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Abstract: In a parametric model, parameters are often partitioned into parameters of interest and nuisance
parameters. However, as the data structure becomes more complex, inference based on the full likeli-
hood may be computationally intractable or sensitive to potential model misspecification. Alternative
likelihood-based methods proposed in these settings include pseudo-likelihood and composite likelihood.
We propose a simple adjustment to these likelihood functions to reduce the impact of nuisance parameters.
The advantages of the modification are illustrated through examples and reinforced through simulations.
The adjustment is still novel even if attention is restricted to the profile likelihood. The Canadian Journal
of Statistics 42: 544–562; 2014 © 2014 Statistical Society of Canada

Résumé: Les paramètres d’un modèle sont souvent catégorisés comme nuisibles ou d’intérêt. À mesure
que la structure des données devient plus complexe, la vraisemblance peut devenir incalculable ou sensible
à des erreurs de spécification. La pseudo-vraisemblance et la vraisemblance composite ont été présentées
comme des solutions dans ces situations. Les auteurs proposent un ajustement simple de ces fonctions de
vraisemblance afin d’atténuer l’effet des paramètres nuisibles. Les avantages offerts par cette modification
sont illustrés par des exemples et appuyés par des simulations. Cet ajustement est inédit même si les auteurs
restreignent leur attention aux profils de vraisemblance. La revue canadienne de statistique 42: 544–
562; 2014 © 2014 Société statistique du Canada

1. INTRODUCTION

Likelihood functions play a key role in statistical inference. However, in many complex models,
the likelihood function may be difficult to evaluate, or even to specify. To address these concerns,
many alternative likelihood methods, including pseudo-likelihoods (Gong & Samaniego, 1981;
Severini, 1998b) and composite likelihoods (Besag, 1974; Lindsay, 1988; Cox & Reid, 2004) have
been proposed. One advantage of an alternative likelihood function over an estimating function
is that likelihood ratio type statistics can be used to set confidence regions and test statistical
hypothesis about parameters (Hanfelt & Liang, 1995).

Suppose that we observe n independent random variables Yi, i = 1, . . . , n, with density
function f (y; ψ), where ψ = (ψ1, . . . , ψp+q) = (θ, φ), θ is a p-dimensional parameter of
interest and φ is a q-dimensional nuisance parameter. The log-likelihood for ψ is given by
L(ψ) = ∑n

i=1 log f (yi; ψ), and L̃(θ) = L(θ, φ̃(θ)) is the profile log-likelihood for θ, where yi

is the observed value of Yi and φ̃(θ) = argmaxφL(θ, φ). The simplest approach for estimation
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and inference about θ is to treat the profile likelihood as an ordinary likelihood. However, this
ignores the error associated with estimating the nuisance parameters. Various adjustments to the
profile likelihood have been proposed in order to reduce the sensitivity to nuisance parameters; see
Barndorff-Nielsen (1983), Barndorff-Nielsen & Cox (1994), Cox & Reid (1987), Fraser (2003),
McCullagh & Tibshirani (1990), Pace & Salvan (2006), Severini (1998a) and Stern (1997). As
shown by McCullagh & Tibshirani (1990) and Stern (1997), the profile score function for θ

is biased with expected value O(1) and a suitable adjustment typically reduces the bias of the
associated score function to O(n−1). Recently, these types of adjustments have been extended to
estimating equations; see Adimari & Ventura (2002), Bellio, Greco, & Ventura (2008), Jorgensen
& Knudsen (2004), Rathouz & Liang (1999), Severini (2002) and Wang & Hanfelt (2003).

While adjustments for the profile likelihood are well studied, little has been done with respect
to reducing the impact of nuisance parameters in alternative likelihood functions, such as the
pseudo-likelihood function and the composite likelihood function. The purpose of the current
article is to fill this gap. We propose a simple non-additive adjustment, with the goal of reducing
the bias of the score function to O(n−1). While the adjustment can be analytically derived in some
specific examples, we propose a first order approximation method to calculate the adjustment for
general models. When applied to the profile likelihood, the adjustment is still novel, while its
asymptotic expansion agrees with the adjustment suggested by Stern (1997) to first order.

Chandler & Bate (2007) and Pace, Salvan, & Sartori (2011) considered adjustments to the
composite likelihood. Since the asymptotic null distribution of the composite likelihood ratio test
is not chi-squared (Varin, Reid, & Firth, 2011), the aim of their procedures is to calibrate the
limiting distribution so that it can be compared to the chi-square distribution. When applied to
composite likelihood, the proposed method reduces the impact of nuisance parameters and is thus
quite different from adjustments to composite likelihood proposed by Chandler & Bate (2007)
and Pace, Salvan, & Sartori (2011). These latter involve completely different procedures.

We introduce the pseudo-likelihood and some examples in Section 2. The adjusted pseudo-
likelihood is described in Section 3, and we illustrate the calculation of the adjustment in Section
4. The theoretical properties of the adjusted pseudo-likelihood are established in Section 5. In
Section 6, we revisit the examples and conduct simulation studies to evaluate the finite sample
performance of the adjustment. Our method is applied to adjust the profile composite likelihood
and profile likelihood in Sections 7 and 8, respectively. Section 9 contains a general discussion.

2. BACKGROUND ON PSEUDO-LIKELIHOOD

The profile likelihood is obtained by maximizing out the nuisance parameter φ for fixed θ. As
an alternative, Gong & Samaniego (1981) proposed a pseudo-likelihood approach, in which φ is
estimated by a single convenient estimator, say φ̃. For instance, φ̃ can be obtained by solving
an unbiased estimating equation. The log pseudo-likelihood L(θ, φ̃), can be used for estimation
and inference about θ. Under some regularity conditions, Gong & Samaniego (1981) showed that
the maximizer of L(θ, φ̃) remains consistent and asymptotically normal, provided φ̃ is consistent
and asymptotically normal. The limiting distribution of the associated log-likelihood ratio test is
derived in Liang & Self (1996); see also Chen & Liang (2010), which considers testing boundary
parameters.

Example 1: Variance component model
Consider the model

Y = Xβ + ε, ε ∼ N{0, �(θ)},

where Y is a n × 1 vector of response variables, X is a n × q design matrix, �(θ) is a n × n

matrix indexed by an unknown parameter of interest θ with dimension p, and β is the nuisance
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parameter. In pedigree analysis, it has been a standard procedure to estimate β by the conventional
least square estimator β̃ = (XTX)−1XTY , and conduct inference about θ based on L(θ, β̃), where
L(θ, β) is the log likelihood based on data Y = y. This pseudo-likelihood approach is widely
used in the field of genetic epidemiology; see Abney, McPeek, & Ober (2000), Khoury, Beaty, &
Cohen (1993) and Santamaria et al. (2007).

Example 2: A general setting for pseudo-likelihood
Chen & Liang (2010) introduced a general setting, in which inference based on the pseudo-

likelihood is a natural choice. Suppose that the log-likelihood can be decomposed into two parts
L(θ, φ) = L1(θ, φ) + L2(φ), where both L1(θ, φ) and L2(φ) are log-likelihood functions for some
observed random variables. We could estimate φ by φ̃ = argmaxφL2(φ) and then plug it in L1(θ, φ)
to construct the log pseudo-likelihood L1(θ, φ̃). An example in the field of statistical genetics is
studied in Section 6 (Liang, Rathouz, & Beaty, 1996).

3. ADJUSTED PSEUDO-LIKELIHOOD

Let L̃(θ) = L(θ, φ̃) denote the log pseudo-likelihood for θ. Assume that indices a, b, c, . . . range
over 1, . . . , p, indices e, f, g, e′, f ′, g′ . . . range over p + 1, . . . , p + q and indices r, s, t . . . range
over 1, . . . , p + q. Derivatives are indicated by subscripts; for instance, Lr(ψ) = ∂L(ψ)/∂ψr and
Lrs(ψ) = ∂2L(ψ)/∂ψr∂ψs. Let the true value of the parameter be ψ0 = (θ0, φ0). The expec-
tation evaluated at the true model is denoted by E0(·) = E(·; ψ0). Denote λrs = E0{Lrs(ψ0)},
λrst = E0{Lrst(ψ0)} and λr,s = E0{Lr(ψ0)Ls(ψ0)}. Note that λrs, λrst and λr,s, etc. are of order
O(n) under standard regularity conditions (Severini, 2000). Let λef be the q × q matrix inverse
of λef . Einstein summation is adopted, for instance, xay

a denotes
∑

xay
a, where the summation

is over all possible values of a.
The idea of the adjustment is to consider a transformation of θ, such that after adjustment the

pseudo-score function for θ has mean 0. As shown in Appendix, E0{L̃a(θ0)} = O(1), implying
that the true parameter θ0 is not the solution of E0{L̃a(θ)} = 0. We define the target parameter
θ∗
n(ψ0) as the solution to

E0{L̃a(θ)|θ=θ∗
n(ψ0)} = 0. (1)

The pseudo-score function becomes exactly unbiased if we evaluate the parameter at θ∗
n(ψ0)

instead of θ0. Let θ̃ be the solution of ∂L̃(θ)/∂θ = 0. The target parameter θ∗
n(ψ0) can be interpreted

as the target of the estimator θ̃, in the sense that θ∗
n(ψ0) satisfies (1) and θ̃ satisfies the sample

version of (1), where the expectation is replaced with the sample average. Note that θ∗
n(ψ0) may

depend on the nuisance parameter φ0, which can be estimated by φ̃. The explicit form of θ∗
n(ψ0)

is often unknown, but it can be estimated using the first order approximation method described
in Section 4. Hereafter, for notational simplicity, we drop the dependence of θ∗

n(ψ0) on n, and
write θ∗(ψ0) or θ∗. The transformation θ∗ is also known as the bridge function in the model
misspecification literature introduced by Jiang & Turnbull (2004) and Yi & Reid (2010) in models
without nuisance parameters. A reviewer has asked if θ∗ is always well-defined, and in general the
answer to this question seems difficult. We think it should be studied case by case; for instance,
in Example 1, we have θ∗ = θtr(Q�−1Q�)/n. Hence, θ∗ exists and is unique.

To better understand the impact of nuisance parameters on estimation, we consider the fol-
lowing decomposition of θ̃ − θ0,

θ̃ − θ0 = (θ̃ − θ∗) + (θ∗ − θ0).

The first term θ̃ − θ∗ represents the random fluctuation of θ̃ around the target parameter θ∗ due
to the random noise from the data. The second term θ∗ − θ0 characterizes the bias of estimation
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in finite samples. The presence of θ∗ − θ0 is due to the estimation of nuisance parameters. To see
this, when the model contains no nuisance parameters, the pseudo-score functions L̃a(θ) in (1)
are replaced by the score functions La(θ), and therefore, by definition, we obtain θ∗ = θ0. While
we will show that θ∗ − θ0 = o(n−1/2) in Section 4, it can be large for small n.

To reduce the impact of nuisance parameters, we would like θ∗ to be as close as possible to
θ0, after adjusting the location of the likelihood surface. More precisely, our adjustment is given
by replacing θ in L̃(θ) with θ∗, and we define the adjusted log pseudo-likelihood for θ as

L̃∗(θ) = L̃

[
θ∗{ψ̃(θ)}

]
,

where ψ̃(θ) = (θ, φ̃). The adjusted pseudo-likelihood is constructed by embedding the bridge
function into the log pseudo-likelihood. This differs from the additive form of other adjustments
to the profile log-likelihood (McCullagh & Tibshirani, 1990; Chandler & Bate, 2007).

4. CALCULATION OF THE ADJUSTED PSEUDO-LIKELIHOOD

In this section, we derive a simple formula for the first order approximation to θ∗. Starting from
Equation (1), a Taylor expansion about θ0 gives

0 = E0{L̃a(θ∗)} = E0{L̃a(θ0)} + (θ∗b − θb
0)E0{L̃ab(θ0)} + O(n||θ∗ − θ0||2), (2)

where || · || is the Euclidean norm. Under mild regularity conditions (Severini, 2000),
E0{L̃ab(θ0)} = O(n), and by Appendix, E0{L̃a(θ0)} = O(1). Therefore, from Equation (2), we
have θ∗ − θ0 = O(n−1). Combining this with the expansion in Appendix, we obtain

θ∗a − θa
0 = ρa(ψ0) + O(n−2) = αbβ

ab + O(n−2). (3)

Here, ρa(ψ0) = αbβ
ab = O(n−1), where αb is an approximation to E0{L̃b(θ0)}, and βab is a

p × p matrix inverse of βab, where βab is an approximation to the pseudo-information matrix
E0{−L̃ab(θ0)}. In Appendix, we derive explicit expressions for αb and βab under two scenarios.
The first scenario is that the explicit form of the estimator φ̃ is given directly, and the second
scenario is that φ̃ is defined implicitly as the solution of a set of unbiased estimation functions.
These two situations can cover a broad range of estimation methods for nuisance parameters used
in pseudo-likelihood inference.

From Equation (3), ρ characterizes the leading term in the amount of shift from the true
parameter to the new target parameter. Therefore, a first order approximation to the adjusted log
pseudo-likelihood is given by

L̃∗∗(θ) = L̃{θ + ρ̃(θ)},

where ρ̃(θ) = ρ(θ, φ̃). Note that ρ̃(θ) is obtained by plugging φ̃ into ρ(θ, φ). To make our notation
system more coherent, we use K̃(θ) to denote the quantity K(θ, φ) if φ is estimated by φ̃. Under
the assumption that ∂ρ(ψ0)/∂ψ = O(n−1), the resulting estimation error of replacing φ0 in
ρ(ψ0) = ρ(θ0, φ0) with φ̃ is o(n−1), that is, ρ̃(θ0) − ρ(ψ0) = o(n−1).

5. PROPERTIES OF THE ADJUSTED PSEUDO-LIKELIHOOD

In this section, we present the asymptotic properties associated with the first order approximation
to the adjusted log pseudo-likelihood L̃∗∗(θ), and indicate that the same results hold for the exact
version L̃∗(θ) as well.
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5.1. First Order Properties of Adjusted Pseudo-Likelihood
Let θ̃∗∗ denote the root of L̃∗∗

a (θ) = 0, for a = 1, . . . , p. The Taylor expansion of L̃∗∗
a (θ̃∗∗) = 0

about θ0 yields

θ̃∗∗a − θa
0 = −L̃∗∗ab(θ0)L̃∗∗

b (θ0) + op(n−1/2),

where L̃∗∗ab(θ0) is the p × p matrix inverse of L̃∗∗
ab(θ0). Since by assumption ∂ρ(ψ0)/∂ψ =

O(n−1) and by definition L̃∗∗(θ) = L̃{θ + ρ̃(θ)}, we have L̃∗∗ab(θ0) − L̃ab(θ0) = op(n−1), where
L̃ab(θ0) is the matrix inverse of L̃ab(θ0). In addition,

L̃∗∗
b (θ0) = L̃b(θ0) + ρ̃c(θ0)L̃bc(θ0) + op(1),

where ρ̃c(θ0)L̃bc(θ0) = Op(1). These together imply that

θ̃∗∗a − θa
0 = −L̃ab(θ0)L̃b(θ0) + op(n−1/2). (4)

Recall that θ̃ is the solution of ∂L̃(θ)/∂θ = 0. By the asymptotic expansion (4), we find that
θ̃∗∗ is asymptotically equivalent to θ̃, that is, W∗∗

e (θ0) − We(θ0) = op(1), where W∗∗
e (θ0) =

n1/2(θ̃∗∗ − θ0) and We(θ0) = n1/2(θ̃ − θ0). Define the pseudo-likelihood ratio test (PLRT) as
W(θ0) = 2{L̃(θ̃) − L̃(θ0)} and the adjusted pseudo-likelihood ratio test (APLRT) as W∗∗(θ0) =
2{L̃∗∗(θ̃∗∗) − L̃∗∗(θ0)}. The following theorem establishes the asymptotic distribution of APLRT.

Theorem 1. Assume that φ̃ has the following asymptotic distribution n1/2(φ̃ − φ0) →
N(0, �22). Then under the same regularity conditions (A1)–(A6) in Gong & Samaniego (1981),

n1/2(θ̃∗∗ − θ0) →d N{0, I−1
11 (I11 + I12�22I

T
12)I−1

11 },

where

I11 = lim
n→∞ E0

{
− 1

n

∂2L(θ0, φ0)
∂θ∂θT

}
, I12 = lim

n→∞ E0

{
− 1

n

∂2L(θ0, φ0)
∂θ∂φT

}
,

andW∗∗(θ0) →d

∑p
j=1 δjUj , whereU ′

js are independentχ2
1 variables and δ′

js are the eigenvalues

of I−1
11 (I11 + I12�22I

T
12).

The proof of Theorem 1 follows by Theorem 2.2 in Gong & Samaniego (1981) and our Equation
(4) and hence is omitted. When the score function for θ is orthogonal to the score function for φ,
that is, I12 = 0, the asymptotic distribution of W∗∗(θ0) reduces to χ2

p. While W∗∗(θ0) and W(θ0)
have the same limiting distribution with the same eigenvalue, W∗∗(θ0) has better finite sample
performance, because our adjustment alleviates the impact of nuisance parameters.

5.2. Higher Order Properties of the Adjusted Pseudo-Likelihood
To demonstrate the theoretical advantage of our adjustment, we consider higher order properties
of the pseudo-score function. To show the following two theorems, we require that ∂ρ(θ0, φ0)/∂φ
is O(n−1), which is true if ∂λrs/∂ψ and ∂λr,s/∂ψ, etc. are O(n). The proofs of the theorems are
shown in the Supplementary Materials. As shown in Appendix, without any adjustment, we have
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E0{∂L̃(θ0)/∂θ} = O(1). The following theorem shows that the bias of the adjusted pseudo-score
function is reduced by an order of magnitude.

Theorem 2. The bias of the adjusted pseudo-score function is O(n−1), that is,

E0{∂L̃∗∗(θ0)/∂θ} = O(n−1).

The pseudo-score function falls into the catalogue of estimating functions. In the estimating
function framework, a well-known criterion for measuring the amount of information loss due to
the unknown parameters is the mean square error criterion (MSE) (Liang, 1987; Wang & Hanfelt,
2003). The MSE of the adjusted pseudo-score function in our context can be defined as

MSE(∂L̃∗∗(θ)/∂θ) = E0||∂L̃∗∗(θ)/∂θ − ∂L(θ, φ)/∂θ||2, (5)

where || · || is the Euclidean norm. Note that the score function ∂L(θ, φ0)/∂θ with φ = φ0 is
the optimal estimating equation for θ, in the sense that it maximizes the Godambe information
(Godambe, 1960). In general, the MSE is a measure of the closeness of the estimating equation to
its counterpart assuming nuisance parameters are known. Given the MSE criterion, the following
theorem establishes the superiority of the adjusted pseudo-score function under the parameter
orthogonality condition, that is, E0{∂2L(ψ0)/∂θ∂φ} = 0.

Theorem 3. Ignoring the terms of order o(1), we have

MSE{∂L̃∗∗(θ0)/∂θ} ≤ MSE{∂L̃(θ0)/∂θ},

if θ is orthogonal to φ.

In the proof of Theorem 3, we have shown that MSE{∂L̃∗∗(θ0)/∂θ} and MSE{∂L̃(θ0)/∂θ} are
O(1). Thus, Theorem 3 demonstrates that the adjusted pseudo-score function is asymptotically
closer to the oracle score function ∂L(θ, φ0)/∂θ under the MSE criterion. When θ is a scalar, the
orthogonality of θ and φ can be always achieved, after a reparametrization of φ (Cox & Reid,
1987). Similar properties are established by Liang (1987) and by Wang & Hanfelt (2003) under
orthogonality conditions, for estimating equations derived from adjusted profile log-likelihoods.

6. EXAMPLES

6.1. Example 1: Variance Component Models
The log pseudo-likelihood is given by

L̃(θ) = L(θ, β̃) = −1
2

log
[

det{�(θ)}
]

− 1
2
YTQT�−1(θ)QY, (6)

where det represents the determinant of a matrix and Q = I − X(XTX)−1XT. The derivative of
the log pseudo-likelihood with respect to θ is

∂L(θ, β̃)
∂θa

= −1
2

tr
{

�−1(θ)
d�(θ)
dθa

}
+ 1

2
YTQT�−1(θ)

d�(θ)
dθa

�−1(θ)QY,

where tr is the trace of a matrix. By Theorem 1, the limiting distribution of the corresponding
adjusted pseudo-likelihood ratio test is χ2

p, due to the orthogonality of β and θ. By Theorem 3,
under the orthogonality condition, the adjusted pseudo-score function has smaller mean square
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Table 1: Empirical rejection rate of Wald, score, pseudo-likelihood ratio test (PLRT), adjusted
pseudo-likelihood ratio test (APLRT) and adjusted score test (AS) for H0 : θ = 1 in Example 1 (nominal

type I error 0.05), where �(θ) = θ�, � is an exchangeable matrix with correlation parameter ρ.

ρ = 0.3 ρ = 0.7

n Wald test Score test PLRT APLRT AS Wald test Score test PLRT APLRT AS

5 0.471 0.011 0.221 0.140 0.081 0.462 0.012 0.220 0.153 0.077

7 0.345 0.013 0.146 0.092 0.068 0.332 0.016 0.142 0.090 0.067

10 0.275 0.017 0.110 0.084 0.063 0.281 0.018 0.116 0.080 0.061

20 0.172 0.034 0.073 0.060 0.052 0.176 0.032 0.076 0.057 0.051

30 0.127 0.041 0.071 0.059 0.053 0.129 0.039 0.070 0.059 0.052

40 0.112 0.047 0.069 0.060 0.056 0.113 0.044 0.066 0.058 0.054

50 0.098 0.044 0.063 0.055 0.055 0.096 0.047 0.060 0.053 0.054

error than the pseudo-score function. Thus, similar to the standard score test, we construct an
adjusted score test (AS) based on the adjusted pseudo-score function.

In our first simulation scenario, we assume X1i = 1, X2i ∼ N(0, 1), β = (1, 1), �(θ) = θ�,
where � is an exchangeable matrix with known correlation ρ, and θ = 1. The parameter of interest
is θ. The number of simulations is 10,000.

In the first scenario, the bridge can be shown to be θ∗(θ) = θtr(Q�−1Q�)/n, which is inde-
pendent of nuisance parameters. The adjusted pseudo-likelihood is L̃∗(θ) = L̃(θ∗(θ), β̃) and the
adjusted pseudo-score function is ∂L̃∗(θ)/∂θ. Table 1 summarizes the empirical rejection rate of
various tests. It has been well documented in the literature that the Wald-type inference can be ill
behaved, and this concern is alleviated by using the likelihood ratio type statistic (Hauck, Walter,
& Donner, 1977). The results in Table 1 confirm this conclusion. We find that the Wald test tends
to underestimate the nominal level, even if the sample size is as large as 50. On the other hand, the
rejection rate for the score test is much smaller than the nominal level for small sample size. It is
seen that our proposed APLRT performs consistently better than PLRT. Moreover, the adjusted
score test (AS) performs best among these five procedures under all scenarios considered, and it
produces satisfactory results even when n = 5.

In this example, it is instructive to compare the confidence intervals. The interval [θ1, θ2] is a
95% confidence interval based on the PLRT, if any θ ∈ [θ1, θ2] satisfies 2{L̃(θ̃) − L̃(θ)} ≤ q0.95,
where θ̃ is the maximizer of L̃(θ) and q0.95 is the 95% quantile of the chi-square distribution
with 1 degree of freedom. Interestingly, we observe that if [θ1, θ2] denotes the 95% confidence
interval based on the PLRT, then [θ1δ, θ2δ] is the 95% confidence interval based on the APLRT,
where δ = n/tr(Q�−1Q�). Thus, calculating the 95% confidence interval based on the APLRT
involves no additional steps, and δ can be interpreted as an inflation factor which represents the
ratio of the lengths of the two confidence intervals. As shown in Figure 1, the confidence interval
based on the APLRT is wider than that based on the PLRT, especially when n is small. From a
hypothesis testing perspective, the PLRT produces a confidence interval that is too narrow, and
tends to reject the null hypothesis more frequently than the nominal type I error. On the other
hand, the APLRT has slightly larger confidence intervals and more accurate empirical rejection
rate than PLRT; see Table 1. As n increases, the ratio of the lengths of two confidence intervals
approaches 1.
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Figure 1: Plot of the inflation factor δ (ratio of the lengths of confidence interval based on APLRT to that
based on PLRT).

To illustrate the usage of the proposed method for multidimensional parameter of interest,
we consider a second simulation scenario. As above we suppose that �(θ, ρ) = θ�(ρ), where
�(ρ) is an exchangeable matrix with unknown correlation parameter ρ, but we assume that a two
dimensional parameter (θ, ρ) is the parameter of interest. The same data generating process as in
the first scenario is adopted. After some algebra, we can show that the target parameter (θ∗, ρ∗)
is the solution of the following equations

θ∗ = θtr{Q�−1(ρ)Q�(ρ∗)} and tr{�−1(ρ)A} = tr{Q�−1(ρ)A�−1(ρ)Q�(ρ∗)}θ∗/θ, (7)

where A is a n × n matrix with diagonal elements 0 and off-diagonal elements 1. Given values
of (θ, ρ), (7) can be solved numerically. The adjusted pseudo-likelihood function is L̃(θ, ρ) =
L(θ∗(θ, ρ), ρ∗(θ, ρ), β̃), where L(θ, ρ, β̃) is given by (6), and �(θ) is replaced with �(θ, ρ). The
comparison of the empirical rejection rate based on various tests is shown in Table 2. We find
that the APLRT and the AS have similar performance and both outperform the Wald, score and
pseudo-likelihood ratio tests.

6.2. Example 2: A General Setting for Pseudo-Likelihood with Applications to
Genetic Linkage Analysis
To illustrate the pseudo-likelihood method in the general setting, we consider the following
example from the linkage analysis, where the data consist of genetic marker data M and trait
data T . The likelihood function is proportional to f (M|T ; θ, φ)f (T ; φ), where φ represents an
unknown penetrance parameter for the trait locus and θ represents the recombination fraction
between a trait locus and a marker. Liang, Rathouz, & Beaty (1996) demonstrated that the
pseudo-likelihood estimator is more efficient than the conditional likelihood estimator based
on the model f (M|T ; θ, φ) and almost as efficient as the maximum likelihood estimator by
theoretical analysis and simulations. More importantly, the pseudo-likelihood approach is more
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Table 2: Empirical rejection rate of Wald, score, pseudo-likelihood ratio test (PLRT), adjusted
pseudo-likelihood ratio test (APLRT) and adjusted score test (AS) for H0 : θ = 1, ρ = 0.3 and

H0 : θ = 1, ρ = 0.7 in Example 1 (nominal type I error 0.05), where �(θ) = θ�, � is an exchangeable
matrix with correlation parameter ρ.

ρ = 0.3 ρ = 0.7

n Wald test Score test PLRT APLRT AS Wald test Score test PLRT APLRT AS

10 0.314 0.006 0.145 0.084 0.083 0.325 0.010 0.147 0.087 0.079

20 0.232 0.028 0.083 0.069 0.065 0.220 0.030 0.078 0.064 0.066

30 0.146 0.040 0.075 0.061 0.063 0.138 0.034 0.076 0.063 0.059

40 0.103 0.045 0.064 0.053 0.056 0.110 0.042 0.070 0.055 0.058

50 0.083 0.042 0.060 0.054 0.056 0.087 0.045 0.065 0.054 0.054

flexible in the sense that one is allowed to estimate φ externally through segregation analysis.
Thus, the pseudo-likelihood approach is often preferred in linkage analysis.

For illustration, we consider a simple situation in which the trait is governed by a single
autosomal dominant locus with two alleles, say D and d, and the markers have two codominant
alleles, say C and B. The joint probabilities and observed frequencies of (T, M) are given in
Table 3. It is easily seen that the full log-likelihood L(θ, φ) and the marginal log-likelihood
L2(φ) = log f (T ; φ) are given by

L(θ, φ) = n11 log{(1 − θ)φ/2} + n12 log(θφ/2) + n21 log{(1 − φ + θφ)/2} + n22 log{(1 − θφ)/2},

and

L2(φ) = n1+ log(φ/2) + n2+ log(1 − φ/2),

respectively. The conditional log-likelihood of the marker data M given the trait data T is
L1(θ, φ) = L(θ, φ) − L2(φ). Maximizing the marginal log-likelihood L2(φ) yields φ̃ = 2n1+/n.
After some algebra, the first order approximation in Equation (3) is given by ρ = A/λ, where

A = φ(1 − 2θ)
2(1 − (1 − θ)φ)2 + φ(1 − 2θ)

2(1 − θφ)2 ,

λ = − nφ

2(1 − θ)θ
− nφ2(2 − φ)

2(1 − θφ)(1 − (1 − θ)φ)
.

The adjusted log pseudo-likelihood is therefore given by L1(θ + ρ̃(θ), φ̃). The range of θ is from
0 to 0.5 and higher values of θ imply weaker linkage. In this example, θ and φ are not orthogonal.
The limiting distribution of PLRT and APLRT is given by Theorem 5.1, in which the elements of
information matrix are

I11 = φ

2(1 − θ)
+ φ

2θ
+ φ2

2(1 − φ + θφ)
+ φ2

2(1 − θφ)
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Table 3: Observed frequencies and probabilities of combinations of T and M.

Marker

Trait CB BB Marginal

Affected n11 n12 n1+
(1 − θ)φ/2 θφ/2 φ/2

Unaffected n21 n22 n2+
(1 − (1 − θ)φ)/2 (1 − θφ)/2 1 − φ/2

Marginal n+1 n+2 n

1/2 1/2 1

and

I12 = − 1
2(1 − φ + θφ)

+ 1
2(1 − θφ)

,

respectively.
In the simulation study, we set θ = 0.2 and θ = 0.3. Note that when θ is close to the boundary,

the behaviour of PLRT is not regular (Chen & Liang, 2010). In Theorem 1, I11 and I12 can be
computed algebraically with parameters replaced by their estimates. Then the corresponding
quantiles of the asymptotic distributions in Theorem 1 are used as the critical values to calculate
the empirical rejection rate. The results from 10,000 simulations are shown in Table 4. The
following facts are observed. First, the Wald test is inaccurate especially when n is small. Second,
the score test has an accurate rejection rate and often outperforms the PLRT. Third, the APLRT
outperforms the PLRT and the AS outperforms the score test. This suggests that our adjustment
by reducing the impact of nuisance parameters works well in finite samples.

Table 4: Empirical rejection rate of Wald, score, pseudo-likelihood ratio test (PLRT), adjusted
pseudo-likelihood ratio test (APLRT) and adjusted pseudo-score test (AS) in Example 2 (nominal type I

error 0.05).

n Wald test Score test PLRT APLRT AS

θ = 0.2, φ = 0.4

20 0.017 0.038 0.029 0.038 0.042

40 0.025 0.039 0.044 0.050 0.046

60 0.037 0.042 0.064 0.055 0.046

θ = 0.3, φ = 0.6

20 0.022 0.044 0.028 0.045 0.047

40 0.028 0.047 0.042 0.050 0.048

60 0.032 0.048 0.062 0.051 0.049

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



554 YANG NING, KUNG-YEE LIANG AND NANCY REID Vol. 42, No. 4

7. ADJUSTED PROFILE COMPOSITE LIKELIHOOD

The composite likelihood, defined as the product of likelihoods for a set of marginal or conditional
events, has been successfully applied in many areas of statistics. Well-known examples include
independence likelihoods and pairwise likelihoods. Let Lc(ψ) = ∑n

i=1
∑K

k=1 log f (Ak(yi), ψ)
be a composite log-likelihood for ψ = (θ, φ), where f (Ak(yi), ψ) is the probability density of the
kth event about random variable Yi, that is, Ak(Yi). In many applications, the sample size n is
large and the number of events K is small or moderate. Hence, the asymptotic regime considered
for composite likelihood is n → ∞ and K is fixed. For inference on θ, we can construct the
profile composite log-likelihood L̃c(θ) = Lc(θ, φ̃(θ)), where φ̃(θ) = argmaxφLc(θ, φ). A review
of composite likelihood methods is given in Varin, Reid, & Firth (2011).

In contrast to the pseudo-likelihood, which is based on a genuine likelihood function, and
a consistent estimator of nuisance parameters, the composite likelihood is not a genuine like-
lihood function. Similar to the pseudo-score function, the profile composite score function
∂L̃c(θ)/∂θ has mean O(1). Hence, we can use the same method to adjust the profile compos-
ite log-likelihood L̃c(θ). Specifically, the adjusted profile composite log-likelihood is given
by L̃c

∗
(θ) = L̃c[θ∗{ψ̃(θ)}], where ψ̃(θ) = {θ, φ̃(θ)}, and the target parameter θ∗(ψ0) satisfies

E0{L̃c
a(θ)|θ=θ∗(ψ0)} = 0.

The adjusted profile composite log-likelihood L̃c
∗
(θ) can be calculated using the same first

order approximation method in Section 4. Similar to (3), we have

θ∗a − θa
0 = ρa(θ0) + O(n−2) = αbβ

ab + O(n−2), (8)

where ρa(θ0) = αbβ
ab. For composite likelihoods, αb is an approximation to E0{L̃c

b(θ0)}, and
βab is an approximation to E0{−L̃c

ab(θ0)}. Under the asymptotic framework that the sample
size n goes to infinity and the number of events K is fixed, the cumulants such as E0{Lc

ab(θ0)}
and E0{Lc

abe(θ0)} are of order n. The derivation of αb and βab is sketched in the Supplementary
Materials.

In contrast to the pseudo-likelihood method, with composite likelihood, the corresponding
full likelihood may involve additional nuisance parameters besides φ. For instance, association
parameters are typically not present in the independence likelihood. In this case, θ∗ as well as the
adjusted profile composite log-likelihood may depend on some unidentified nuisance parameters.
This identifiability issue can be addressed by applying the first order approximation method in
Section 4, as that approximation only relies on the lower order cumulants of composite likelihood
functions, which could be estimated empirically, even if θ∗ is not identifiable. More detailed
discussion on the identifiability issue is provided in the Supplementary Materials.

Let θ̃ be the maximizer of L̃c(θ), θ̃∗∗ be the maximizer of L̃c
∗∗

(θ), W(θ0) = 2{L̃c(θ̃) − L̃c(θ0)}
denote the composite likelihood ratio test (CLRT) and W∗∗(θ0) = 2{L̃c

∗∗
(θ̃∗∗) − L̃∗∗(θ0)} denote

the adjusted composite likelihood ratio test (ACLRT). Let

I = lim
n→∞ E0

{
− 1

n

∂2Lc(ψ0)
∂ψ∂ψT

}
, J = lim

n→∞ E0

{
1
n

∂Lc(ψ0)
∂ψ

(
∂Lc(ψ0)

∂ψ

)T}
,

denote the sensitivity matrix and variability matrix (Varin, Reid, & Firth, 2011). The Godambe
information matrix is given by G = IJ−1I. With the partition ψ = (θ, φ), we partition I and I−1

as

I =
(

I11 I12

I21 I22

)
, I−1 =

(
I11 I12

I21 I22

)
,

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2014 PSEUDO-LIKELIHOOD FUNCTIONS 555

and similarly for G and G−1. Similar to Section 5.1, it is easily seen that θ̃ and θ̃∗∗ are asymp-
totically first order equivalent. The following theorem analogous to Theorem 1 establishes the
asymptotic distribution of ACLRT.

Theorem 4. Under the same regularity conditions in Molenberghs & Verbeke (2005),

n1/2(θ̃∗∗ − θ0) →d N(0, G11),

andW∗∗(θ0) →d

∑p
j=1 δjUj , whereU ′

js are independentχ2
1 variables and δ′

js are the eigenvalues
of (I11)−1G11.

This theorem is useful for determining the critical values of the adjusted composite likelihood
ratio test. Note that, due to the information bias from the composite likelihood, we typically
find I 	= J , which implies G11 	= I11. Thus, unlike the (adjusted) pseudo-likelihood ratio test,
the (adjusted) composite likelihood ratio test may not have the limiting χ2 distribution, even
under the parameter orthogonality condition, defined by I12 = 0. For the higher order properties
described in Section 5.2, it is easily seen that Theorems 2 and 3 remain valid for the adjusted
profile composite likelihood.

7.1. Example 3: Pairwise Likelihood for the Probit Model
Let Yi = (Yi1, . . . , Yim) denote a m-dimensional vector of binary measurements on subject i,
i = 1, . . . , n. The probability of a positive response Yij , for j = 1, . . . , m, conditionally on a
random effect ai, is specified as

�−1{P(Yij = 1|ai)} = XT
ijθ + ai,

where �(x) denotes the standard normal distribution function, Xij is a set of covariates associated
with the fixed effect θ and ai ∼ N(0, σ2) is the random effect. Inference about θ and σ2 can be
based on the pairwise log-likelihood (Renard, Molenberghs, & Geys, 2004) given by

Lc(θ, σ2) =
n∑

i=1

∑
1≤k<k′≤m

[
I(Yik′ = 1, Yik = 1) log �2(ηik′ , ηik; ρ)

+ I(Yik′ = 1, Yik = 0) log{�(ηik′ ) − �2(ηik′ , ηik; ρ)}
+ I(Yik′ = 0, Yik = 1) log{�(ηik) − �2(ηik′ , ηik; ρ)}

+ I(Yik′ = 0, Yik = 0) log{1 − �(ηik) − �(ηik′ ) + �2(ηik′ , ηik; ρ)}
]
,

where �2(x, y; ρ) denotes the standardized bivariate normal distribution function with correlation
ρ = σ2/(1 + σ2), and ηik = XT

ikθ/(1 + σ2)1/2.
Assume that we are interested in the possibly multidimensional parameter θ and σ2 is treated as

a nuisance parameter. Let �′(z) denote the derivative of �(z) with respect to z, and �
(j)
2 (z1, z2; z3)

denote the derivative of�2(z1, z2; z3) with respect to zj for j = 1, 2, 3. It is seen that the composite
score function for θ is given by

∂Lc(θ, σ2)
∂θ

=
n∑

i=1

∑
1≤k<k′≤m

[
I(Yik′ = 1, Yik = 1)

�2θ(ηik′ , ηik; ρ)
�2(ηik′ , ηik; ρ)

+ I(Yik′ = 1, Yik = 0)
�θ(ηik′ ) − �2θ(ηik′ , ηik; ρ)
�(ηik′ ) − �2(ηik′ , ηik; ρ)
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+ I(Yik′ = 0, Yik = 1)
�θ(ηik) − �2θ(ηik′ , ηik; ρ)
�(ηik) − �2(ηik′ , ηik; ρ)

+ I(Yik′ = 0, Yik = 0)
−�θ(ηik) − �θ(ηik′ ) + �2θ(ηik′ , ηik; ρ)
1 − �(ηik) − �(ηik′ ) + �2(ηik′ , ηik; ρ)

]
,

where

�θ(ηik) = XT
ik�

′(ηik)
(1 + σ2)1/2 , �2θ(ηik′ , ηik; ρ) = XT

ik′�
(1)
2 (ηik′ , ηik; ρ) + XT

ik�
(2)
2 (ηik′ , ηik; ρ)

(1 + σ2)1/2 .

The composite score function for σ2 has the same form as that for θ, in which �θ(ηik) and
�2θ(ηik′ , ηik; ρ) are replaced with

�σ2 (ηik) = − XT
ik�

′(ηik)
2(1 + σ2)3/2 ,

and

�2σ2 (ηik′ , ηik; ρ) = −XT
ik′�

(1)
2 (ηik′ , ηik; ρ)θ + XT

ik�
(2)
2 (ηik′ , ηik; ρ)θ

2(1 + σ2)3/2 + �
(3)
2 (ηik′ , ηik; ρ)

(1 + σ2)2 .

Calculating the explicit forms for the second and third order derivatives of Lc(θ, σ2) is possible
but tedious. Instead, we applied numerical differentiation to compute the empirical estimates of
the Godambe information matrix G in Theorem 4 and the first order approximation ρ in the
Supplementary Materials.

In the simulation study, we assume that there is only one covariate Xij ∼ N(0, 1) and
(θ0, θ1) = (0, 1). The number of simulations is 5000. We compare the performance of the Wald
test, composite score test, composite likelihood ratio test (CLRT), two types of adjusted composite
likelihood by Chandler & Bate (2007) and Pace, Salvan, & Sartori (2011) (CLRT-C and CLRT-P)
and our proposed adjusted composite likelihood ratio test (ACLRT). Note that the critical values
for CLRT and ACLRT are obtained from the corresponding quantiles of the linear combination
of χ2

1 in Theorem 4, and the critical values for CLRT-C and CLRT-P are obtained from the quan-
tiles of χ2

2. In Table 5, we find that the empirical rejection rate from the Wald and score tests is
considerably higher than the nominal level. The adjusted composite likelihood by Chandler &
Bate (2007) and Pace, Salvan, & Sartori (2011) (CLRT-C and CLRT-P) seems to slightly improve
the composite likelihood ratio test (CLRT). However, both CLRT-C and CLRT-P are not accurate
enough for small sample sizes. As expected, ACLRT yields the most accurate estimated type I
error among the six testing procedures.

8. APPLICATIONS TO THE PROFILE LIKELIHOOD

The method described in Section 3 can be applied to the profile likelihood as well. Let
M(θ) = L{θ, φ̂(θ)} be the profile log-likelihood for θ, where φ̂(θ) is the maximizer of L(θ, φ) for a
fixed θ. Our adjusted profile log-likelihood is M∗(θ) = M[θ∗{ψ̂(θ)}], where ψ̂(θ) = {θ, φ̂(θ)} and
θ∗ is defined by equation (1) with L̃(θ) replaced by M(θ). In contrast to the adjustment proposed
in McCullagh & Tibshirani (1990), M∗(θ) is well defined, even if θ is multidimensional. By a
Taylor series expansion, we have

M∗(θ) = M(θ) + ρaMa + Op(n−1),
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Table 5: Empirical rejection rate of Wald, score, CLRT, CLRT-C, CLRT-P and ACLRT in Example 3
(nominal type I error 0.05), where m = 3, θ = (0, 1).

σ2 n Wald test Score test CLRT CLRT-C CLRT-P ACLRT

1 10 0.164 0.132 0.108 0.121 0.098 0.078

20 0.147 0.142 0.101 0.115 0.098 0.082

30 0.119 0.115 0.088 0.085 0.082 0.063

40 0.088 0.079 0.070 0.069 0.062 0.054

2 10 0.173 0.147 0.095 0.123 0.092 0.077

20 0.148 0.133 0.088 0.093 0.085 0.070

30 0.140 0.139 0.089 0.093 0.085 0.068

40 0.095 0.059 0.052 0.060 0.060 0.055

and this can be shown to be equivalent to Stern’s adjustment (Stern, 1997) ignoring the error
of order Op(n−1). From this perspective, our derivation explains how Stern’s adjustment is con-
structed and it also provides a well interpreted target likelihood M∗(θ) to which Stern’s adjustment
approximates.

8.1. Profile Likelihood Inference in Example 1
To illustrate the usage of the proposed adjusted profile log-likelihood M∗(θ), we revisit the
variance component model. Assume that Xi = 1 and �(θ) = θIn, where In is the n × n iden-
tity matrix. As shown by McCullagh & Tibshirani (1990), the modified profile log-likelihood
is given by Lmp(θ) = −(n − 1) log θ/2 − s2/(2θ), with the maximizer θ̃ = s2/(n − 1), where
s2 = ∑n

i=1(Yi − Ȳ )2/n. By the definition of θ∗, it is easily shown that θ∗(θ) = θ(n − 1)/n. Then,
the adjusted profile log-likelihood is given by M∗(θ) = Lmp(θ)n/(n − 1), with the same maxi-
mizer θ̃. By the definition of ρ, the first order approximation to θ∗ is given by θ(n − 3)/(n − 2),
which differs from the exact result by O(n−2).

We consider the following simulation scenario. Let β = 1, θ = 1, and the number of
simulations be 10,000. We compare the performance of the profile likelihood ratio test (PLRT),
modified profile likelihood ratio test (MPLRT), exact adjusted profile likelihood ratio test
(eAPLRT) and adjusted profile likelihood ratio test via first order approximations (apAPLRT) in
Figure 2. As expected, apAPLRT is very close to eAPLRT as long as n > 5. Moreover, eAPLRT
and apAPLRT perform better than PLRT, while MPLRT is the best in terms of the empirical
rejection rate. This is because Lmp(θ) corresponds to the restricted likelihood which is a valid
marginal likelihood function for θ alone McCullagh & Tibshirani (1990). From this perspective,
the impact of nuisance parameters is entirely eliminated.

Pace & Salvan (2006) proposed a novel least favourable target log-likelihood L(θ, φθ), where
φθ is defined as the maximizer of E{L(θ, φ)} with respect to φ for fixed θ. As discussed in Section
3, our method also provides an interpretable target log-likelihood M{θ∗(ψ)}. Both likelihoods
can be called as target likelihoods, and they are not available in practice, because φθ in L(θ, φθ)
and θ∗(ψ) in M{θ∗(ψ)} are unknown. However, there exist key differences between these two
likelihoods. Note that, a natural estimator of φθ is φ̂(θ), that is the maximizer of L(θ, φ) for a
fixed θ. By replacing φθ with φ̂(θ) in L(θ, φθ), we obtain the profile log-likelihood L{θ, φ̂(θ)}. As
shown by McCullagh & Tibshirani (1990), the profile score function has the bias of order O(1),
and therefore, a further bias correction procedure, such as that in McCullagh & Tibshirani (1990),
is required in order to reduce the bias. On the other hand, the adjusted profile log-likelihood M∗(θ)
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Figure 2: Empirical rejection rate of PLRT, MPLRT, eAPLRT and apAPLRT as a function of sample size
n. The horizontal line represents the nominal type I error 0.05. The ◦, �, + and × symbols correspond to

the PLRT, MPLRT, eAPLRT and apAPLRT, respectively. The + and × symbols may overlap.

as a plug-in counterpart of M{θ∗(ψ)}, only has a bias of order O(n−1). From this perspective, the
nuisance parameter effect has been reduced by the proposed target likelihood M{θ∗(ψ)} but not
by the least favourable target likelihood L(θ, φθ).

9. DISCUSSION

In this article, we have described a simple non-additive adjustment to reduce the impact of nuisance
parameters. A first order approximation method is proposed to calculate the adjustment for general
models. The adjustment reduces the bias as well as the MSE of the score type functions. Numerical
studies demonstrate satisfactory performance of the method under various models.

Consider the orthogonal parameter preserving transformations, that is, (θ, φ) �→ (w(θ), k(φ)),
where w(θ) and k(φ) are one to one and smooth. The pseudo-likelihood under the new parametriza-
tion (w(θ), k(φ)) can be constructed by estimating k(φ) by k(φ̃), since k(φ) does not involve θ.
Hence, the pseudo-likelihood under the new parametrization is well defined. We can show from
the definition that the adjusted pseudo-likelihood is invariant under such reparameterization. Simi-
larly, we can show that the adjusted profile composite log-likelihood L̃c

∗
(θ) is invariant under more

general transformations that preserve the parameter of interest, that is, (θ, φ) �→ (w(θ), k(θ, φ)),
where w(θ) is one to one and smooth, and k(θ, φ) is smooth. As discussed in the end of Section
5, when θ is a scalar, there exist parameter of interest preserving transformations such that w(θ)
and k(θ, φ) are orthogonal.

Our proposed procedure has several extensions. First, the method can be applied to adjust the
generalized profile likelihood (Severini, 1998b). The generalized profile log-likelihood is given
by L{θ, φ̃(θ)}, where L(θ, φ) is the log-likelihood and φ̃(θ) is an estimate of φ which may not
be identical to the constrained maximum likelihood estimator φ̂(θ) defined in Section 8. Second,
it is of interest to apply the proposed method to the composite likelihood in which the nuisance
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parameters are estimated by an estimator other than the constrained maximum composite likeli-
hood estimator. Third, our procedure should be applicable to other types of likelihood functions,
including partial likelihood and empirical likelihood. What is needed is a score function that is
not unbiased, possibly due to the estimation of nuisance parameters. If the bridge function θ∗ can
be calculated analytically, then correction is straightforward. In the more general case when it
cannot, we need to rely on the cumulants of the alternative likelihood function having the same
order in n as assumed in Theorem 2.

In the current article, we focus on correcting the bias of the score type functions. However,
the adjusted profile log-likelihood M∗(θ) does not reduce the information bias to second order
(Diciccio et al., 1996). Due to the information bias of the composite likelihood, our proposed
adjustment does not simplify the asymptotic distribution of the ACLRT, which is a possible limi-
tation of the method. Recently, Pace, Salvan, & Sartori (2011) proposed a new type of adjustment
with the purpose of correcting the information bias. Based on our adjusted profile composite
log-likelihood, a further adjustment similar in spirit to Pace, Salvan, & Sartori (2011) can be used
to calibrate the ACLRT. The performance of this procedure is worth further investigation.

APPENDIX
In this section, we will illustrate how to derive the leading term in (3), that is αa and βab. For
simplicity, we omit the parameter ψ0 in some likelihood quantities, when they are evaluated at
ψ0, such as La = La(ψ0). A Taylor expansion of L̃a(θ0) = La(θ0, φ̃) about φ0 yields,

L̃a(θ0) = La + Lae(φ̃e − φe
0) + 1

2
Laef (φ̃e − φe

0)(φ̃f − φ
f
0 ) + Op(n−1/2)

= La + λae(φ̃e − φe
0) + (Lae − λae)(φ̃e − φe

0) + 1
2
λaef (φ̃e − φe

0)(φ̃f − φ
f
0 ) + Op(n−1/2).

In the first scenario, where the explicit form of φ̃ is given, we obtain

E0{L̃a(θ0)} = αa + o(1),

where

αa = λaeE0(φ̃e − φe
0) + E0{(Lae − λae)(φ̃e − φe

0)} + 1
2
λaef E0{(φ̃e − φe

0)(φ̃f − φ
f
0 )}.

In the second scenario, if φ̃ is the solution of a q-dimensional unbiased estimating equation
H(y; φ) = 0 with E0{H(y; φ)} = 0, the result can be simplified. First, we need to introduce more
notation. Let H(y; φ) = {He(y; φ), Hf (y; φ), . . .}. Note that the subscript here merely indicates
the component of H , and we denote Hef (φ) = ∂He(y; φ)/∂φf , and κef = E0(Hef (φ0)). Since the
estimating equation H(y; φ) may not be the derivative of an objective function, the first index is not
exchangeable with the latter ones in Hef (φ) and κef . Let κe,f = E0(HeHf ), κeg,f = E0(HegHf ),
γae,g = E0(LaeHg) and κef be the q × q matrix inverse of κef . Note that

γa,g = E0(LaHg) =
∫

∂f (y; θ0, φ0)
∂θa

Hg(y; φ0) dy = ∂

∂θa
E0{Hg(y; φ0)} = 0.

A Taylor expansion of H(x, φ̃) = 0 around φ gives

φ̃e − φe
0 = −κgeHg + κgeκhf (Hgf − κgf )Hh − 1

2
κgeκg′e′

κhf κge′f Hg′Hh + op(n−1).
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Following the arguments in the Appendix of Severini (2002), we obtain

E0(φ̃e − φe
0) = κgeκhf κgf,h − 1

2
κgeκg′e′

κhf κge′f κg′,h + O(n−2), (9)

E0(φ̃e − φe
0)(Lae − λae) = −κgeγae,g + O(n−1), (10)

E0(φ̃e − φe
0)(φ̃f − φ

f
0 ) = κgeκhf κg,h + O(n−2). (11)

From Equations (9)–(11), we obtain,

αa = λaeκ
geκhf (κgf,h − 1

2
κg′e′

κge′f κg′,h) − κgeγae,g + 1
2
λaef κgeκhf κg,h. (12)

Next, we will derive βab. By Taylor expansion, we have

L̃ab(θ0) = Lab(ψ0) + Labe(ψ0)(φ̃e − φe
0) + op(n1/2).

Since Labe(ψ0)(φ̃e − φe
0) = Op(n1/2), we obtain E0{L̃ab(θ0)} = λab + O(n1/2). This result holds

under both scenarios. Thus, as an approximation to E0{−L̃ab(θ0)}, we have βab = −λab.
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