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Abstract: In a parametric statistical model, a function of the data is said to be

ancillary if its distribution does not depend on the parameters in the model. The

concept of ancillary statistics is one of R. A. Fisher’s fundamental contributions

to statistical inference. Fisher motivated the principle of conditioning on ancillary

statistics by an argument based on relevant subsets, and by a closely related ar-

gument on recovery of information. Conditioning can also be used to reduce the

dimension of the data to that of the parameter of interest, and conditioning on

ancillary statistics ensures that no information about the parameter is lost in this

reduction.

This review article illustrates various aspects of the use of ancillarity in statis-

tical inference. Both exact and asymptotic theory are considered. Without any

claim of completeness, we have made a modest attempt to crystalize many of the

ideas in the literature.

Key words and phrases: ancillarity paradox, approximate ancillary, estimating func-

tions, hierarchical Bayes, local ancillarity, location, location-scale, multiple ancil-

laries, nuisance parameters, p-values, P -ancillarity, S-ancillarity, saddlepoint ap-
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1. Introduction

Ancillary statistics were one of R.A. Fisher’s many pioneering contributions

to statistical inference, introduced in Fisher (1925) and further discussed in Fisher

(1934, 1935). Fisher did not provide a formal definition of ancillarity, but fol-

lowing later authors such as Basu (1964), the usual definition is that a statistic

is ancillary if its distribution does not depend on the parameters in the assumed

model. Some authors (e.g. Lehmann and Scholz, 1992) demand in addition that

ancillary statistics should be functions of minimal sufficient statistics, as a way

of narrowing the class of ancillary statistics.

The development of Fisher’s ideas on ancillarity between 1925 and 1935 is

reviewed in Stigler (2001), and the various, somewhat vague, aspects of ancil-
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larity used by Fisher are still quite useful. First, although an ancillary statistic

by itself provides no information about the parameter, it may provide a means

of recovering information lost by reducing the data to the maximum likelihood

estimator. To be specific suppose X has pdf fθ(X), and the MLE T ≡ T (X) of θ

has pdf gθ(T ). We denote by I(θ) = Eθ{−∂2 log fθ(X)/∂θ2} the Fisher informa-

tion contained in X and J(θ) = Eθ{−∂2 log gθ(T )/∂θ2} the Fisher information

contained in T , implicitly assuming any needed regularity conditions to justify

these definitions. It is easy to show that I(θ) ≥ J(θ) with equality if and only if

T is sufficient.

Thus, when the MLE T itself is not sufficient, there is loss of Fisher in-

formation. This information can be recovered by conditioning on an ancillary

statistic U , in the sense that I(θ) = Eθ{J(θ | U)}, where J(θ | U) is the Fisher

information contained in hθ(T | U), the conditional distribution of T given U :

J(θ | U) = Eθ[−{∂2 log hθ(T | U)/∂θ2} | U ].

It is assumed in this definition that the pair (T,U) is sufficient, and then U is

referred to as an ancillary complement to T . According to Fisher, the appropriate

measure of information in T is J(θ | U) and not J(θ).

Example 1. Let (Xi, Yi) (i = 1, · · · , n) be iid with common pdf

fθ(x, y) = exp(−θx− y/θ)1[x>0,y>0]; θ > 0.

This example is usually referred to as Fisher’s gamma hyperbola (Efron and

Hinkley, 1978; Barndorff-Nielsen and Cox, 1994; Reid, 2003). Defining T =

(
∑n

i=1 Yi/
∑n

i=1Xi)
1
2 , U = (

∑n
i=1Xi)

1
2 (
∑n

i=1 Yi)
1
2 , it is easy to check that (i) T

is the MLE of θ; (ii) U is ancillary; (iii) (T,U) is jointly minimal sufficient for θ.

In this case, I(θ) = 2n/θ2, and J(θ) = (2n/θ2){2n/(2n+ 1)}, so that the loss of

information is I(θ) − J(θ) = (2n)/{(2n + 1)θ2}. However, according to Fisher,

one should not report the information in T as J(θ), but instead should report

J(θ | U) = {(2n)/θ2}{K1(2U)/K0(2U)}, where K0 and K1 are Bessel functions,

and their ratio recovers on average the loss of information.

In later work on the location model, Fisher (1934) showed that the config-

uration statistic, (X1 − T, . . . ,Xn − T ), where T is an estimator of the location

parameter, is ancillary, and that conditional inference for the location parameter
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is simply obtained from the likelihood function (Cox and Hinkley, 1974, Ch. 4).

The configuration statistic defines in this case a ‘relevant subset’ of the sample

space, and this relevant subset argument was developed in further detail in Fraser

(1968, 1979). The relevant subset of the sample space is that subset defined by a

fixed value of the ancillary statistic. Evaluations of the distribution of parameter

estimate, are then constrained to these subsets of the sample space, as these are

most similar to the sample at hand. Cox’s (1958) paper clearly sets out details

of the relevant subset argument.

Another role for ancillary statistics is to reduce the dimension of the sample

space to that of the parameter space, thus providing a distribution that can pro-

vide direct inference statements for the parameter. While this is closely related

to the relevant subsets and information recovery aspects, it is subtly different.

The dimension reduction argument focusses more directly on the conditional dis-

tribution that is left, rather than the marginal distribution that is ignored. This

dimension reduction aspect has proved to be extremely useful for asymptotic the-

ory based on the likelihood function, which interestingly was also anticipated by

Fisher (1925), who argued that the higher order derivatives of the log-likelihood

function could often serve as what we would now call approximately ancillary

statistics. Fraser’s (2004) survey of conditional inference emphasizes the dimen-

sion reduction aspect of ancillarity.

Fisher (1935) also invoked ancillarity for the elimination of nuisance param-

eters in the context of the 2× 2 table, although making this notion of ancillarity

precise is even more difficult than the ordinary notion of ancillarity for the full

parameter.

Kalbfleisch (1975, 1982) classified ancillarity as being “experimental” or

“mathematical”. According to his criterion, “the former are ancillary by virtue

of the experimental design”, for example a random sample size regardless of the

chosen parametric model. He contrasts those with “mathematical ancillaries”

which often depend on the structure of the assumed parametric model as in Ex-

ample 1. Lehmann (1981) and Lehmann and Scholz (1992) showed connections

of ancillarity with other statistical concepts including sufficiency, group families,

completeness and mixture experiments in addition to information and condition-

ality as mentioned earlier.
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In this paper we review these various aspects of ancillarity, largely in the

context of key examples from the literature. The goal is to try to clarify the

various aspects of ancillarity, and to highlight the importance of conditioning in

inference, whether that inference is based on exact and approximate distributions.

In many standard treatments of statistical inference, the concept of ancillarity

is presented as problematic, usually by means of some examples. However, it

seems essential in non-Bayesian inference to condition on some features of the

data, and we hope the examples also clarify why this is the case.

In Section 2 we discuss the role of conditionality in two classic examples due

to Welch (1939) and Cox (1958) and a newer example due to Hill (1990). These

examples will illustrate the importance of conditioning. In Section 3 we give

three puzzling examples due to Basu (1964), and discuss suggestions of Barnard

and Sprott (1971) and Cox (1971) towards their resolution. In Section 4, we

discuss the role of ancillary statistics in deriving some higher order asymptotic

results related to maximum likelihood estimation, and p-values. In particular,

we introduce the p∗-formula of Barndorff-Nielsen (1983), and indicate the role of

approximately ancillary statistics in this formula.

In Section 5, we consider the issue of conditioning where the elimination of

nuisance parameters is the objective, and discuss the role of ancillary statistics in

this context. Some extended definitions of ancillarity are given: in particular, the

notion of S-ancillarity (Sandved, 1965; Sverdrup, 1966), P -ancillarity (Bhapkar,

1989, 1991), and the connection to the theory of estimating functions (Godambe,

1976). The related concept of Bayesian ancillarity (Severini, 1995) is discussed,

and we give a brief description of Brown’s (1990) ancillarity paradox.

Buehler (1982) proposed properties of ancillary statistics as a means of more

formally assessing the information recovery and relevant subsets aspect of ancil-

larity, and discussed this through a large collection of examples. The emphasis in

our paper, on the other hand, is an examination of the role of ancillary statistics

in exact and approximate likelihood inference. In some examples the argument

is clearer if the data is first reduced to the minimal sufficient statistic, and the

ancillary taken to be a component of this statistic. This approach is emphasized

in Cox and Hinkley (1974), for example. However in some examples, such as the

location-scale model, it is easier to work with the full data vector, and then re-
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duce the conditional model by sufficiency if this is available. This is the approach

emphasized in Fraser (2004).

2. The Case for Ancillarity

If there is an emerging consensus about the role of ancillarity in statistical

inference, it would be that conditioning on ancillary statistics makes the resulting

inference more relevant to the observed data. In this sense ancillary condition-

ing is a sort of ‘halfway-house’ between Bayesian and frequentist inference. The

most compelling arguments for ancillary conditioning in the literature come from

consideration of simple but highly illustrative examples, and we review some of

them in this section. These examples illustrate the three different, although re-

lated, arguments in favor of ancillary conditioning discussed in the Introduction:

(i) ancillary statistics provide relevant subsets; (ii) ancillary statistics give the

right measure of variation; (iii) ancillary statistics provide a means of dimension

reduction.

Example 2. One of the most compelling, if somewhat artificial, example is Cox’s

(1958) example of two measuring instruments, which has been discussed by many

authors. A particularly thorough discussion is given in Berger & Wolpert (1984,

Ch. 2); Cox & Hinkley (1974, Ch. 4) give detailed calculations in the context of

hypothesis testing, and Fraser (2004) gives a discussion in terms of confidence

intervals that makes the case for conditioning even more sharply. The model

is that of observing a random pair (X,U), where X follows a normal distribu-

tion with mean µ and variance σ2
U , and U follows a Bernoulli distribution with

P (U = 1) = 0.5 = P (U = 0). The importance of conditioning on the ob-

served value of U is emphasized by assuming that σ2
0 is much smaller than σ2

1,

i.e., the measurement was either taken with a very precise or a very imprecise

measuring instrument, but in either case we know which measuring instrument

was used. Although it is possible to construct a more powerful test of µ = 0

and a confidence interval for µ with shorter expected length by not conditioning

on the observed value of U , it is clear that the resulting unconditional inference

about µ is irrelevant for any particular measurement or set of measurements from

the more accurate instrument. The power of the test and the expected length

of the confidence interval need to be calculated under the joint distribution of

(X,U) for this argument to be correct, and at least in this example it seems clear
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that the unconditional evaluation of power and expected length is inappropriate.

Unconditional confidence intervals are typically longer in more precise contexts

and shorter in less precise contexts than the conditional intervals (Fraser and

McDunnough, 1980).

This is an example of a ‘relevant subsets’ argument; the relevant subset

of the sample space is that determined by the possible values of X and the

observed value of U . It can easily be generalized: for example to a model where

the probability that U = 1 is unknown, but unrelated to µ, to a model with a

random sample size, and to a regression setting, where covariates are selected

by a random mechanism, and so on as long as the parameters determining the

ancillary statistic (sample size, or covariates) are completely uninformative about

the parameters of interest.

Next we consider an example originally given in Welch (1939), and subse-

quently revisited by many authors, such as Barndorff-Nielsen and Cox (1994),

and most recently Fraser (2004).

Example 3. Suppose X1 and X2 are iid uniform (θ − 1, θ + 1), θ real. Let T =
1
2(Y1 +Y2) and U = 1

2(Y2−Y1), where Y1 = min(X1, X2) and Y2 = max(X1, X2).

The dimension of the minimal sufficient statistic (T,U) exceeds that of the pa-

rameter, but the statistic U is ancillary, and T is a maximum likelihood estimator

of θ (although not unique). The conditional pdf of T given U is

fθ(T | U) = {2(1− U)]−11[θ−1+U<T<θ+1−U ](T ). (2.1)

Based on this conditional pdf, a 100(1 − α)% confidence interval for θ is given

by {T − (1−U)(1− α), T + (1−U)(1− α)}. It may be noted also that when U

is close to 1, then θ is very precisely determined.

On the other hand, the marginal pdf of T is

fθ(T ) = T − θ + 1 if θ − 1 < T < θ

= θ + 1− T if θ ≤ T < θ + 1.

This may lead to absurd inference for θ when U is close to 1. Then θ is essentially

known exactly, but an unconditional confidence region for θ may include values

that are precluded by the observed likelihood function.

Welch (1939) argued against conditional inference by producing two different

100(1 − α)% confidence intervals for θ: one based on a more powerful test, and



ANCILLARY STATISTICS 7

one with shorter expected length. Explicit expressions for Welch’s intervals are

given in (2.4) and (2.5) of Fraser (2004); Fraser shows, for extreme values of U ,

that Welch’s intervals may be either the full parameter space or the empty set,

but the interval based on (2.1) will not have this extreme behavior. In general

the requirement of power or average length is at odds with the requirement of

conditioning, although as a reviewer has pointed out, conditional tests may not

be less powerful than unconditional tests, in settings where no uniformly most

powerful unconditional test exists (Barnard, 1982; Severini, 1995).

The next example provides an empirical Bayes (EB) scenario where con-

ditioning with respect to an ancillary statistic can produce quite a meaningful

answer.

Example 4. (Hill, 1990). Let Xi | θi
ind∼ N(θi, 1) and θi

iid∼ N(µ,A) (i = 1, · · · , k).

Here A ∈ R+ is known, but µ ∈ R is possibly unknown. Suppose one needs a

confidence interval for one of the θi, say θ1. Writing B = (1 + A)−1, the pos-

terior distribution of θ1 is N{(1 − B)X1 + Bµ, 1 − B}. In an EB method, one

estimates µ from the marginal distribution of (X1, · · · , Xk). Since marginally

Xi
iid∼ N(µ,B−1), X̄ = k−1

∑k
i=1Xi is a complete sufficient statistic for µ and

the estimated posterior of θ1 is N{(1− B)X1 + BX̄, 1− B}. Based on this, the

shortest 100(1−α)% confidence interval for θ1 is (1−B)X1 +BX̄±zα/2
√

(1−B),

where zα/2 is the upper 100α% point of the N(0, 1) distribution.

It is clear that the above EB method does not account for the uncertainty

due to estimation of µ. To see how an ancillarity argument can overcome this, we

may note that marginally U = X1− X̄ is ancillary and U ∼ N{0, (k−1)(kB)−1}.
It is easy to check also that θ1 − {(1−B)X1 +BX̄} | U ∼ N(0, 1−B +Bk−1).

Thus the shortest 100(1−α)% confidence interval for θ1 based on this conditional

distribution is (1−B)X1 +BX̄ ± zα/2
√

(1−B +Bk−1).

Alternatively, if one takes a hierarchical Bayesian (HB) approach where

1. Xi | θ1, · · · , θk, µ
ind∼ N(θi, 1),

2. θ1, · · · , θk | µ
iid∼ N(µ,A)(A > 0), and

3. µ ∼ uniform(−∞,∞),

it turns out that (θ1 | X1, · · · , Xn, µ) ∼ N{(1 − B)X1 + Bµ, 1 − B} and (µ |
X1, · · · , Xn) ∼ N(X̄, (kB)−1). Together, they imply (θ1 | X1, · · · , Xn) ∼ N{(1−
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B)X1 + BX̄, 1 − B + Bk−1}. Thus the 100(1 − α)% confidence interval for

θ1 based on this hierarchical prior is the same as the one conditioned on the

ancillary U . Noting that Bk−1 = V (Bµ | X1, · · · , Xn), it may be noted that in

this case ancillarity accounts for the uncertainty due to estimation µ as much

as the HB procedure. While the above coincidence between the two procedures

need not always be true, conditioning on an ancillary statistic can often correct

the problem faced by a naive EB procedure. Datta et al. (2002) demonstrated

this in a framework slightly more general than that of Hill.

Examples 3 and 4 illustrate the argument that the conditional variance given

the ancillary statistic of the estimator of the parameter of interest is a more ap-

propriate measure of variability than is the unconditional variance. This is similar

to the relevant subsets argument, and in simple cases is nearly as compelling, but

does not seem to be as readily accepted.

The third role of ancillary conditioning, reduction of dimension, is most

clearly useful in the higher order approximations discussed in Section 4. But

it is already apparent in Example 2, where the minimal sufficient statistic is of

dimension 2, and the parameter of interest is of dimension 1: conditioning on

the ancillary statistic provides a 1-dimensional distribution for inference about θ.

Example 2 is a location model, and this reduction in dimension is available in a

general location model by conditioning on the residuals U = (X1− θ̂, · · · , Xn− θ̂)
where θ̂ is the maximum likelihood estimator, although any location-equivariant

estimator will do. Fisher called this ancillary statistic a configuration statistic,

and argued that it also defines a relevant subset of the sample space for inference;

this line of argument was extended and generalized in Fraser’s (1968) structural

inference. Efron & Hinkley (1978) argued for conditioning on the configuration

statistic to get a more appropriate assessment of the variance of the maximum

likelihood estimator, and showed how this could be extended to approximate

ancillarity. These asymptotic arguments are summarized in Section 4, but first

we turn to several classical examples that seem to raise red flags around ancillary

conditioning.

3. Ancillary Puzzles

Often there are problems associated with ancillary statistics. First, situations

may arise when an ancillary U may not exist. Indeed, Pena et al. (1992) have
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demonstrated this phenomenon for general discrete models. In his edited articles

by Ghosh (1988, p. 2) Basu considered the example where X1, · · · , Xn (n ≥ 2) are

iid uniform (θ, θ2), θ > 1. The MLE of θ is T = {max(X1, · · · , Xn)}1/2, while

the minimal sufficient statistic is {min(X1, · · · , Xn),max(X1, · · · , Xn)}. Basu

pointed out that in this example, there does not exist any ancillary complement

U of T . On the other hand, it is shown in Basu (1964) that in many other

situations there may exist multiple ancillary complements of the MLE T of θ,

and it is not at all clear which one to condition on. Moreover, two statistics U1 and

U2 may be individually ancillary, but (U1, U2) may not jointly be so. Thus, in the

case of a controversy as to which one of U1 and U2 should determine the reference

set, the dilemma cannot be resolved by conditioning on (U1, U2) jointly. Basu

illustrated this with an example. Stigler (2001) shows that both Edgeworth and

K. Pearson considered this example as well, though from a somewhat different

perspective.

Example 5. Let (
Xi

Yi

)
iid∼ N

{(
0

0

)
,

(
1 ρ

ρ 1

)}

i = 1, · · · , n, where ρ ∈ (−1, 1) is unknown. We let U1 =
∑n

i=1X
2
i , U2 =∑n

i=1 Y
2
i and W =

∑n
i=1XiYi. It is easy to recognize both U1 and U2 as an-

cillary, each having the χ2
n distribution. But jointly (U1, U2) is not ancillary as

corr(U1, U2) = ρ2 depends on ρ. Thus, while W/U1 and W/U2 are both unbiased

estimators of ρ (unconditionally or conditionally), V (W/U1 | U1) = (1 − ρ2)/U1

and V (W/U2 | U2) = (1 − ρ2)/U2. It is tempting to opt for the larger one of

U1 and U2 as the ancillary statistic in this example, but then the choice of the

ancillary statistic becomes entirely data-dependent, which is counter to the usual

frequentist paradigm.

Cox (1971) suggested a way to deal with multiple ancillaries in this problem.

By the identity I(θ) = E{J(θ | U)}, Cox argued that the basic role of condition-

ing on an ancillary U is to discriminate between samples with varying degrees

of information. In the presence of multiple ancillaries, choose that U for which

J(θ | U) is most variable, i.e., Vθ{J(θ | U)} is maximum. Unfortunately, in most

instances Vθ{J(θ | U)} is a function of the unknown θ, and there may not be a

unique U which maximizes Vθ{J(θ | U)} for all θ. Moreover, in Example 4, since
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Vθ{J(θ | U1)} = Vθ{J(θ | U2)}, the Cox method will fail to distinguish between

U1 and U2.

Also, there does not exist any ancillary function of the minimal sufficient

statistic (U1+U2,W ); in particular, U1+U2 is not ancillary. However, as disussed

in Cox and Hinkley (1974), U1 + U2 is approximately ancillary for small ρ. This

can be partially justified by noting that E(U1 + U2) = 2n and V (U1 + U2) =

4n(1 + ρ2). Approximate ancillarity in this example is discussed in Section 4.

The next example due to Basu (1964) is one of multiple ancillaries where

there is no clearcut choice of which one to condition on without invoking further

conditions.

Example 6. Consider a random variable X assuming values 1, 2, · · · , 6 such that

Pθ(X = j) =

{
(j − θ)/12, j = 1, 2, 3;

(j + 3− θ)/12, j = 4, 5, 6.

where θ ∈ [−1, 1]. Here the MLE of θ is given by T (X), where T (1) = T (2) =

T (3) = −1 and T (4) = T (5) = T (6) = 1. There are six possible ancillary

complements of T given by

X 1 2 3 4 5 6

U1(X) 0 1 2 0 1 2

U2(X) 0 1 2 0 2 1

U3(X) 0 1 2 1 0 2

U4(X) 0 1 2 2 0 1

U5(X) 0 1 2 1 2 0

U6(X) 0 1 2 2 1 0

A natural question is which ancillary complement one chooses under the given

circumstance. Basu left this example with a question mark. However, if one

computes the information content of T based on its conditional distribution given

these six ancillary statistics, then it turns out that for X = 1 or 4, the maxi-

mum information content lies in the conditional distributions given U1 or U4.

For X = 2 or 5, this is for U1 or U6; while for X = 3, 6, this is for U1 or U3.

Thus, considering all three situations, U1 seems to be the most suitable ancillary

statistic. From another point of view (Barnard and Sprott, 1971; Cox and Hink-

ley, 1974), under the transformation gX = X + 3 (mod 6) so that the induced
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transformation on the parameter space is g∗θ = −θ, it turns out that the only

ancillary statistic unaffected by this transformation is U1. Finally, if one uses

Cox’s (1971) criterion, it turns out that Vθ{J(θ | U1)} > Vθ{J(θ | Ui)} for all

i = 2, . . . , 6. From all these considerations, U1 seems to be the most appropriate

ancillary statistic in this example.

Basu’s next example brings out another anomaly which one may encounter

in the use of ancillary statistics.

Example 7. Basu’s third example deals with X ∼ uniform[ θ, θ + 1), 0 ≤ θ ≤ ∞.

The sample space is X = [ 0,∞), and the likelihood function

L(θ) =

{
1, if X − 1 < θ ≤ X;

0, otherwise.

Thus, every point in the interval (X − 1, X] is a MLE of θ. One such choice is

T = [X], the integer part of X. Let φ(X) = X−[X]. Then φ(X) ∼ uniform[0, 1),

and is ancillary. Since X = [X] + φ(X), {[X], φ(X)} is a one-to-one function of

the minimal sufficient statistic X, so φ(X) is the ancillary complement of [X].

Note that

[X]

{
= [θ], if φ(X) ≥ φ(θ)⇔ θ ≤ X < [θ] + 1;

= [θ + 1] = [θ] + 1, if φ(X) < φ(θ)⇔ [θ] + 1 ≤ X < θ + 1.

Also, it is easy to check that

Pθ{[X] = [θ] | φ(X)} = 1, if φ(θ) ≤ φ(X);

Pθ{[X] = [θ + 1] | φ(X)} = 1, if φ(θ) > φ(X).

Thus, the conditional distribution of the MLE [X] given φ(X) is degenerate at [θ]

or [θ + 1] depending on whether φ(X) ≥ φ(θ) or φ(X) < φ(θ). This changes the

status of [X] from a random variable to an unknown constant. However, Barnard

and Sprott (1971) did not find any anomaly in this. In their view, the likelihood

is defined in [X] in the ratio 1−φ(X) : φ(X). Thus [X] measures position of the

likelihood, and φ(X) measures its shape in the sense of the proportion into which

[X] divides the likelihood. Thus, holding φ(X) fixed will also result in holding

[X] fixed as well.

4. Approximations and Ancillarity
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Traditionally, a statistic is said to be ancillary, in a given parametric model,

if the statistic has a distribution that does not depend on the parameters in

the model. As we have seen in the measuring instrument example, there are

contexts where it is natural to extend this slightly to allow the statistic to have

a distribution that is free of the parameters of interest in the model. Some

writers insist that the ancillary statistic should be a component of the minimal

sufficient statistic, and others not, but that distinction usually has no effect on the

resulting inference if the ancillary statistic is required to have maximal dimension:

whether one conditions first and then makes the sufficiency reduction, or gets

the sufficient statistic first and then conditions, one is usually led to the same

conditional distribution with such an ancillary statistic. However the definition

is perhaps too narrow to capture the roles of the ancillary statistic outlined

in Section 2, and we think this strict emphasis on distribution has led many

readers to conclude that a theory of inference that insists on conditioning on

ancillary statistics is more problematic than it really is. The approximate theory

outlined in this section shows that by emphasizing the conditional distribution

after conditioning on an ancillary statistic, rather than the marginal distribution,

leads to a fruitful theory of likelihood based inference.

In Section 2 we saw that one role of an ancillary statistic is to give a more

relevant estimate of the information in the observed sample. This is extended in

the notion of approximate ancillarity, first discussed in Efron & Hinkley (1978).

Assume we have an independent sample X = (X1, · · · , Xn) from a scalar pa-

rameter model f(x; θ) with log-likelihood function `(θ). Efron & Hinkley (1978)

showed that there is an approximately ancillary statistic U such that

V (θ̂ | U) = j−1(θ̂){1 +Op(n−1)},

where j(θ̂) = −`′′(θ̂) is the observed Fisher information. This is the basis for the

often-repeated claim that the observed information is a better estimate of the

variance of the maximum likelihood estimator than the expected information.

They also showed that

√
n

(
j(θ̂)

I(θ̂)
− 1

)
d→ N(0, γ2

θ ), (4.1)
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where

γθ = (ν20ν02 − ν2
11)3/2/ν3/2

20

was called the statistical curvature of the model, and

νjk = E


(
∂`

∂θ

)j {∂2`

∂θ2
+ E

(
∂`

∂θ

)2
}k .

It follows from (4.1) that the statistic

U =
1− j(θ̂)/I(θ̂)

γθ̂

is approximately ancillary in the sense that
√
nU has a limiting standard nor-

mal distribution; U has come to be known as the Efron-Hinkley ancillary. It is

first-order ancillary, i.e. the normal approximation to the distribution of U has

relative error O(n−1/2). Skovgaard (1986) showed that the relative error is actu-

ally O(n−1), in a moderate deviation neighborhood of an arbitrary fixed point θ0
in the interior of the parameter space; this is called second order local ancillarity.

Local ancillarity was introduced in Cox (1980).

Example 8. In the measuring instruments example of Cox (1958) introduced

in Section 2, assume that using instrument k, X1, · · · , Xn are i.i.d. N(θ, σ2
k)

where σ2
0 and σ2

1 are known and unequal. The data are (X1, U1), . . . , (Xn, Un),

where Xi is the ith measurement and Ui is an indicator that takes the value 1 if

the first instrument is used. The observed and expected Fisher information are,

respectively,

I(θ) = (n/2)(σ−2
0 + σ−2

1 ), j(θ̂) = (n− U.)σ−2
0 + U.σ

−2
1

where U. =
∑
Ui records the number of times the first measuring instrument is

used. As the maximum likelihood estimate of θ is θ̂ =
∑n

j=1Xjσ
−2
Uj
/
∑n

j=1 σ
−2
Uj

,

we have that

V (θ̂ | U1, . . . , Un) = j−1(θ̂)

exactly in this case, and that this is indeed the appropriate estimator of the

variance.

There are several other approximate ancillary statistics that have been sug-

gested in the literature. Skovgaard (1986) showed that a second order local
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ancillary statistic suffices to construct density and distribution function approx-

imations accurate to third order, i.e. with relative error O(n−3/2) in a moderate

deviation region. Barndorff-Nielsen and Cox (1994, Ch. 7.2) discuss an approx-

imate ancillary statistic based on a likelihood ratio statistic; they call this a

directed likelihood ancillary. Suppose the statistical model forms a curved expo-

nential family:

f(x; θ) = exp{a1(θ)t1(x) + a2(θ)t2(x)− c(θ)− d(x)},

where for simplicity of notation we assume that a1 and a2 are scalar functions of

a scalar parameter θ: these define the curve in the full parameter space where the

pair (a1, a2) is unrestricted. An example is a normal distribution with mean θ and

variance θ2. If we wanted to test the fit of the curved model, relative to the full

model, we could use a likelihood ratio statistic W = 2{`(â1, â2)−`{a1(θ̂), a2(θ̂)}},
where (â1, â2) maximizes the log-likelihood over the unconstrained parameter

space. The statistic W is asymptotically distributed as χ2
1 under the “null” hy-

pothesis that the curved model is correct, and its signed square root is asymptot-

ically normal, hence ancillary to first order. It is also locally ancillary to second

order. Further adjustments to this directed likelihood ancillary can be made to

improve the order of accuracy of this approximation, although this first step is

adequate for use in the p∗ and r∗ approximations described below. Note that

this “hypothesis test” is preliminary to the desired inference for the parameter θ.

The use of ancillary statistics in goodness-of-fit testing of an assumed model is

discussed in Cox and Hinkley (1974, Ch. 2), and this is an asymptotic extension

of that idea.

Example 5 (continued). Cox and Hinkley (1974, p.34) suggest U ′ = U1 + U2 =

Σ(X2
i + Y 2

i ) as an approximate ancillary statistic for this example, as it has

mean 2n and variance 4n(1 + ρ2), so its first moment is free of ρ and its second

moment is approximately so. Wang (1993) suggested a standardized version

(U ′ − 2n)/2
√

(W 2 + n2), which has both mean and variance independent of

ρ. Defining ancillary statistics through constancy of moments is not the same

as local or approximate ancillarity, although to first order it is the same for

asymptotically normally distributed statistics.

The Efron-Hinkley ancillary statistic for this example can be calculated from

(4.1), but the explicit expression is not very informative. Since its claim to an-
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cillarity is that it has mean 0 and variance 1, and is asymptotically normally

distributed, it is likely to be equivalent to Wang’s modification of U ′. We can

also embed the model in a two-parameter exponential family and compute the

directed likelihood ancillary. Either of these ancillary statistics can be used for

higher order appoximations to the distribution of the maximum likelihood estima-

tor, although the detailed calculations are somewhat cumbersome. Reid (2003)

illustrates the construction of Fraser and Reid (1993, 1995) on this example.

The role of ancillarity in the theory of asymptotic inference is most explicit in

Barndorff-Nielsen’s p∗ approximation to the density of the maximum likelihood

estimator. This approximation is

p∗(θ̂ | u; θ) = c|j(θ̂)|1/2exp{l(θ; θ̂, u)− l(θ̂; θ̂, u)} (4.2)

where we have assumed that there is a one-to-one transformation from the sam-

ple vector x to the pair (θ̂, u), and this is explicitly indicated in the argument

of the log-likelihood function. The renormalizing constant c = c(θ, u) can be

shown to be equal to (2π)d/2{1 + O(1/n)} where d is the dimension of θ. If

the underlying model is a full exponential family, then (4.2) is a version of the

saddlepoint approximation to the distribution of the minimal sufficient statistic,

and no ancillary statistic is needed. The saddlepoint approximation is given in

Daniels (1954), and a simple derivation of (4.2) is given in Durbin (1980).

Another special case is of particular interest in connection with ancillarity: if

the underlying model is a transformation family, then (4.2) gives the exact con-

ditional distribution of θ̂, and U is the maximal invariant on the group of trans-

formations. This transformation family version of p∗ was derived in Barndorff-

Nielsen (1980), generalizing Fisher’s (1934) result for location families. In general

transformation families the maximal invariant for the group provides a natural

ancillary statistic; in Example 5 above this argument was used to choose among

ancillary statistics.

We can view the role of U as providing a complementing statistic to θ̂, in

order that the p∗ approximation is defined on a sample space that is of the same

dimension as the parameter space. Using this approximation will lose informa-

tion about θ however, unless U has a distribution free of θ, i.e. is ancillary. Since

p∗ is an approximation to the density of θ̂, it suffices that U be approximately

ancillary. If U is second order ancillary then the p∗ approximation has rela-
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tive error O(n−3/2), while if U is just first order ancillary the p∗ approximation

has relative error O(n−1). Verifying these results requires specification of the

ancillary statistic U ; a good technical reference is Skovgaard (1990).

When θ is a scalar parameter, the p∗ approximation can be re-expressed as

the approximation to the density of the signed likelihood root

r(θ) = sign(θ̂ − θ)[2{l(θ̂)− l(θ)}]1/2,

assuming the transformation from θ̂ to r is one-to-one, although the dependence

of r on θ̂ is suppressed in the notation. Inference about θ is then readily obtained

from the distribution function F (r | U ; θ), for example the p-value for testing that

θ = θ0 is F{robs(θ0) | U ; θ0}. This distribution function can also be approximated

to O(n−3/2), using a technique due to Lugannani and Rice (1980). The resulting

approximation is

F (r | U ; θ) = Φ(r∗){1 +O(n−3/2)} (4.3)

where r∗ = r+r−1 log(q/r), q = {l;θ̂(θ̂)− l;θ̂(θ)}j
−1/2(θ̂), and l;θ̂ = ∂`(θ; θ̂, U)/∂θ̂

is a sample space derivative with the ancillary statistic U held fixed. A simpler

statistic Q that does not require the determination of an explicit expression for

U , but leads to an r∗ approximation with relative error O(n−3/2) is developed in

Fraser and Reid (1993, 1995). Skovgaard (1996) suggests a statistic Q̃ that also

avoids specification of an ancillary statistic, and leads to an r∗ approximation

with relative error O(n−1); among a number of suggested versions equivalent to

this order Skovgaard’s seems to be the most accurate in examples. The connec-

tion between the three versions of r∗ are further developed in Reid and Fraser

(2008).

Although the introduction of approximately ancillary statistics appears to

introduce even more possibilities for ancillary statistics, the p∗ and r∗ approxima-

tions provide very accurate approximations to the density and distribution of the

maximum likelihood estimator; from that point of view the choice of particular

ancillary statistic is not crucial. McCullagh (1984) shows that for scalar param-

eters, all choices of approximate ancillary lead to the same p∗ approximation

to O(n−1). For implementation of the r∗ approximation (4.3), the approach of

Fraser and Reid (1995) requires only specification of ancillary directions, which

can be much simpler than finding the explicit form of the ancillary statistic: see
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for example Brazzale et al. (2007, Ch. 8).

5. Elimination of Nuisance Parameters

5.1. Extended Definitions of Ancillarity

It may be noted that the function of ancillary statistics in the presence of

nuisance parameters is quite different from what was discussed earlier. The main

objective of standard ancillarity is recovery of the loss of information or more

generally, probability calculations conditional on a relevant subset. However,

in the presence of nuisance parameters, their elimination without any loss of

information is the primary goal.

To illustrate, we begin with a model parameterized by θ = (ψ, λ), where ψ

is the parameter of the interest, and λ is the nuisance parameter. One way to

eliminate the nuisance parameter λ is to use the conditional likelihood. Suppose

the joint density of the minimal sufficient statistic (T,U) is given by

f(T,U ;ψ, λ) = f(T | U ;ψ)f(U ;ψ, λ), (5.1)

where we use f for the implied density function for the indicated variables. Then

the inference will be based on the conditional density f(T | U ;ψ), as it does not

involve λ.

One possible drawback of a conditional likelihood approach is that the con-

ditioning variable U may contain information about ψ which is lost when it is

held fixed. Hence, it may be appropriate to require that the distribution of U

does not contain any information about ψ in the presence of λ. In such cases, U

is said to be ancillary for ψ in the presence of λ.

The above requirement is met if the marginal density of U does not depend

on λ. This, however, does not happen in general, as the following example shows.

Example 9 Let X1, . . . , Xn be iid with common pdf

f(X;ψ, λ) =
Γ(ψ +X)

Γ(X + 1)Γ(ψ)
λX(1− λ)ψ,

where ψ > 0 and 0 < λ < 1. For fixed ψ, U =
∑n

i=1Xi is sufficient for λ so that

the conditional distribution of X1, . . . , Xn given U depends only on ψ. However,

U has pdf

f(U ;ψ, λ) =
Γ(nψ + U)

Γ(U + 1)Γ(nψ)
λX(1− λ)ψ,
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which depends on both ψ and λ, and is not ancillary for ψ in the usual sense.

Indeed, the Fisher information contained in U depends on both ψ and λ.

The fact that U is not ancillary in the usual sense has led to the notion

of S-ancillarity (Sandved, 1965; Sverdrup, 1966). A statistic U is said to be

S-ancillary for ψ in the presence of λ if the family of pdf’s {f(U ;ψ, λ);λ ∈ Λ}
remains the same for each ψ. More specifically, U is S-ancillary, if and only

if there exists a reparameterization of (ψ, λ) into (ψ, φ) such that the marginal

distribution of U depends only on φ. The following example given in Severini

(2000) illustrates this.

Example 10 (Severini, 2000, Example 8.3, p.280). Xi
iid∼ Poisson{exp(λ+ ψZi)},

i = 1, . . . , n. Then writing φ =
∑n

i=1 exp(λ + ψZi), U =
∑n

1 Xi is S-ancillary.

Also, then the joint conditional distribution of the Xi given U is multinomial

(U ; p1, . . . , pn) where pi = exp(ψZi)/
∑n

i=1 exp(ψZi).

However, S-ancillary statistics need not always exist. The following simple

example illustrates this.

Example 11 (Severini, 2000, Example 8.7, p. 282). Let Xi
iid∼ N(λ + ψZi, 1),

i = 1, . . . , n, where we restrict the parameter space to λ > 0. The log-likelihood

is given by l(ψ, λ) = −(n/2)(X̄−λ−ψZ̄)2, and X̄ is a P -ancillary statistic. To see

that an S-ancillary statistic does not exist, note that for ψ = 0, X̄ ∼ N(λ, 1/n)

so that the mean is positive, while if ψ = −1, X̄ ∼ N(nλ − Z̄, 1/n) so that the

mean of X̄ is any number greater than −Z̄. Thus X̄ cannot be S-ancillary for λ.

5.2. Ancillarity and Optimal Estimating Equations

Godambe (1976, 1980) also considered the concepts of sufficiency and ancil-

larity in the presence of nuisance parameters, and tied these ideas to the theory

of optimal estimating functions. Ferreira and Minder (1981) provided examples

to show how statistics satisfying Godambe’s definition of ancillarity could still

be useful for inference about the parameter of interest. Following Godambe’s

(1976) formulation, let X1, . . . , Xn be independent with pdf’s f(Xi | ψ, λi),
where ψ is the parameter of interest, while the λi are the nuisance parameters.

Let g(Xi, ψ) be a function of Xi and ψ, the parameter of interest, which satis-

fies E{g(Xi, ψ, λi)} = 0. Then g(X, ψ) =
∑n

i=1 g(Xi, ψ) is called an unbiased

estimating function, where X = (X1, . . . , Xn)T .

Godambe (1976) defined an optimal unbiased estimating function as the



ANCILLARY STATISTICS 19

minimizer of E{g2(X | ψ)/E{∂g(X, ψ)/∂ψ)}2}. Earlier (Godambe, 1960), he

showed that without any nuisance parameters, the score function was the optimal

unbiased estimating function. In the presence of nuisance parameters, he showed

that if the joint density f(X;ψ, λ1, . . . , λn) factors as

f(X;ψ, λ1, . . . , λn) = f(X;U ;ψ)f(U ;ψ, λ1, . . . , λn),

where U (possibly vector-valued) is a complete sufficient statistic for the nuisance

parameter vector (λ1, . . . , λn), then the conditional score function ∂logf(X |
U ;ψ)/∂ψ is the optimal unbiased estimating function. He also showed that the

information contained in the conditional distribution of X given U is the same

as that contained in its unconditional distribution.

In Example 9, U =
∑n

i=1Xi is a complete sufficient statistic for the nuisance

parameter λ, and so the conditional score function based on the conditional pdf

f(X | ψ) =
n∏
i=1

(
ψ +Xi − 1

Xi

)/(nψ + U − 1
U

)
is the optimal unbiased estimating function.

The above optimality of the conditional score function led to the more general

notion of P -ancillarity (partial ancillarity) due to Bhapkar (1989, 1991). Here

ancillarity in the presence of a nuisance parameter is based on the notion of

partial information for ψ. In order to define partial information, we partition

the information matrix for (ψ, λ) into submatrices according to the partition of

the parameter. Then the partial information for ψ is given by Iψψ.λ = Iψψ −
IψλI

−1
λλ Iλψ, the information in the conditional distribution of T given U . We say

that U is partial ancillary (P -ancillary) for ψ if Iψψ.λ = 0.

Example 10 (Continued). In this example

I(ψ, λ) =

(
{
∑
Zj exp(λ+ ψZj)}2/

∑
exp(λ+ ψZj)

∑
Zjexp(λ+ ψZj)∑

Zjexp(λ+ ψZj)
∑

exp(λ+ ψZj)

)
This leads immediately to Iψψ.λ = 0, i.e. the S-ancillary U is also P -ancillary.

However, in general, S-ancillarity need not not be the same as P -ancillarity.

For instance, in Example 7, U is P -ancillary but not S-ancillary. Also, Sev-

erini (2000, pages 282 and 285) gives a Gamma distribution example where the

conditioning variable U is neither S-ancillary nor P -ancillary.
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5.3. Bayesian Ancillarity

As noted in Sections 5.1 and 5.2, S-ancillarity or P -ancillarity of a statistic

U does not imply that the distribution of U does not depend on ψ, and depends

only on λ. A natural question is whether one can find an alternative definition

of ancillarity which ensures that the marginal distribution of U depends only on

λ.

To this end, Severini (1995) proposed the notion of Bayesian ancillarity. We

shall observe as a consequence of his definition that by introducing a suitable

prior, the marginal distribution of U will indeed not depend on ψ. The details

are described below.

Severini defines a statistic U to be Bayes ancillary if with respect to some

prior distribution, the posterior distribution of ψ based on the conditional distri-

bution of T given U is the same as the posterior distribution of ψ based on the

joint distribution of (T,U).

First with no nuisance parameter, U is Bayes ancillary if

f(T,U | ψ)π(ψ)∫
f(T,U | ψ)π(ψ)dψ

=
f(T | U,ψ)π(ψ)∫
f(T | U,ψ)π(ψ)dψ

.

Writing f(T,U | ψ) = f(T | U,ψ)f(U | ψ), the above simplifies to

f(U | ψ) =
∫
f(T,U | ψ)π(ψ)dψ∫
f(T | U,ψ)π(ψ)dψ

,

that is the marginal of U does not depend on ψ. So, U is ancillary in the usual

sense.

In the presence of a nuisance parameter λ, suppose (T,U) is minimal suffi-

cient for (ψ, λ), and assume as before that f(T,U | ψ, λ) = f(T | U,ψ)f(U | ψ, λ).

Once again, invoking the definition of Bayesian ancillarity, U is Bayesian

ancillary if ∫
f(T,U | ψ, λ)π(λ | ψ)π(ψ)dλ∫ ∫
f(T,U | ψ, λ)π(λ | ψ)π(ψ)dλdψ

=
f(T | U,ψ)π(ψ)∫
f(T | U,ψ)π(ψ)dψ

.

Since f(T,U | ψ, λ) = f(T | U,ψ)f(U | ψ, λ), the above simplifies to∫
f(U | ψ, λ)π(λ | ψ)dλ =

∫ ∫
f(T | U,ψ)f(U | ψ, λ)π(λ | ψ)π(ψ)dλdψ∫

f(T | U,ψ)π(ψ)dψ
.

Equivalently, f(U | ψ) =
∫
f(T | U,ψ)f(U | ψ)π(ψ)dψ/

∫
f(T | U,ψ)π(ψ)dψ.

Once again, the marginal pdf of U given ψ does not involve ψ, and U is ancillary
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in the usual sense. In Example 5, if π(λ | ψ) ∝ λ−1(1 − λ)−1, then
∫
f(U |

ψ, λ)π(λ | ψ)dλ = Γ(U)/Γ(U + 1) = U−1 which shows that U is Bayes ancillary

with respect to this prior.

5.4. Approximate Ancillarity in the Presence of Nuisance Parameters

The definition of ordinary ancillarity in the presence of nuisance parameters

is not at all straightforward, as we have seen in the previous subsections. While

it is possible to formalize the notion of approximate ancillarity in the nuisance

parameter setting, as is done for S-ancillarity in Severini (1993), the development

quickly gets very technical. However, it is possible to extend the asymptotic

approximations outlined in Section 4 to the nuisance parameter setting, using an

approximate version of (4.3).

We start with the p∗ approximation (4.2) for the distribution of the full max-

imum likelihood estimator θ̂, conditional on an approximate ancillary statistic

U . The goal is to find an approximation that can be used for inference about

the parameter of interest ψ, without specifying a value for the nuisance parame-

ter λ. One way to approach this is to consider a p∗ approximation for inference

about λ, in a model where ψ is held fixed. An approximate ancillary statistic will

be needed in constructing this, and the resulting approximation will be to the

conditional density of λ̂ψ, given the original ancillary statistic U and a further

ancillary statistic Uψ, say. Thus we have the partition

p∗(θ̂ | U ; θ) = p∗(Uψ | U ; θ)p∗(λ̂ψ | Uψ, U ; θ)

where Uψ is the approximate ancillary statistic needed for the p∗ approxima-

tion to the conditional density of λ̂ψ, and p∗(Uψ | U ; θ) is the ratio of the

two p∗ approximations. Barndorff-Nielsen (1986) showed that Uψ can be trans-

formed to a quantity r∗ψ that has, to O(n−3/2), a standard normal distribu-

tion. Further a constructive expression for r∗ψ is available that combines rψ =

sign(ψ̂ − ψ){2{lp(ψ̂) − lp(ψ)}}1/2, from the profile log likelihood, with a related

quantity qψ as

r∗ψ = rψ +
1
rψ

log
(
qψ
rψ

)
.

This leads directly to approximate inference for ψ based on Φ(r∗ψ), which has

relative error O(n−3/2) conditionally on U and unconditionally. The construc-

tion of r∗ψ requires differentiation of the log-likelihood function on this sample
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space, with U fixed. Fraser and Reid (1995) show how to compute these deriva-

tives without first obtaining an explicit expression for the approximate ancillary

statistic U ; see also Severini (2000, Ch. 7.5) and Brazzale et al. (2007, Ch. 2). It is

possible to avoid the ancillary statistic entirely by a method suggested in Skov-

gaard (1996), although the resulting approximation has relative error O(n−1)

instead of O(n−3/2).

Example 12. Suppose X1, . . . , Xn are i.i.d. from the N(µ, σ2) distribution, with

µ = ψ the parameter of interest. The expressions for r and q are given by:

r = sign (q)
[
n log

{
1 +

n(µ̂− µ2)
σ̂2

}]1/2

q =
n(µ̂− µ)/σ̂

1 + {n(µ̂− µ)2}/σ̂2
,

which are simple functions of the usual t-statistic. Expressions for r and q

for general location-scale models are given in Barndorff-Nielsen and Cox (1994,

Ex. 6.20). The detailed construction of Uψ mentioned above is not needed for

this example (Barndorff-Nielsen and Cox, 1994, Ex. 6.11). The following very

simple series expansion for r∗ was derived by Sartori (2003) and Iglesias-Gonzalez

(2007):

r∗ = t− (t+ t3)/(4n) +O(n−2). (5.2)

Expansion (5.2) is still valid when µ is replaced by Zβ, with β a vector of p

unknown parameters.

This model can be generalized in a number of directions: expressions for r

and q in general regression-scale models can be obtained explicitly from summary

formulae for q given in, for example, Brazzale et al. (2007, Ch. 6), and formulae

for nonlinear regression are given in Fraser, Wong and Wu (1999). The essen-

tial point is that the expressions derived using notions of approximate ancillarity

provide a means of calculating a pivotal quantity, r∗, which like the t-statistic in

normal theory models, provides inference for the parameter of interest with ex-

plicit specification of the nuisance parameter. The normal approximation holds

both conditionally on the approximate ancillary statistic and unconditionally.

From the point of view of the asymptotic theory, the conditional distribution

given an ancillary statistic is more useful than the precise construction and defi-

nition of ancillary statistics.
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5.5. Brown’s Ancillarity Paradox

Brown (1990) introduced a very interesting ancillarity paradox (essentially

an admissibility paradox) in the context of multiple linear regression. His main

theme was to show via (in)admissibility results that procedures which are admis-

sible conditional on some ancillarity statistics may unconditionally fail to become

so.

We begin with the following simple example of Brown.

Example 13. Let X ∼ N(µ,Σ), with Σ assumed to be positive definite. Let

U ∈ Rp with ||U || > 0, and θ = UTµ. The usual estimator of θ is UTX. Under

squared error loss, Cohen (1966) has shown that UTX is an admissible estimator

of UTµ for fixed U .

However, if U is random and Σ = E(UUT ), Brown showed that UTX is

dominated by UTδ(X), under squared error loss, where

δ(X) = X − ρ

XTΣ−1Ω−1Σ−1X
Ω−1Σ−1X

0 < ρ < 2(p− 2), p ≥ 3.

Brown established a similar phenomenon in a multiple regression problem.

Example 14. Let X ∼ Np(α1p +Zβ, σ2Ip), where Z (p× p) is the design matrix

and β (k×1) regression vector, 1p is the p-component vector of 1’s, and Ip is the

identity matrix of order p. We assume that p > k+1, and Z is a full rank matrix.

The objective is to estimate α under squared error loss L(α, a) = (a−α)2, a ∈ R1.

Let X̄ = p−11TpX, Z̄ = p−11TpZ and S = (Z − 1pZ̄
T )T (Z − 1pZ̄

T ). Here X̄

is a scalar, Z̄T is a row vector of dimension k and S is a k × k matrix, positive

definite with probability 1. The usual estimator α̂ = X̄ − Z̄T
β̂, where β̂ is the

least squares estimator β is admissible under square error loss. However, if it is

assumed that k-dimensional components of Z are iid N(0, σ2Ik), then α̂ ceases

to be an admissible estimator of α under squared error loss.

What Brown’s examples demonstrate is that conditional inference could po-

tentially be in conflict with unconditional inference. However, it appears that

there are no fundamental or conceptual difficulties associated with this conclu-

sion. This was brought out by several discussants of his paper. Another interest-

ing example of ancillarity paradox in the context of finite population sampling

appears in Godambe (1982).
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6. Conclusion

The topic of ancillarity continues to intrigue, at least in part because any

satisfactory frequentist theory of inference must incorporate conditioning, but a

wholly Bayesian approach, which automatically conditions on the data, raises

other problems, including the meaning of, and choice of, prior probabilities. In

this paper we have surveyed through examples various aspects of ancillarity and

their relation to the theory of inference.
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