) ≡ �

{
r + 1

r
log

(
Q

r

)}
, (10)

where �(·) is the distribution function for a standard normal distribution, and r andQ are

r = sign(θ̂ − θ)
[
2
{
�0(θ̂) − �0(θ)

}]1/2
, (11)

Q = sign(θ̂ − θ)|ϕ(θ̂) − ϕ(θ)| j−1/2
ϕϕ (ϕ̂) (12)

= sign(θ̂ − θ)|ϕ(θ̂) − ϕ(θ)|ϕ−1
θ (θ̂)j1/2(θ̂); (13)
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note that r∗ depends only on {�(θ; y0), ϕ(θ; y0)} and their derivatives with respect to θ, evaluated
at θ̂ = θ̂(y0).

In (10) r∗ is an approximate pivotal quantity, in the same way that r in (5) is an approximate
pivotal quantity; the difference is that the normal approximation to the distribution of r∗ is more
accurate than the normal approximation to the distribution of r; the latter is accurate toO(n−1/2),
and the r∗ approximation is accurate to O(n−3/2) in continuous models.

Inference about a component of a vector parameter are more useful in practice, and versions of
(3), (5) and r∗ are similar in form to the scalar parameter versions, but require additional notation.
We write θ = (ψ, λ), where ψ is the scalar parameter of interest and λ is the nuisance parameter,
and θ̂ψ = (ψ, λ̂ψ) for the constrained maximum likelihood estimator of θ when ψ is fixed. Then
(3) and (5) are replaced by

q(ψ) = {
jψψ(θ̂)

}−1/2(ψ̂ − ψ), (14)

r(ψ) = sign(ψ̂ − ψ)[2{�(θ̂) − �(θ̂ψ)}]1/2,

where jψψ(θ̂) is the (ψ,ψ) component of the inverse of the observed Fisher information matrix.
These pivotal quantities are simply the standardized maximum likelihood estimator, and the
signed square root, respectively, treating the profile log-likelihood function �p(ψ) = �(θ̂ψ) as an
ordinary log-likelihood function, because {jψψ(θ̂)}−1/2 = j

1/2
p (ψ̂).

To construct the third-order pivotal quantity r∗, we use r as defined in (15) and extend the
expression forQ in (13) to

Q = sign(ψ̂ − ψ)
|ϕ(θ̂) − ϕ(θ̂ψ) ϕλ(θ̂ψ)|

|ϕθ(θ̂)|
{ |j(θ̂)|

|jλλ(θ̂ψ)|
}1/2

, (15)

where jλλ(θ) is the nuisance-parameter block of the observed Fisher information function. The
two matrices in the second factor of (15) are d × d: the numerator is shown partitioned into its
first column, ϕ(θ̂) − ϕ(θ̂ψ), and the (d − 1) × d sub-matrix ϕλ(θ̂ψ).

As an illustration, consider the model

yi = µi + εi = exp(β0 + β1xi) + εi, (16)

where we assume that εi follows a normal distribution with mean 0 and variance µi + ψ. This is
a simplified version of a model used in Hughes, Frick, & Hancock (2010) for analysing images
developed by microscopic fluorescence. In their application the basic observation follows a Pois-
son distribution, but the counts tend to be large, and thus the normal approximation to the Poisson
is used; ψ represents measurement error added to the Poisson fluctuations. In Hughes, Frick, &
Hancock (2010) the model for µi was more complicated; it was derived from a spatial model for
photon emission.

Figure 2 shows the distribution of r∗ in simulations from (16), withψ the parameter of interest,
and β0, β1 treated as nuisance parameters. This is based on 1000 simulations of samples of size
30, with x ∼ U(0.5, 1) fixed for the simulations, and true values (β0, β1, ψ) = (0, 8, 100). The
details of the calculation ofQ are given in a manuscript in preparation by Hoang and Reid.

3. MORE COMPLEX MODELS

Higher order approximationmethods are easy to compute, and fun to use, onmany regression type
problems, but they are not well-suited to models with complex dependencies, as it can be difficult
to determine the canonical parameter ϕ(θ) on which the approximation rests. The construction
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Figure 2: Simulations of the distribution of r∗ for the Poisson–Normal model.

of this parameter implements conditioning on an approximately ancillary statistic, via a pivotal
quantity z described in the Appendix, and when components of y are dependent the construction
of the pivotal is more complicated, and may depend on the ordering of the components of y.

There are a great many application areas that requiremodels with fairly complex structure, and
Mary has made important contributions to many of these. Examples include analytic inference for
survey data, stochastic processes in space or space-time (e.g., Serban, 2011; Bolin & Lindgren,
2011), models for extreme values in several dimensions, frailty models in survival data, various
types of longitudinal data, family-based genetic data, estimation of recombination rates from SNP
data, systems biology (Radde, Bar, & Achim, 2009), and many others.

Amodel widely used in the area of computer experiments and spatial data analysis is the Gaus-
sian random field: suppose we have a scalar output y at a p-dimensional input x = (x1, . . . , xp),
and that

y(x) = φ(x)T β + Z(x), (17)

where φ(x) are a set of known basis functions, Z(x) is a Gaussian process with

Cov{Z(x1), Z(x2)} = σ2
p∏
i=1

R(|x1i − x2i|; θ)

and the covariance matrix R is to be specified: for example

R(|x1i − x2i|) = exp
{−γi|x1i − x2i|α

}
.

In spatial data x is a two- or three-dimensional location vector, but in the context of computer
experiments the p components of x represent different inputs in a simulator, for example, so

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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anisotropic covariance matrices are more natural. The log-likelihood function for a sample of
observations y = (y1, . . . , ym) at m locations x1, . . . , xm, where each xi ∈ Rp is easily written
down,

�(β, σ, θ) = −1
2

{
m log σ2 + log |R(θ)| + 1

σ2
(y −�β)TR−1(θ)(y −�β)

}
; (18)

here� is the design matrix of basis functions with m rows φ(xi)T , each of length p. The compu-
tation of R−1 isO(m3), and for largem some simplification is needed. Two solutions proposed to
simplify this computation are to enforce sparsity on the correlation matrix R, for example making
in block diagonal, or to simplify the likelihood function, using ideas from composite likelihood.

A closely related model, sometimes appropriate in geostatistical applications, is the general-
ized linear model with mean function

E{Y (x) | Z(x)} = g
{
φ(x)T β + Z(x)

}
, x ∈ R2 or R3,

where now the random interceptZ(x) is modelled as a stationaryGaussian process. The likelihood
function involves integration over these random effects:

f (y; θ) =
∫
Rm

n∏
i=1

f (yi | zi; θ)f (z; θ) dz1 . . . dzm,

where zi = z(xi) is the random intercept associated with the ith location. This integral can be
evaluated by simulation methods, but again composite likelihood provides a simplification.

4. COMPOSITE LIKELIHOOD

The strategy of constructing a function of the parameter that has similar properties to the likelihood
function, but is easier to work with, goes back at least to the partial likelihood function for analysis
of survival data (Cox, 1972) and the pseudo-likelihood for spatial data (Besag, 1974, 1975). One
version of “likelihood-like” inference currently under active investigation is composite likelihood.
Most applications of composite likelihood are targetted on models for multivariate observations,
for which the evaluation of the joint distribution is very difficult, as, for example, the Gaussian
process models described at the end of the previous section.

Suppose we have an m-dimensional variable Y with a model represented by a density
f (y; θ), θ ∈ Rd . We define a set of marginal or conditional events {A1, . . . ,AK} with associ-
ated “sub” log-likelihood

�k(θ; y) = log f (y ∈ Ak; θ)

and define the composite log-likelihood by

�C(θ; y) =
K∑
k=1

�k(θ; y). (19)

This is a “likelihood-like” inference function, obtained by pretending the sub-models are inde-
pendent. Some general properties of estimating equations derived from composite likelihood
were investigated in Lindsay (1988), who introduced the name composite likelihood. In many

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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applications it makes sense to consider weighting the components, in which case we define

�C(θ; y) =
K∑
i=1

wk�k(θ; y),

wherew1, . . . , wk are a set of non-negative weights. Lindsay (1988) discussed optimal weighting
based on the asymptotic variance of the resulting maximum composite likelihood estimator.
Lindsay, Yi, & Sun (2011) provide a very general discussion of weighting, even allowing for
the possibility of negative weights, with the goal of understanding how best to choose the set of
component events {Ak}.

Examples of composite likelihood include the independence log-likelihood �ind(θ) =∑m
r=1 log f1(yr; θ), which treats the components of y as independent, the pairwise log-likelihood

�pair(θ) =
m∑
r=1

∑
s>r

log f2(yr, ys; θ), (20)

where f2(yr, ys; θ) is the marginal density of the pair (yr, ys), and Besag’s (1975) pseudo-
likelihood

�pseudo(θ) =
m∑
r=1

log f (yr | {ys : ys neighbour of yr}; θ).

For the Gaussian random field (17), assuming σ2 = 1, pairwise likelihood takes the form

�pair(θ) = −1
2

m−1∑
r=1

m∑
s=r+1

{
log |Rr,s| + (yr,s −�r,sβ)TR−1

r,s (yr,s −�r,sβ)
}
, (21)

where yr,s = (yr, ys)T , �r,s is the 2 × d sub-matrix of the design matrix �, and Rr,s is the 2 × 2
correlation matrix for yr,s. In �pair(θ) the computational burden of computing the inverse of the
m×m correlation matrix R is avoided.

Inference from composite likelihood proceeds by analogywith standardmethods of likelihood
inference; given a sample y1, . . . , yn of observations of y, we have

�C(θ; y) =
n∑
i=1

�C(θ; yi) =
n∑
i=1

K∑
k=1

�k(θ; yi),

ignoring here the possibility of weighting. Because �C(·) is built from component likelihoods,
UC(θ) = �′C(θ) is an unbiased estimating function, and under some regularity conditions on the
model, a limiting normal distribution for UC applies, leading to an approximation to the distribu-
tion of the maximum composite likelihood estimator θ̂C, defined as the solution to UC(θ̂C) = 0:

θ̂C
.∼ N

{
θ,G−1(θ)

}
,

where the approximate variance is given by the Godambe information

G(θ) = E
{−U ′

C(θ)
}[
Var

{
UC(θ)

}]−1E
{−U ′

C(θ)
} = H(θ)J−1(θ)H(θ). (22)

If E{−U ′
C(θ)} = Var{UC(θ)} then the composite log-likelihood function is called information

unbiased (Lindsay, 1988); this will not usually hold unless �C(·) is a proper likelihood function.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



Author Proof

A
2012 LIKELIHOOD INFERENCE IN COMPLEX SETTINGSQ1 9

The component sub-log-likelihoods �k(·) are information unbiased, but not their sum. Godambe
information arises as the asymptotic variance for estimating equations in the study of robustness
(Kent, 1982). Godambe and Thompson established the optimality of the score equation among the
family of unbiased estimating equations, first for the case of scalar parameter θ (Godambe, 1960),
and later for the case of vector parameters (Godambe & Thompson, 1986); see also Godambe &
Thompson (2009).

In the expression for pairwise likelihood for the Gaussian random field example in (21), n = 1,
and the role of the sample size is taken bym. For the approximate inference outlined in the previous
paragraph to be valid in this setting, it is necessary that the model provide internal replication,
for example through the exponential decay of the spatial covariance matrix R. In general the
asymptotic theory for composite likelihood when the length of the multivariate vector increases,
but the sample size is fixed or increases slowly, needs to be considered on a case-by-case basis.
Some discussion is provided in Cox & Reid (2004)Q3, but rigorous asymptotic theory is lacking.
Some work in the time series context is presented in Davis & Yau (2011).

A potential advantage of composite likelihood, beyond its use in providing estimating
equations, is that it is itself an inference function: by analogy again we define the composite
log-likelihood ratio statistic

wC(θ) = 2
{
�C

(
θ̂C

) − �C(θ)
}
.

The asymptotic distribution of wC(θ) is not χ2d , but rather a weighted sum of χ21;

wC(θ)
.∼

d∑
i=1

λiχ
2
1i, (23)

where λ1, . . . , λd are the eigenvalues of H−1(θ)G(θ) = J−1(θ)H(θ), and H(θ), J(θ) and G(θ)
are defined in (22). Pace, Sartori, & Salvan (2011) show how a rescaling ofwC(θ) can recover the
more convenient χ2d approximation.

There are a great many applications of composite likelihood, several of which are surveyed in
Varin, Reid, & Firth (2011), and many of these involve choosing some version of sub-likelihood
event, {Ak}, usually tailored to the application at hand, investigating both the computation and
the quality of the inference (typically efficiency of θ̂C), either by comparison with likelihood
inference, if feasible, or by simulations. There is rather less work on strategies for the construction
of composite likelihoods, which to date has proved difficult, partly because composite likelihood
is so broadly defined. There are some surprises, though. In addressing the problem of optimal
weights, for a given choice of sub-likelihoods, Lindsay, Yi, & Sun (2011) show that the optimal
weightsmay be non-computable, or negative. Research in progress byXimingXu at theUniversity
of Toronto shows that surprises occur as well in the choice of the number and dimension of
sub-likelihoods. In particular, examples can be constructed for which including additional sub-
likelihood components leads to less efficient inferences. Similarly including higher-dimensional
sub-likelihoods, for example going from independence likelihood to pairwise likelihood (20), can
lead to less efficient estimation.

On the other hand, it seems plausible that inference based on a composite likelihood con-
structed from lower dimensional marginal distributions is robust against model misspecification
of the full joint distribution, although even this seems difficult to make completely precise; some
aspects are discussed in Xu & Reid (2011). At this stage of the development of the theory, there
seem to be as many open problems as solved ones, and it is possible that theoretical results will
be tied to particular classes of models. Kuk (2008) suggests an interesting hybrid strategy, using
composite likelihood inference for aspects of the model of secondary interest, and more efficient
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techniques for estimation of the main parameters of interest. Yi, Zeng, & Cook (2011), and He &
Ye (2011), discuss composite likelihood for longitudinal data with missing observations that has
the very useful property of being independent of the mechanism that generates the missingness;
this seems a very large advantage of composite likelihood, especially if it could be made more
general.

5. CONNECTIONS TO SURVEY SAMPLING

In light of Mary’s many contributions to theory and methods of survey sampling, and the com-
plexity of using likelihood inference in survey sampling, it would seem of interest to investigate
whether or not there is an opportunity for cross-fertilization of ideas. In survey sampling the
parameters to be estimated are often properties of a well-defined population, fromwhich a sample
of more or less complexity may be available. A descriptive parameter for the population, θP, say,
may be defined through an estimating equation

∑
i∈P

Ui(θP) = 0,

where P is the population of interest. The estimating equation from the sample S is typically

∑
i∈S

wiUi(θ) = 0 (24)

with the weights in the simplest case defined aswi = 1/πi, where πi is the probability of selection
of unit i. This leads to an estimate θ̂P with variance given by the Godambe information func-
tion (22), but the version described here has no direct connection to likelihood inference, being
essentially determined by the choice of estimating function U(·) and the sampling design.

However, it is usual in complex surveys that the estimating equation is motivated by a super-
population model, that is, a probability density function for the distribution of values in the
population, described by a model f (y; θ), y ∈ P, θ ∈ Rd , say. In that setting Ui(·) would simply
be the score function for the likelihood component f (yi; θ), and the use of weights based on the
sampling design in (24) is a formofmodel-assisted inference.As I understand it the goal is to obtain
an estimator that is motivated by a plausible model for the data, but that has inferential properties
valid under the sampling design, even if the super-population model is incorrect. Typically the
weights used in (24) are more complicated than 1/πi, often written 1/πiqi, where qi represents
various adjustments for non-response, post-stratification, and so on. It seems possible that there
may be connections to be made to weighted composite likelihood, as in many applications of
the latter the weights are designed to reflect properties of the sampling structure, such as cluster
size, or observed cluster size in the case of missing data (Yi, Zeng, & Cook, 2011; He & Yi,
2011). Gelman (2007) and the many discussants to this article provide an interesting discussion
of the art and science of designing survey weights; Little (2004) provides a helpful discussion of
design-based and model-based inference in sample surveys.

Thompson (1997, Ch. 3) is one of the few places where one can find discussion of higher
order asymptotic theory in sample surveys.Whilemathematically elegant, higher order asymptotic
theory has not proved to be very useful for analysis of sample surveys; the use of bootstrapweights
developed by Rao &Wu (1988) seems to have solved many inferential problems in a particularly
elegant way. However, there are connections, as yet unexplored for survey data, between higher
order asymptotics and the bootstrap!; see DiCiccio & Efron (1996).

Another likelihood approach for survey sampling is a nonparametric approach based on em-
pirical likelihood, which builds on Hartley & Rao (1968) and Owen (1988). The usual empirical
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log-likelihood has the form for independent identically distributed sampling

�(F ) =
n∑
i=1

logpi, pi > 0,
∑

pi = 1,
∑

piyi = θ,

where pi, the weights on observations yi, are the unknown parameters in F , and θ = EF (Y ) is the
parameter of interest. More generally θ can be defined by the solution of a particular estimating
function. Chen&Sitter (1999) extended this to complex survey sampling by suggesting aweighted
empirical likelihood of the form

∑
i∈S

wi logpi

with post-stratification constraints such as �i∈Spixi = X̄P to incorporate known population in-
formation, and with weights inversely proportional to the probability of selection. This leads to
estimates that aremore efficient than theHorvitz-Thompson estimator.Wu&Rao (2006), andRao
& Wu (2010) suggested an alternative weighted empirical likelihood that enables a likelihood-
ratio type χ2 approximation, after a simple adjustment obtained from the design effect; the ratio
of the variance of the sample mean under simple random sampling to the variance of the sample
mean under the survey design.

This approach to likelihood-based inference is completely nonparametric, whereas compos-
ite likelihood is based on parametric families of distributions and their sub-families. There are
however intriguing points of contact in the goals of making the inferences robust to model mis-
specification and in the use of rescaling to obtain a χ2 limit for the likelihood-ratio type statistic.
Further, composite likelihoodmethods arewidely used inmodels for datawith a complex structure
due to sampling: often longitudinal, clustered, or hierarchical models, for example, and hierarchi-
cal structures feature naturally in aspects of survey sampling such as small area estimation and
multiple frame surveys. Carillo, Chen, & Wu (2010) discuss a version of generalized estimating
equations for longitudinal survey data; there are several parallels between generalized estimating
equations and composite likelihood estimating equations but a detailed comparison is not yet
available.

Another approach to computationally intractable likelihood functions is simulation: this was
discussed in connection with applications to genetics in Geyer & Thompson (1996), but more
recently a suite of methods under the name Approximate Bayesian Computation are being inves-
tigated; a review is provided in Marin et al. (2011). To date the method is mainly used to simulate
from the posterior distribution, and to provide approximations to Bayes factors in problems of
model choice. Central to the method is the choice of some summary statistics, and it is interesting
to see how the notions of sufficiency and ancillarity come into the discussions: see, for exam-
ple, Robert et al. (2011), Fearnhead & Prangle (2012), and Marin et al. (2010). As sufficiency
is arguably the most important aspect of the likelihood function, and ancillarity is key to the
development of pivotal quantities, it seems that the “classical” theory of likelihood has much to
offer to modern uses of statistical methods.

APPENDIX
The construction of the n× pmatrix V described in Section 2 is described in Brazzale, Davidson,
& Reid (2007, Ch. 8). Broadly speaking, V is computed as the rate of change of the observation
vector y, with respect to the parameter θ, where y and θ are linked through the model f (y; θ).
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This is easiest to compute by the formula

V = −
(
∂z

∂y

)−1 (
∂z

∂θ

)∣∣∣∣∣
y=y0,θ=θ̂

,

where z = z(y, θ) is a pivotal quantity with a fixed distribution. For example, if yi ∼
N(µi, µi + ψ), as in Section 2, then we can write

zi = (yi − µi)/
√
µi + ψ

and the components zi of z are independent and follow a standard normal distribution under the
model. It is then easily verified for this model that the ith row of the matrix V is

(
µ̂i(2ψ̂ + yi + µ̂i)

2(µ̂i + ψ̂)
,
µ̂i(2ψ̂ + yi + µ̂i)xi

2(µ̂i + ψ̂)
,
yi − µ̂i

2(µ̂i + ψ̂)

)

and

ϕ(θ) =
n∑
i=1

∂�(θ; y)
∂yi

∣∣∣∣
y=y0

Vi

and its derivatives are readily obtained.
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