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A brief summary of some statistical issues that arose during the conference is presented.

In terms of statistical ideas, I would make a

very broad distinction between two prominent sets

of problems at this conference. First there are a

number of problems in which the main feature is a

very large amount of data, requiring new methods

and considerable computing power. An example that

has already been used with success in astronomy is

the use of false discovery rates in problems involving

a great number of tests, and we heard here about

new adaptations of wavelet and ridgelet techniques

for identifying structure in images, about smoothing

methods in multi-dimensional image processing, and

new methods for on-line data mining. I won’t at-

tempt to summarize this class of problems, although

it is clearly very important, not only in physics and

astronomy but in a number of scientific problems, es-

pecially including genomics, where there is very ac-

tive development of statistical techniques.

Another class of problems seem simpler (to a

statistician) on a first reading. An example is in-

dependent Poisson counts from background events

and possible signal events. We should not forget,

though, that elaborate experimental techniques and

considerable ingenuity in data processing, have pre-

ceded the presentation of a small amount of data.

For this setting one would expect that standard sta-

tistical methods would provide a simple, and even a

best, answer, but as we have seen even in this context

this is not always the case. Certainly inference about

the ratio of Poisson mean parameters is satisfactorily

solved using the binomial likelihood. Statistical in-

ference for the difference between two Poisson means

is somewhat more difficult, as we have to rely on

some approximate argument, and with small counts

the usual normal approximations will not be reliable.

in As Sir David Cox stressed in the panel discussion,

the science of statistics develops most fruitfully in

close collaboration with applications, and this prob-

lem is a good example of something that is indeed

sufficiently specialized to the HEP context that it

is not in the repertoire of ‘off-the-shelf’ statistical

methods.

Some general ideas which should inform the so-

lution include the very important notion that con-

fidence intervals, however developed, should have

good properties in repeated observation of the same

experimental system, even if these repetitions are hy-

pothetical. In my view the definition of ‘same exper-

imental system’ needs great care, in order to avoid

difficulties similar to, but more subtle than, the prob-

lem of two measuring instruments discussed in Cox4

and mentioned in Cousins [this volume]. Unfortu-

nately it seems extremely difficult to ‘mathematize’

this notion; statisticians have spent many years of

effort on the topic, and a single widely accepted so-

lution has not emerged. At this time the best we can

advise is to look at problems on a case by case basis.

Likelihood methods are well accepted in the

HEP community, but not always used in quite the

same manner as used by statisticians. To clarify, sup-

pose we have a single parameter model f(x; θ) and

observe a sample x = (x1, . . . , xn) of independent ob-

servations from this model. The log-likelihood func-

tion ℓ(θ;x) = log Πf(xi; θ) is a sum of n terms, and

we can apply the central limit theorem to ∂ℓ(θ;x)/∂θ

to derive the following approximations:

(θ̂ − θ)i1/2(θ)
.∼ N(0, 1)

ℓ′(θ)i−1/2(θ)
.∼ N(0, 1)

±√
[2{ℓ(θ̂) − ℓ(θ)}] .∼ N(0, 1)

where θ̂ is the maximum likelihood estimate and

i(θ) = E{−∂2ℓ(θ)/∂θ2} is the expected information.

Barlow [this volume, 2nd talk] described the second

of these as Bartlett’s statistic and the third as −2 lnL

(although I have here taken the square root, since the

parameter is scalar). Each approximation provides a

different way to compare the expected value to the

observed value, but each is a so-called ‘first order
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approximation’, because the error in the approxima-

tion is O(n−1/2). In the limit when the log-likelihood

function becomes quadratic, with second derivative

equal in the limit to its expectation, they all lead to

the same measure. To these three approximations we

can further confuse things by adding standardization

by observed information:

(θ̂ − θ)j1/2(θ̂)
.∼ N(0, 1)

ℓ′(θ)j−1/2(θ̂)
.∼ N(0, 1)

where j(θ̂) = −ℓ′′(θ̂) is the curvature of the log-

likelihood function at the maximum.

A very natural question is which of these ap-

proximations is to be preferred in finite samples, and

some reasons for expecting the log-likelihood ratio to

be preferred are that it is invariant to reparametriza-

tion, and that it preserves the asymmetry in the log-

likelihood function. It is also the leading term in a

higher order expansion, the correction term of which

uses one or other of the two j-standardized statis-

tics. Indeed the statistical literature has since Efron

& Hinkley8 preferred the j-standardization for θ̂, and

later somewhat technical development of improved

approximations to the distribution of θ̂ have con-

firmed this preference. It is related to conditioning

on ancillary statistics, i.e. functions of the data that

have a distribution exactly or approximately free of

θ.

Unfortunately however there are no general re-

sults on rates of convergence or other properties that

could lead to a definitive conclusion about which de-

parture measure to use, and case by case studies are

thus needed. Barlow [this volume, 2nd talk] showed

that for the exponential mean, Bartlett’s statistic,

i.e. the score function using the i-standardization

(which coincidentally is the same in this example

as the i-standardized maximum likelihood estimate),

is better approximated by a standard normal than

the log-likelihood ratio. This I found quite surpris-

ing, given my ‘prior belief’ in the log-likelihood ratio

statistic. The explanation is that Bartlett’s statistic

has exact mean 0 and exact variance 1, these mo-

ments coinciding with those of the normal approx-

imation, which is therefore reasonably accurate for

moderate deviations. However if we move out to the

tails the likelihood ratio statistic is more accurately

approximated by a standard normal than Bartlett’s

statistic. Figure 1 compares the p-values, as func-

tions of the mean parameter, to the exact p-value

based on the gamma distribution, for a sample of

size 5 and an observed sample mean of 1, first in the

‘1-sigma’ range and then in the ‘4-sigma’ range. This

example is also treated in Barndorff-Nielsen & Cox3.

It does seem very difficult to draw any gen-

eral conclusions about the first order approxima-

tions, although for most examples I have looked at

the normal approximation to the square root of the

likelihood ratio has been the most accurate in the

tails. A relatively simple combination of this with

the Bartlett score statistic, as outlined in Reid &

Fraser11 gives essentially exact results for the expo-

nential example.

As has been mentioned several times during this

workshop, adding nuisance parameters further com-

plicates the issues. There are a number of somewhat

different lines of argument in the statistical litera-

ture leading to the idea of improving the profile like-

lihood by adding a term to allow for the estimation

of the nuisance parameters. The simplest motivation

is from a Bayesian argument. We can get an approx-

imation for the marginal posterior distribution of the

parameter of interest as follows:

πm(ψ | x) =

∫
π(ψ, ν | x)dν

∝
∫

exp{ℓ(ψ, ν)}π(ψ, ν)dν

=

∫
exp{ℓ(ψ, ν)}π(ν | ψ)dνπ(ψ)

.
= exp{ℓ(ψ, ν̂ψ)}|jνν(ψ, ν̂ψ)|−1/2 ·

π(ν̂ψ | ψ)
√

(2π)k−1π(ψ)

where θ = (ψ, ν) has been partitioned into a param-

eter of interest ψ and a k − 1-dimensional nuisance

parameter ν, and jνν(ψ, ν̂ψ) = −∂2ℓ(ψ, ν)/∂ν∂νT is

the portion of the observed information matrix re-

lated to the nuisance parameter. The last approxi-

mation comes from a Laplace approximation of the

integral defining the marginal posterior.

Now it can be shown that if ψ and ν are orthog-

onal parameters, in the sense that the (ψ, ν) com-

ponents of the expected Fisher information matrix

are 0, then ν̂ψ = ν̂ + Op(1/n); in the absence of pa-

rameter orthogonality the error would be Op(1/
√
n).

Sweeting13 in the discussion of Cox & Reid6 argued

that if ψ and ν are orthogonal then it would make

sense to assign independent priors to them, in which

case the term involving the prior on ν vanishes (to

O(n−1)) and the log of the posterior marginal den-
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Fig. 1. Plot of p-value functions for exponential mean parameter τ , computing using the exact distribution (solid), the normal
approximation to the square root of the log-likelihood difference (dashed), and the normal approximation to the standardized
score (dot-dash). Horizontal lines show the 0.10 and 0.90 limits (left), as well as the 0.0001 and 0.9999 limits (right). The sample
size n is 5 and the sample mean is 1. Very similar results are obtained for both smaller and larger values of n.

sity is

log πm(ψ | x) .
= ℓ(ψ, ν̂ψ)− 1

2
log |jνν(ψ, ν̂)|+log π(ψ);

this is one way to motivate the so-called “adjusted”

or “modified” profile log-likelihood

ℓa(ψ) = ℓ(ψ, ν̂ψ) − 1

2
log |jνν(ψ, ν̂)|.

If ψ is scalar then a transformation from some orig-

inal parameterization (ψ, φ) to (ψ, ν) where ν is or-

thogonal to ψ can always be found; Cox & Reid7

indicate how to compute the adjusted profile with-

out explicitly reparameterizing the model. The term

“modified profile likelihood” is usually used for one

of a family of adjusted profile log-likelihoods of the

form

ℓ(ψ, ν̂ψ) − 1

2
log |jνν(ψ, ν̂)| +B(ψ)

where B(ψ) is to be specified, but is always O(1), i.e.

the same order as the log j term, and serves among

other things to make the result parameterization in-

variant, which the simple version ℓa is not.

Although motivated by higher order asymptotic

arguments, only first order asymptotics apply to ℓa
and its variants. In particular we have, in analogy to

the results for a scalar parameter

(ψ̂a − ψ){−ℓ′′a(ψ̂a)}1/2 .∼ N(0, 1)

ℓ′a(ψ){−ℓ′′a(ψ̂a)}−1/2 .∼ N(0, 1)

±√
2{ℓa(ψ̂a) − ℓa(ψ)} .∼ N(0, 1)

where ψ̂a is the maximum likelihood estimate from

ℓa(ψ). These approximations are no more accurate

in asymptotic theory than those based on the profile

likelihood but in practice the adjustment for nuisance

parameters seems to lead to better approximations,

especially when the number of nuisance parameters

is large.

There are two classes of models where, at least

for some of their parametrizations, exact elimination

of nuisance parameters is possible: exponential fam-

ily models and non-normal linear regression models.

Some examples are given in Reid & Fraser11. In these

two classes the adjusted profile likelihood ℓa arises

quite naturally as a kind of ‘leading term’.



October 21, 2005 10:48 WSPC/Trim Size: 11in x 8.5in for Proceedings Reid-summary

4

In models with a single scalar parameter, there

is a uniquely determined, albeit improper, prior for

which Bayesian posterior upper limits are guaranteed

to have frequentist coverage to high accuracy: more

precisely we have

Pr(θ ≤ θ(1−α)(x) | x) = Prθ(θ
(1−α)(X) ≥ θ)+O(1/n)

if and only if the prior is proportional to i1/2(θ);

the first probability above is calculated under the

posterior distribution, and defines θ(1−α)(x) by the

requirement that this probability equal α, and the

second probability is calculated under the sampling

model f(x; θ). In multiparameter problems, match-

ing priors do not exist in general, but there is an im-

portant exception. In statistical models whose math-

ematical structure is generated by a group of trans-

formations, then it is possible to obtain the exact

distribution of the maximum likelihood estimator by

conditioning, and this is identical to the Bayesian

posterior distribution for a special choice of prior

measure related to the group structure; see Fraser9,

Barndorff-Nielsen2 and also Podobnik & Zivko (2005,

this volume). These arguments do not apply however

to models for discrete data.

A recurring theme in this meeting has been the

possible dangers in using flat priors in multiparam-

eter problems. An early and compelling example

is described in Example 10.6 of Cox & Hinkley5.

Suppose X1, . . . , Xn are independent normal random

variables with mean µi and variance σ2, and that

µi = EXi = γ + βρx0+ia, 0 ≤ ρ ≤ 1

where x0 and a are known, and θ = (γ, β, ρ, σ). In

a linear regression model, the matching prior and

most usual prior is proportional to dβdσ/σ, so a very

natural ‘flat’ extension of this is to choose the prior

π(θ) ∝ dγdβdσ/σdρ, 0 ≤ ρ ≤ 1;

however the marginal posterior for ρ concentrates on

the points ρ = 0 and ρ = 1. I don’t know if this phe-

nomenon is widespread or not, but the fact that one

can so easily get into trouble in a relatively simple

with a seemingly vague choice of prior is somewhat

worrying. Heinrich [this volume] also raises several

issues with flat priors. There is an active research ef-

fort in the statistics community to investigate what

have come to be called ‘objective’ priors; the most

recent conference was ‘OBayes5’, held in June, 2005.

Speaking as a statistician who has been largely

involved with theoretical issues, it is exciting to dis-

cuss these issues in the context of applications to

high energy physics, and I look forward to further

fruitful collaborations between the two disciplines.
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