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Why likelihood?
e makes probability modelling central 0;y) =logf(y;6)
e emphasizes the inverse problem of reasoning y —0
e converts a ‘prior’ probability to a posterior 7 (0) — 7(6 | y)
e provides a conventional set of summary quantities:
maximum likelihood estimator, score function, ...
o these define approximate pivotal quantities, based on

normal distribution

e basis for comparison of models, using AIC or BIC
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Example 1: GLMM

GLM: yi | up ~ exp{yjni — b(ny) + c(yj)}
linear predictor: njj = x,.jTﬂ + z,./T.u,- j=1,.n; i=1,..m
random effects: uj ~ Nk(0,X)
log-likelihood:

m

(B,x) = (y,-TX,-B - % log [Z|

i=1
1
+ log /Rk exp{yf Ziuj — 1Tb(X;B + Zu;) — > Ty u,-}du,-)

Ormerod & Wand 2012
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Example 2: Poisson AR
Poisson f(y: | at; 0) = exp(y:log pe — ut)/yi!

log put = B8+ ot
autoregression
ar=oar1+e, e~N00%), |8 <1, 0=(8,¢,0°
likelihood

LO:iy1,... yn) = /(Hf(}’t|04t 9)) f(c; 0)dax

Lapprox(0; y) via Laplace with some refinements
Davis & Yau, 2011
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Some proposed solutions

o simplify the likelihood

e composite likelihood
e variational approximation
e Laplace approximation to integrals

e change the mode of inference

e quasi-likelihood
e indirect inference

e simulate

e approximate Bayesian computation
e MCMC
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Composite likelihood

e also called pseudo-likelihood
¢ reduce high-dimensional dependencies by ignoring them

o for example, replace f(yi1, ..., Yik: ) by

pairwise marginal H bL(yj, Yy 0), or
i<y

conditional H fe(Yii | Yniipy: 0)
J

e Composite likelihood function

cL(;y) o [TT1 Wi vir: 0)

i=1j<j’
e Composite ML estimates are consistent, asymptotically
normal, not fully efficient Besag, 1975; Lindsay, 1988
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1988

Contemporary Mathem:
Volume 80, 1

COMPOSITE LIKELIHOOD METHODS

Bruce G. Lindsay'

ABSTRACT. Composite likelihood, sometimes called
pseudolikelihood, is a likelihood type object formed by adding
together individual component log likelihoods, each of which

to a marginal or event. A partial survey
is made of the applications of this method, with emphasis made on
methods for assessing, comparing, and improving efficiency. It is
shown how structural can be by

ing on i A new based on
rank likelihoods is introduced, and methods for assessing its
information is given. Also, it is shown how to construct a
stochastic Taylor series in an autonormal problem, with
concomitant improvement. in efficiency.

1. INTRODUCTION. In recent years there has been increased interest in a form
of likelihood type often called first proposed by
Besag (2]. We note that the name pseudolikelihood has been used in other
contexts as well (e.g. [9]). With apologies to Besag, we will here use the
term composite likelihood because it is descriptive of the method of
construction we wish to consider.

We start with a parametric log likelihood Z(#;y), where y represents a
vector valued random variable, and # an unknown p-dimensional real parameter.
It is presuned that the problem has regularity and that, in particular, there
exists a gradient U(8)=VZ, called the efficient score function, and Hessian
vz, where differentiation is with respect to the § vector. These are assumed
to satisfy the usual relationship
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*Supported by the National Science Foundation, DMS-8402735

This paper is in final form and no version of it will be submitted for
publication elsewhere.

1988 American Mathematical Society
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EXAMPLE 3C (Composite rank likelihood). Let Yy1++4,¥, be the ordered
values of an IID sample  IPRERYS from a continuous distribution Fp(x). In
the IID setting, constructing a composite likelihood using the components
xi"‘[i] leads back to the usual likelihood. On the other hand, if we let
Ri(x) be the rank of observation X;» and consider instead the likelihood of
Ri=r given X[j]» We are lead to the component likelihood:

L;(B) = log (Fg(yy,,)-Fg(y._,)}, where r=R;(x),
and the composite rank likelihood:

(3.8)  CL(B) = X 1og {F(¥pyy)-Falyp_)}-

weighting components to increase efficiency of score equation
Wednesday session



Exam

Approximate Likelih

ple: AR Poisson Davis & Yau, 2011
Likelihood

n

LO: Y, Vi) = / (H (v | at;e)) (v 0)dax

t=1

Composite likelihood

n—1
CL®O: yi,-- - y) =1 //f(y, | ot; O)f(Verr | arsn; 0)F(aur, cuerr; ) dardon g
t=1

consecutive pairs
Time-series asymptotic regime one vector y of increasing length

Composite ML estimator still consistent, asymptotically
normal, estimable asymptotic variance

Efficient, relative to a Laplace-type approximation
Surprises: AR(1), fully efficient; MA(1), poor; ARFIMA(0,d,0), ok
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Variat

ional methods Titterington, 2006; Ormerod & Wand, 2010
in a Bayesian context, want f(6 | y)
use an approximation q(6)
dependence of g on y suppressed

choose g(#) to be

e simple to calculate
e close to posterior

simple to calculate

e q(0) =11q(0)

e simple parametric family

close to posterior: miminize Kullback-Leibler divergence
between true posterior and approximation g

Approximate Likelin
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... variational methods Titterington, 2006; Ormerod & Wand, 2010
e example GLMM:

(5. %y) =1og [ f(y | u: )i E)du
= ZI’-’;1 (leX,-/i—% log |£| log ka exp{y;rz,-u,v—1-,rb(X,-[3+Z,-ui —%u;r):“ u,v}du,-)

high-dimensional integral

e variational solution for some choice g(u):

(B, 5:y) > / g(u) log{f(y, u; , %)/q(u)}lu

e Simple choice of g:  N(u; A\) variational parameters i, A
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Example: GLMM Ormerod & Wand, 2012, JCGS

variational approx:

0B, x) > 4B, xZ, 11, M)
= > (¥ XiB—%log[x|)
+ X0 Evengynp) (V] Zu=17b(XiB+Ziu)— FuTE = u—log{én, (u—1))})

simplifies to k one-dim. integrals
e variational estimate:

6(57 iv /]a A) = arg maXB,Z,u,/\E(ﬂa z7 H, /\)

« inference for 3, %? consistency? asymptotic normality?
Hall, Ormerod, Wand, 2011; Hall et al. 2011
e emphasis on algorithms and model selection

e.g. Tan & Nott, 2013, 2014
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Links to composite likelihood?

e VL:approx L(¢; y) by a simpler function of ¢, e.g. [] g;(0)

CL: approx f(y; 0) by a simpler function of y, e.g. []f(y;; 0)

S. Robin 2012 "Some links between variational
approximation and composite likelihoods?”

Zhang & Schneider 2012 “A composite likelihood view for
multi-label classification” JMLR V22

Grosse 2015 “Scaling up natural gradient by sparsely
factorizing the inverse Fisher matrix” ICML
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Some Links between Variational Approximation and
Composite Likelihoods?

S. Robin

UMR 518 AgroParisTech / INRA Applied Math & Comput. Sc.

NoroParisTech SéB'”

ST

MSTGA, Paris, November 22-23, 2012

http://carlit.toulouse.inra.fr/AIGM/pub/Reunion_nov2012/MSTGA-1211-Robin.pdf


http://carlit.toulouse.inra.fr/AIGM/pub/Reunion_nov2012/MSTGA-1211-Robin.pdf

Some proposed solutions

o simplify the likelihood

e composite likelihood
e variational approximation
e Laplace approximation to integrals

e change the mode of inference

e quasi-likelihood
e indirect inference

e simulate

e approximate Bayesian computation
e MCMC
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Indirect inference

e composite likelihood estimators are consistent
under conditions ...

e because log CL(0;y) = > 1L, > log (v, yjri 0)
e derivative w.r.t. 6 has expected value 0

e what happens if an estimating equation g(y; ¢) is biased?
e g1, Ym0 =0; b, — 0 Eo{g(Y;6")} =0

o 0* = k(0); invertible? 6 = k(6*) k' =k

e new estimator , = k(f,)

e k(-) is a bridge function, connecting wrong value of 6
to the right one Yi & R, 2010; Jiang & Turnbull, 2004
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... indirect inference Smith, 2008

model of interest
Vi = Gi(yi_1, %, €e1,0), 6 cRY

likelihood is not computable, but can simulate from the
model

simple (wrong) model
e~ f(ye | Y1, X6 07), 0" € RP

find the MLE in the simple model, 8* = 8*(y1,...,yn), say

use simulated samples from model of interest
to find the ‘best’ 0

‘best’ 0 gives data that reproduces §* Shalizi, 2013
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... indirect inference Smith, 2008

e simulate samples y/”, m=1,..., M at some value ¢
from the model

e compute §*(6) from the simulated data
0"(0) =argmaxd | > log f(y{" | ¥y xt: 0")
m
« choose ¢ so that 0*(f) is as close as possible to §*
e if p = d simply invert the ‘bridge function’; if p > d, e.g.

arg mein{é*(e) — 0Y"TW{h* () — 6}

e estimates of § are consistent, asymptotically normal,
but not efficient
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... non-convex optimization Grosse, 2015

Efficient algorithms

* Sham Kakade, “Non-convex approaches to
learning representations” ”

* Latent variable models (e.g. mixture models, HMM:s) are
typically optimized with EM, which can get stuck in local
optima

* Sometimes, the model can be fit in closed form using moment
matching

* consistent, but not statistically optimal

* solution often corresponds to a matrix or tensor
factorization
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Approximate Bayesian Computation  wmarin etal., 2010

e simulate ¢’ from 7(0)

e simulate data z from f(-; 0')

e if z =y then ¢’ is an observation from posterior 7 (- | y)
e actually s(z) = s(y) for some set of statistics

e actually p{s(z),s(y)} < e for some distance function p(-)

Fearnhead & Prangle, 2011

e many variations, using different MCMC methods to select
candidate values ¢’
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ABC and Indirect Inference Cox & Kartsonaki, 2012

both methods need a set of parameter values from which
to simulate: ¢’ or 6

both methods need a set of auxiliary functions of the data
s(y) or 6*(y)

in indirect inference, 6* is the ‘bridge’ to the parameters of
real interest, 0

C & K use orthogonal designs based on Hadamard
matrices to chose ¢’

and calculate summary statistics focussed on individual
components of ¢
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Some proposed solutions

o simplify the likelihood

e composite likelihood
e variational approximation
e Laplace approximation to integrals

e change the mode of inference

e quasi-likelihood
e indirect inference

e simulate

e approximate Bayesian computation
e MCMC
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Laplace approximation

(0 y) = log / f(y | u: B)g(u: T)db = log / exp{Q(u, y, 0)}db, say
0= (5,5)

- 1 -
gLap(Q;Y) = Q(U, Y, 9) - 5 |Og |Q”(U, y7‘9)| +C

using Taylor series expansion of Q(-, y, ) about i

simplification of the Laplace approximation leads to PQL.:

1
lpa(0,u;y) =logf(y | u; B) — §UTZ_1U
Breslow & Clayton, 1993

to be jointly maximized over u and ¢ and parameters in ¥

PQL can be viewed as linearizing E(y) and then using results
for linear mixed models Molenberghs & Verbeke, 2006
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Extensions of Laplace approximations
e expansions valid with p = o(n'/3) Shun & McCullagh, 1995

e expansions for mixed linear models to higher order
Raudenbush et al., 2000

e use REML for variance parameters Nelder & Lee, 1996
e integrated nested Laplace approximation Rue et al., 2009
e model f(y; | 0;); prior w(6 | ¥) parameters and hyper-par

e posterior 7(6,9 | y) < (0 | 9)w(I) [ f(yi | )
e marginal posterior

w0 19) = [ 7011 9.9) 500 | )0

Laplace Laplace
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Quasi

Approximate Likelih

-likelihood

simplify the model

E(yi:0) = wi(0);  Var(yi; 0) = ¢v(0)
consistent with generalized linear models
example: over-dispersed Poisson responses

PQL uses this construction, but with random effects
Molenberghs & Verbeke, Ch. 14

why does it work?

score equations are the same as for a ‘real’ likelihood
hence unbiased

derivative of score function equal to variance function
special to GLMs
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Some proposed solutions

o simplify the likelihood

e composite likelihood
e variational approximation
e Laplace approximation to integrals

e change the mode of inference

e quasi-likelihood
e indirect inference

e simulate

e approximate Bayesian computation
e MCMC
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