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Introduction

Inference from Likelihood

Some refinements

Extensions

Aside on HOA
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Models and likelihood
I Model for the probability distribution of y given x
I Density f (y | x) with respect to, e.g., Lebesgue measure
I Parameters for the density f (y | x ; θ), θ = (θ1, . . . , θd)

I Likelihood function L(θ; y0) ∝ f (y0; θ)

I often θ = (ψ, λ)

I θ could have very large dimension, d > n
typically y = (y1, . . . , yn)

I θ could have infinite dimension E(y | x) = θ(x) ‘smooth’,
in principle
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Why likelihood?
I makes probability modelling central
I emphasizes the inverse problem of reasoning

from y0 to θ or f (·)
I suggested by Fisher as a measure of plausibility

Royall, 1994
L(θ̂)/L(θ) ∈ (1,3) very plausible;
L(θ̂)/L(θ) ∈ (3,10) implausible;
L(θ̂)/L(θ) ∈ (10,∞) very implausible

I converts a ‘prior’ probability π(θ) to a posterior π(θ | y) via
Bayes’ formula

I provides a conventional set of summary quantities for
inference based on properties of the postulated model
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Widely used
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... widely used

National Post, Toronto, Jan 30 2008

Aspects of Likelihood Inference Basel, 2013 9



... why likelihood?
I likelihood function depends on data only through sufficient

statistics
I “likelihood map is sufficient” Fraser & Naderi, 2006

I gives exact inference in transformation models
I “likelihood function as pivotal” Hinkley, 1980

I provides summary statistics with known limiting distribution
I leading to approximate pivotal functions, based on normal

distribution
I likelihood function + sample space derivative gives better

approximate inference
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Derived quantities
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I maximum likelihood estimator
θ̂ = arg supθ log L(θ; y)
= arg supθ`(θ; y)

I observed Fisher information
j(θ̂) = −∂2`(θ)/∂θ2

I efficient score function
`′(θ) = ∂`(θ; y)/∂θ

`′(θ̂) = 0 assuming enough regularity

I `′(θ; y) =
∑n

i=1 log fYi (yi ; θ), y1, . . . , yn independent
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Approximate pivots scalar parameter of interest

I profile log-likelihood `p(ψ) = `(ψ, λ̂ψ)

I θ = (ψ, λ); λ̂ψ constrained maximum likelihood estimator

re(ψ; y) = (ψ̂ − ψ)j1/2
p (ψ̂)

.∼ N(0,1)

r(ψ; y) = ±
√
[2{`p(ψ̂)− `p(ψ)}]

.∼ N(0,1)

πm(ψ | y)
.∼ N{ψ̂, j−1/2

p (ψ̂)}

jp(ψ) = −`′′p(ψ); profile information
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... approximate pivots scalar parameter of interest

I profile log-likelihood `p(ψ) = `(ψ, λ̂ψ)

I θ = (ψ, λ); λ̂ψ constrained maximum likelihood estimator

re(ψ; y) = (ψ̂ − ψ)j1/2
p (ψ̂)

.∼ N(0,1)

r(ψ; y) = ±
√
[2{`p(ψ̂)− `p(ψ)}]

.∼ N(0,1)

πm(ψ | y)
.∼ N{ψ̂, j−1/2

p (ψ̂)}

r∗(ψ; y) = r(ψ) +
1

r(ψ)
log
{

QF (ψ)

r(ψ)

}
.∼ N(0,1)

r∗B(ψ; y) = r(ψ) +
1

r(ψ)
log
{

QB(ψ)

r(ψ)

}
.∼ N(0,1)
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The problem with profiling
I `p(ψ) = `(ψ, λ̂ψ) used as a ‘regular’ likelihood, with the

usual asymptotics
I neglects errors in the estimation of the nuisance parameter
I can be very large when there are many nuisance

parameters

I example: normal theory linear regression σ̂2 = RSS/n
usual estimator RSS/(n − k) k the number of regression
coefficients

I badly biased if k large relative to n
I inconsistent for σ2 if k →∞ with n fixed
I example fitting of smooth functions with large numbers of

spline coefficients
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Conditional and marginal likelihoods

f (y ;ψ, λ) ∝ f1(s | t ;ψ)f2(t ;λ)

I L(ψ, λ) ∝ Lc(ψ)Lm(λ), where L1 and L2 are genuine
likelihoods, i.e. proportional to genuine density functions

I Lp(ψ) is a conditional likelihood Lc(ψ), and estimation of λ
has no impact on asymptotic properties

I s is conditionally sufficient , t is marginally ancillary, for ψ

I hardly ever get so lucky
I but might expect something like this to hold approximately,

which it does, and this is implemented in r∗F formula
automatically Brazzale, Davison, R 2007
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Directional inference
I vector parameter of interest θ = (ψ, λ), ψ ∈ Rq

I approximate pivotal quantity
w(ψ) = 2{`p(ψ̂)− `p(ψ)}

.∼ χ2
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... directional inference
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2{`p(ψ̂)− `p(ψ)}/{1 + B(ψ)/n} .∼ χ2
q
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... directional inference
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... directional tests L∗ = ts0 + (1− t)sψ

psi1

ps
i2
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null hypothesis of independence t = 0
x observed value of s t = 1

p-value =

∫∞
1 td−1g{s(t);ψ}dt∫∞
0 td−1g{s(t);ψ}dt

like a 2-sided p-value
Pr ( response > observed | response > 0)Davison et al. 2014
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Model selection/choice
I likelihood inference very/completely dependent on

correctness of assumed model
I role in model choice?

I nested models:
I log-likelihood ratio w = 2{`p(ψ̂)− `p(ψ = 0)}
I assess consistency of data with ψ = 0, i.e. with simpler

model
with either usual asymptotics or higher order versions

I if models are non-nested, for example log-normal vs
gamma, then a different asymptotic theory is needed

separate families, Cox 1961,2, 2013
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... model selection/choice
I from prediction in time series,

AIC = −2 log L(θ̂; y) + 2d

I from model choice in Bayesian inference, combined with
Laplace approximation

BIC = −2 log L(θ̂; y) + log(n)d

I relative values of interest only, in models of differing
dimensions

I a ‘non-likelihood’ approach f (y ; θ) ∝ fm(s; θ)fc(t | s);
second component can be used for a test of model fit
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Extending the likelihood function
I asymptotic results provide some theoretical insight
I often difficult to apply in complex models, especially

models with complex dependencies
I is likelihood inference still relevant in more complex

settings?

I inference based on the likelihood function provides a
standard set of tools

I “we believe that greater use of the likelihood based
approaches and goodness-of-fit measures can help
improve the quality of neuroscience data analysis”

Brown et al.
I one way to make models more complex is to add more

parameters
I although we’ve seen that this can lead to difficulties

Aspects of Likelihood Inference Basel, 2013 23



... extending likelihood inference
I various inference functions have been proposed
I typically in the context of particular applications

or model classes
I with a bewildering number of names: quasi-likelihood,

h-likelihood, penalized quasi-likelihood, pseudo-likelihood,
composite likelihood, partial likelihood, empirical likelihood

I to name a few
I why so many choices?
I hope to get summary statistics with reasonable properties
I hope that the inference function itself will carry some

information
I in some cases hope to combine these functions with a

prior probability to simplify Bayesian computations
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Pocket guide to other likelihoods
I introduce dependence through latent random variables
I probability model then involves integrating

over their distribution
I only analytically possible is special cases
I Laplace approximation to this integral is called

penalized quasi-likelihood Breslow & Clayton, 1993
I If g{E(y)} = Xθ + Zb, then leads to

`(θ,b; y)− 1
2

bT D−1(θ)b

I the derivation generalizes the quasi-likellihood
used in GLMs, which specify mean and variance functions
only

I combining marginal likelihoods for dispersion parameters
with GLMMs leads to h-likelihood

Nelder & Lee 1996
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... pocket guide
I Composite likelihood, also called pseudo-likelihood

Besag, 1975
I reduce high-dimensional dependencies by ignoring them

I for example, replace f (y1, . . . , yk ; θ) by

pairwise marginal
∏
j<j ′

f2(yj , yj ′ ; θ), or

conditional
∏

j

fc(yj | yN (j); θ)

I a type of modelling robustness
I limit theorems related to mis-specified models

θ̂CL
.∼ N{θ,G−1(θ)}, G(θ) = H(θ)J−1(θ)H(θ)

J(θ) = var`′CL(θ), J(θ) = −E`′′CL(θ)
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... pocket guide
I Semi-parametric models, leading to partial likelihood
I e.g. proportional hazards model for survival data

Cox 1972, 1975
I partial likelihood has the usual asymptotic properties of

profile likelihood Murphy and Van der Waart, 2000
I obtained via a projection argument of the score function for

the parameter of interest

I e.g. partially linear regression models, with ‘smooth’
function replaced by a linear combination of basis functions

E(yi) = β0 + β1xi +
J∑

j=1

γjB(zi)

I maximize a penalized log-likelihood function `(β, γ)+λp(γ)
Fan & Li, 2001; Green, 1987; Van der Vaart (1998, Ch. 25)
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Simulated likelihoods/posteriors
I Approximate Bayesian Computation

I simulate θ′ from π(θ)

I simulate data z from f (·; θ)

I if z = y then θ′ is an observation from π(θ | y)

I actually s(z) = s(y) for some set of statistics

I actually ρ{s(z), s(y)} < ε for some distance function ρ(·)

I related to simulation by MCMC for computation of MLEs
Geyer & Thompson

I can be used for approximate construction of likelihood
I and is related to generalized method of moments

Cox & Kartsonakis, 2012

Aspects of Likelihood Inference Basel, 2013 28



Conclusion
I likelihood inference is really model-based inference

I models are important for most scientific work

I important to understand their implications and limitations

I and to use them as efficiently as possible

I with or without ’Big Data’
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