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Abstract

Tests of significance are used in statistics to assess the agreement between data and models. This article describes how such
tests are formulated and used, illustrates this with several examples, and discusses some difficulties in interpretation that have
been raised.

A test of significance assesses the agreement between the data
and a hypothesized statistical model. The magnitude of the
agreement is expressed as an observed level of significance, or p-
value, which is the probability of obtaining data as or more
extreme than the observed data, if the hypothesized model
were true. A very small p-value suggests that either the observed
data are not compatible with the hypothesized model or an
event of very small probability has been observed. A large
p-value indicates that the observed data are compatible with the
hypothesized model. As the p-value is a probability, it must be
between 0 and 1, and a very common convention is to declare
values smaller than 0.05 as ‘small’ or ‘statistically significant’
and values larger than 0.05 as ‘not statistically significant.’ The
historical rationale for this very arbitrary cut-off point is that
the calculation of a p-value was difficult, and tables useful for
common statistical models were prepared for general use.

To make this more concrete, it is necessary to consider
statistical models and the notion of a (simplifying) hypothesis
within that model. The theory of this is outlined in Section
Model-Based Inference, with some more specific points
considered in Section Further Topics. Section Difficulties with
Significance Tests provides some brief comments on criticisms
of significance tests. This introduction concludes with a highly
idealized example to convey the idea of data being inconsistent
with a hypothesized model.

Example 1. Students in a statistics class partake in an activity
to assess their ability to distinguish between two competing
brands of cola, and to identify from taste alone their preferred
brand. Each of the 20 students expresses a preference for one
brand or the other, but just one student claims to be able to
discriminate perfectly between the two. Twenty cups of each
brand are prepared by the instructor and labeled ‘1’ and ‘2.’
Each student is presented with a pair of cups and asked to
record which label corresponds to Brand A. The result is that 12
students correctly identify the competing brands, although the
student who claimed a perfect ability to discriminate identified
the brands incorrectly.

The labeling of the cups as 1 or 2 by the instructor was
completely random, i.e., cup 1 was equally likely to contain
Brand A or B. The students did not discuss their opinions with
their classmates, and the taste testing was completed fairly
quickly. Under these conditions, it is plausible that each student
has a probability of 12 of identifying the brands correctly simply
by guessing, so that about 10 students would correctly identify
the brandswith no discriminatory ability at all. That 12 students
did does not seem inconsistent with guess work, and the p-value

helps to quantify this. The probability of observing 12 or more
correct results if one correct result has probability 1

2 and the
guesses are independent can be computed by the binomial

formula as
n� 20

12

�
þ
� 20
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�
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�20
20
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�20

¼ 0:34:

there is no evidence from these data that the number of correct
answers could not have been obtained by guessing: in more
statistical language assuming a binomial model, the observed
data is consistent with probability of success 1

2.
The student who claimed to have perfect discrimination,

but actually guessed incorrectly, argued that her abilities should
not be dismissed on the basis of one mistake, so the class
carried out some computations to see what the p-value for the
same observed data would be if the number of pairs of cups
was increased. The probability of one or zero mistakes in a set
of n trials for various values of n, is given in Table 1. From this
we see that, for example, one or no mistakes in five trials is
consistent with guess work but the same result in 10 trials is
much less so.

In both parts of this example we assumed a model of
independent trials, each of which could result in a success or
failure, with constant probability of success. Our calculations
also assumed this constant probability of success was 0.5. This
latter restriction on the model is often called a ‘null hypothesis’
and the test of significance is a test of this null hypothesis; the
p-value measures the consistency of the data with this null
hypothesis. In many applications the null hypothesis plays the
role of a conservative position that the experimenter hopes to
disprove, and one reason for requiring rather small p-values

Table 1 Probability of zero or one
mistakes in n independent Bernoulli trials
with probability of a mistake ¼ 0.5

n Probability

5 0.1875
6 0.1094
7 0.0625
8 0.0352
9 0.0195
10 0.0107
11 0.0059
12 0.0032
13 0.0017
14 0.0009
15 0.0002
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before declaring statistical significance is to raise the standard
of proof required to replace a relatively simple working
hypothesis by one that is possibly more complex and less well
understood.

As formulated here the hypothesis being tested is that the
probability of a correct choice is 0.5, and not the other aspects
of the model, such as independence of the trials, and
unchanging probability of success. The number of observed
successes does not measure such model features, it provides
information only on the probability of success. Functions of
the data that do measure such model features can be con-
structed, and from these significance tests that assess the fitness
of an assumed model; these play an important role in statistical
inference as well.

Model-Based Inference

Models and Null Hypothesis

We assume that we have a statistical model for a random
variable Y taking values in a sample space Y, described by
a parametric family of densities ff ðy; qÞ; q˛Qg. Tests of
significance can in fact be constructed in more general settings
but this framework is useful for defining the main ideas. If Y is
the total number of successes in n independent Bernoulli trials
with constant probability of success, then

f ðy; qÞ ¼
�
n

y

�
qyð1� qÞn�y [1]

Q ¼ ½0; 1�, and Y ¼ f0; 1;.; ng. If Y is a continuous random
variable following a normal or bell curve distribution with
mean q1 and variance q22, then

f ðy; qÞ ¼ 1ffiffiffiffiffiffi
2p

p
q2

exp
�
� 1

2q22
ðy � q1Þ2

�
[2]

Q ¼ R� Rþ (R - real line; R - positive real line), and Y ¼ R.
The model for n independent observations from this distribu-
tion is

f ðy1;.; yn; qÞ ¼ 1	 ffiffiffiffiffiffi
2p

p 
n
qn2

exp

(
� 1

2q22

Xn
i¼1

ðyi � q1Þ2
)

[3]

Q ¼ R� Rþ, and Y ¼ Rn. For further discussion of statistical
models, see Statistical Sufficiency; Distributions, Statistical:
Special and Discrete; Distributions, Statistical: Approximations;
Statistical: Special and Continuous.

As noted above, we assume the model is given, and our
interest is in inference about the parameter q. While this could
take various forms, a test of significance starts with a so-called
null hypothesis about q, of the form

H0 : q ¼ q0 [4]

or

H0 : q˛Q0 [5]

In [4] the parameter q is fully specified, and H0 is called
a point null hypothesis or a simple null hypothesis. If q is not
fully specified, as in [5],H0 is called a composite null hypothesis.
In the taste-testing examples the simple null hypothesis was
q ¼ 0.5. In the normal model, [2], a hypothesis about the

mean, such as H0 : q1 ¼ 0, is composite, as the variance is left
unspecified. Another composite null hypothesis is H0 : q2 ¼ q1,
which restricts the full parameter space to a one-dimensional
curve in R� Rþ.

A test is constructed by choosing a test statistic which is
a function of the data that in some natural way measures
departure from what is expected under the null hypothesis, and
which has been standardized so that its distribution is known
either exactly or to a good approximation under the null
hypothesis. Test statistics are usually constructed so that large
values indicate a discrepancy from the hypothesis.

Example 2. In the binomial model [1], the distribution of Y
is completely specified by the null hypothesis q ¼ 0.5 as

f ðyÞ ¼
�
n

y

�
2�n

and consistency of a given observed value y0 of y, is measured

by the p-value
Pn

y¼ y0

�
n
y

�
2�n, the probability of observing

a value as or more extreme than y0. If y0 is quite a bit smaller
than expected, then it would be more usual to compute the p-

value as
Py0

y¼ 0

�
n
y

�
2�n. Each of these calculations was carried

out in the discussion of taste testing in the Introduction.
Example 3. In independent sampling from the normal

distribution, given at [3], we usually test the composite null
hypothesis H0 : q1 ¼ q10, by constructing the t-statistic

T ¼ ffiffiffi
n

p 	
Y � q10


�
S

where Y ¼ n�1Pn
i¼1Yi and S2 ¼ ðn� 1Þ�1 P ðYi � YÞ2.

Under H0, T follows a t-distribution on n � 1 degrees of
freedom, and if large values of T are considered evidence
against H0, the p-value is

Pr
�
T � ffiffiffi

n
p 	

y � q10

�

s


where y and s are the values observed in the sample. (If small
values of T are considered evidence against H0, we would use
the other tail of the distribution; see Section Two-Sided Testing
for comments on two-sided tests of significance.) This proba-
bility needs to be computed numerically from an expression for
the cumulative distribution function of the t-distribution.
Historically tables of this distribution were provided for ready
reference, typically by identifying a few critical values, such as
t0.10, t0.05, and t0.01 satisfying PrfTn � tag ¼ a, where Tn is
a random variable following a t-distribution on n degrees of
freedom. It was arguably the publication of these tables that led
to a focus on the use of particular fixed levels for testing in
applied work.

Example 4. Assume the model specifies that Y1,.,Yn are
independent, identically distributed from a distribution with
density f ð,Þ on R and that we are interested in testing whether
or not f ð,Þ is a normal density:

H0 : f ðyÞ ¼
� ffiffiffiffiffiffi

2p
p ��1

e�
1
2y

2
[6]

or

H0 : f ðyÞ ¼
� ffiffiffiffiffiffi

2p
p ��1

q�1
2 exp

�� ðy � q1Þ2
�	

2q22



[7]

the former is a simple and the latter is a composite null
hypothesis. For this problem it is less obvious how to construct
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a test statistic or how to choose among alternative test statistics.
Under [6] we know the distribution of each observation
(standard normal) and thus of any function of the observa-
tions. The ordered values of Y could be compared to their ex-
pected values under [6], for example by plotting one against the
other, and deviation of this plot from a line with intercept
0 and slope 1 could be measured in various ways. In the case of
the composite null hypothesis [7], we could make use of the
result that underH0, ðYi � YÞ=S has a distribution free of q1 and
q2, and the vector of these residuals is independent of the pair
ðY ; S2Þ, and then for example compare the sample skewness
n�1Pn

i¼1fðYi � YÞ=Sg3 with that expected under normality.
Example 5. Suppose we have a sample of independent

observations Y1,.,Yn on a circle of radius 1 and our null
hypothesis is that the observations are uniformly distributed on
the circle. One choice of a test statistic is T1 ¼ Pn

i¼1cosðYiÞ, very
large positive (or negative) values indicating a concentration of
observations at angle 0 (or p). If we instead wish to detect
clumps of observations at two angles differing by p then
T2 ¼ Pn

i¼1fcosð2YiÞ � 1g would be more appropriate. The
exact distribution of T1 underH0 is not available in closed form,
but the mean and variance are readily computed as 0 and n, so
a normal approximation might be used to compute the p-value.

In the examples described above the test statistics are ad hoc
choices likely to be large if the null hypothesis is not true; these
are called pure tests of significance, and are treated in detail in
Cox and Hinkley (1974: Chapter 3); Examples 4 and 5 above
are drawn from that chapter. A more sensitive test can be
constructed if we have more specific knowledge of the likely
form of departures from the null hypothesis. The theory of
hypothesis testing formalizes this by setting up a null
hypothesis and alternative hypothesis, and seeking to construct
an optimal test for discriminating between them (see Hypoth-
esis Testing, in Statistics). In the remainder of this section we
consider an approach based on the likelihood function.

Significance Tests Based on Likelihood

In parametric models tests of significance are often constructed
by using the likelihood function, and the p-value is computed
by using an established approximation to the distribution of
the test statistic. The likelihood function is proportional to the
joint density of the data:

Lðq; yÞ ¼ cðyÞf ðy; qÞ [8]

see Likelihood, Methods of Statistical Inference.
We first suppose that we are testing the simple null

hypothesis H0 : q ¼ q0 in the parametric model f(y; q). Three
test statistics often constructed from the likelihood function are
the Wald or maximum likelihood statistic:

we ¼
�bq � q0

�T
j
�bq��bq � q0

�
[9]

the Rao or score statistic:

wu ¼ Uðq0ÞT
n
j
�bq�o�1

Uðq0Þ [10]

and the likelihood ratio statistic:

w ¼ 2
n
‘
�bq�� ‘ðq0Þ

o
[11]

where in [8], [9], and [10] the following notation is used:

sup
q

Lðq; yÞ ¼ L
�bq; y� [12]

‘ðqÞ ¼ log LðqÞ
UðqÞ ¼ ‘0ðqÞ [13]

jðqÞ ¼ �‘00ðqÞ [14]

The distributions of each of the statistics [8], [9], and [10]
can be approximated by a c2k distribution, under the model
f(y; q0), with k the dimension of q in the model. This relies on
being able to apply a central limit theorem to U(q), and to
identifying the maximum likelihood estimator bq with the root
of the equation U(q) ¼ 0. The precise regularity conditions
needed are somewhat elaborate; see for example Lehmann and
Casella (1998: Chapter 6) and references therein. The impor-
tant point is that under the simple null hypothesis the
approximate distributions of each of these test statistics is
known, and p-values readily computed.

In the case that the hypothesis is composite, a similar triple
of test statistics computed from the likelihood function is
available, but the notation needed to define them is more
elaborate. The details can be found for example in Cox and
Hinkley (1974: Chapter 9.3) and the notation above follows
theirs.

If q is a one-dimensional parameter, then a one-sided
version of the test statistics given at [8], [9], and [10] can be
used instead, as the signed square root of we, wu, or w follows
approximately a standard normal distribution.

It is rare that the exact distribution of test statistics can be
computed, but the normal or chi-squared approximation can
often be improved. These improvements are discussed in
Barndorff-Nielsen and Cox (1994), Pace and Salvan (1997),
Severini (2000) and Brazzale et al. (2007). One conclusion of
this work is that among the three test statistics above, the signed
square root of the likelihood ratio statistic w is generally
preferred on a number of grounds, including the accuracy of
the normal approximation to its exact distribution. This is true
for both simple and composite tests of a scalar parameter.

Significance Functions and Posterior Probabilities

We can also use a test of significance to consider the whole set
or interval of values of q that are consistent with the data. If q is
scalar one of the simplest ways to do this is to compute rðqÞ ¼
� ffiffiffiffiffiffiffiffiffiffi

wðqÞp
as a function of q, and tabulate or plotFfrðqÞg against

q, choosing the negative root for bq < q, and the positive square
root otherwise. This significance function will in regular
models decrease from one to zero as q ranges over an interval of
values. The q values for which FðrÞ is 0.975 and 0.025 provide
the endpoints of an approximate 95% confidence interval for q.
This approach is emphasized in Fraser (1991).

In a Bayesian approach to inference it is possible to make
probability statements about the parameter or parameters in
the model by constructing a posterior probability distribution
for them. In a model with a scalar parameter q based on a prior
p(q) and model f(y; q) we compute a posterior density for q as

pðqjyÞff ðy; qÞpðqÞ [15]
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and can assess any particular value q0 by computingZN
q0

pðqjyÞdq

the posterior probability of q being larger than q0. This poste-
rior probability is different from a p-value: a p-value assesses the
data in light of a fixed value of q, and the posterior probability
assesses a fixed value of q in light of the probability distribution
ascribed to the parameter. Many people find a posterior
probability easier to understand, and indeed often interpret the
p-value in this way. There is a literature on choosing priors
called ‘matching priors’ to reconcile these two approaches to
inference; see Kass and Wasserman (1996), and Datta and
Mukerjee (2004); see also Bayesian Statistics. Unfortunately it
is not possible to find so-called matching priors that are
simultaneously matching for all components of a vector
parameter.

Hypothesis Testing

Little has been said here about the choice of a test statistic for
carrying out a test of significance. The difficulty is that the
theory of significance testing provides no guidance on this
choice. The likelihood-based test statistics described above
have proved to be reasonably effective in parametric models,
but in a more complicated problem, such as testing the good-
ness of fit of a hypothesized model, this approach is often not
available. To make further progress in the choice of test statis-
tics, the classical approach is to formulate a notion of
a ‘powerful’ test statistic, i.e., one that will reliably give small p-
values when the null hypothesis is not correct. To do this in
a systematic way requires specifying what model might hold if
in fact the null hypothesis is incorrect. In parametric models
where the null hypothesis isH0 : q ¼ q0 the alternative may well
be Ha : qsq0. In more general settings the null hypothesis
might be H0 : ‘the response variable follows a normal distri-
bution’ and the alternative Ha : ‘the response variable does not
follow a normal distribution.’ Even in the parametric setting if q
is a vector parameter it may be necessary to consider what
direction in the parameter space away from q0 is of interest. The
formalization of these ideas is the theory of hypothesis testing,
which considers both null and alternative hypotheses and
optimal choices of test statistics (see Hypothesis Testing, in
Statistics; Goodness of Fit: Overview; Methods and Models).

Further Topics

Fixed Level Testing

The problem of focusing on one or two so-called critical
p-values is sometimes referred to as fixed-level testing. This was
useful when computation of p-values was a very lengthy exer-
cise, and it was usual to provide tables of critical values. It is
now usually a very routine matter to compute the exact p-value,
which is usually (and should be) reported along with other
details such as sample size, estimated effect size, and details of
the study design. There is still in some quarters a reliance on
fixed level test, with the result that studies for which the p-value
is judged ‘not statistically significant’ may not be published.

This is sometimes called the ‘file drawer problem,’ and
a quantitative analysis was considered in Dawid and Dickey
(1977).

In several fields it is now standard to make the results of all
studies on a given topic, including inconclusive studies, avail-
able online. In healthcare the Cochrane collaboration is
perhaps the best-known of these. This issue is particularly
important for meta-analysis, see Section Combining Tests of
Significance.

Achievable p-values

In some problems where the distribution of the test statistic
under the null hypothesis is concentrated on a discrete set, the
number of available p-values will be relatively small. This
happens with categorical data, especially if the sample size is
small. Some authors have argued that for such highly discrete
situations a better assessment of the null hypothesis can be
achieved by the use of Barnard’s mid p-value, which replaces
PrftðYÞ � t0g with ð1=2ÞPrftðYÞ ¼ t0g þ PrftðyÞ > t0g, where
t(Y) is the statistic on which the significance test is based, and t0

is the observed value in the data; see Agresti (1992) and
references therein.

Combining Tests of Significance

The p-value is a function of the data, taking small values when
the data are incompatible with the null hypothesis, and vice
versa. As a function of y the p-value itself has a distribution
under the model f(y; q) and in particular under the null
hypothesis H0 has the uniform distribution on the interval
(0,1). In principle then if we have computed p-values from
a number of different datasets the p-values can be compared to
observations from a U(0,1) distribution with the objective of
obtaining evidence of failure of the null hypothesis across the
collection of datasets. This is one of the ideas behind meta-
analysis; seeMeta-analysis: Overview; Meta Analysis: Tools. One
difficulty is that the studies will nearly always differ in
a number of respects that may mean they are not all measuring
the same parameter, or measuring it in the same way. Another
difficulty is that studies for which the p-value is not ‘statistically
significant’ will not have been published, and thus are
unavailable to be included in a meta-analysis. This selection
effect may seriously bias the results of the metametaanalysis. In
some fields this selection effect has been lessened by the
practice of registering all trials in a given subject area on the
internet.

Two-Sided Testing

A point of confusion in the evaluation of p-values for testing
scalar parameters is the distinction sometimes made between
one-sided and two-sided tests of significance. A reliable
procedure is to compute the p-value as the twice the smaller of
the probabilities that the test statistic is larger than or smaller
than the observed value, under the null hypothesis. This so-
called two-sided p-value measures disagreement with the null
hypothesis in two directions away from the null hypothesis,
toward the alternative that the, say, new treatment is worse
than the old treatment as well as better. In the absence of very

960 Significance, Tests of

International Encyclopedia of the Social & Behavioral Sciences, Second Edition, 2015, 957–962

Author's personal copy



concrete a priori evidence that the alternative hypothesis is
genuinely one-sided this p-value is preferable.

In testing hypotheses about parameters of dimension larger
than one, it can be difficult to decide on the relevant direction
away from the null hypothesis. One solution is to identify the
parameters of interest individually, and carry out separate tests
on each of these parameters in turn. This will usually be
effective if there are a relatively small number of parameters of
interest. In applications involving computation of a very large
number of p-values, new techniques are needed; these are
briefly discussed in the next section.

Difficulties with Significance Tests

Sample Size

In Figure 1 we show the p-value for a one-sided t-test with an
observed value of the t-statistic equal to 2.0, as a function of the
sample size. In this example, and quite generally, the p-value is
a decreasing function of the size of the sample, so that a very
large study is more likely to show ‘statistical significance’ than
a smaller study. This has led to considerable criticism of the p-
value as a summary measure. The p-value is also sometimes
misinterpreted, especially when it is small, as the probability
that the null hypothesis is false. Some statisticians have argued
that for this reason posterior probabilities are a better measure
of disagreement with the null hypothesis; see for example
Berger and Sellke (1987) and Schervish (1996).

To some extent the criticism can be countered by noting that
the p-value is just one summary measure of a set of data, and
excessive reliance on one measure is inappropriate. In a para-
metric setting it is nearly always advisable to provide, along
with the p-value for testing a particular value of the parameter
of interest, an estimate of the effect size, or some relevant

parameter of the model, along with an indication of the
precision of this estimate. This can be accomplished by
reporting a significance function, if the parameter of interest is
one-dimensional. At a more practical level, it should always be
noted that a small p-value should be interpreted in the context
of other aspects of the study. For example a p-value of less than
0.05 could be based on a very small difference in a study of
10 000 cases or a relatively large difference in a study of 1000
cases. A 1% reduction in an average response may be of
substantial importance for one scientific context, and mean-
ingless for others; this needs to be evaluated in that context,
and not by relying on the fact that it is ‘statistically significant.’
Unfortunately, the notion that a study report is complete if and
only if the p-value is found to be less than 0.05 is fairly widely
ingrained in some disciplines, and indeed forms a part of the
requirements of some government agencies for approving new
treatments.

Multiple Testing

If a number of significance tests are carried out on the same set
of data, but the significance level, or p-value, that is reported is
the smallest of these, then a different analysis is needed. This
smallest p-value will not have the interpretation of a p-value
from a single test; for example if we regard p-values less that
0.05 as ‘significant,’ then we would expect to find 5 spuriously
significant results in 100 tests, on average.

In some applications there might be two or three thousand
tests carried out, all of a similar type. One example arises in
image analysis, for example comparing the blood flow in each
of several thousand pixels or voxels of a brain scan, under two
(or more) conditions. Large numbers of t-tests are often con-
ducted in genomic analysis of expression arrays, with again the
goal of comparing two conditions. The p-value for a single such
comparison is no longer a reliable measure of the consistency
of the data with the null hypothesis; several p-values will be
small even when the null hypothesis is true, simply by chance.

There is a large literature on assessments of hypotheses
under multiple testing, that has become particularly prominent
in biological applications, but also has applications to many
other sciences. See False Discovery Rate; Multiple Comparisons
A good statistical theory reference is Efron (2010), and there are
a number of more specialized books, for particular scientific
fields, such as Dudoit and van der Laan (2008). In high-energy
physics the search for new particles involves looking through
a great many energy bands, sometimes called in that context the
‘look elsewhere’ effect, and it has become conventional to
require a so-called ‘5-sigma’ result to claim discovery of a new
particle. This relates the observed level of significance to the
probability that a normal random variable exceeds its mean by
five standard deviations; this probability is 3 � 10�7.

In many areas of research the delineation of the number of
significance tests that have been carried out, but are not re-
ported, is less clear. For example, in a new epidemiological
study of the health effects of some environmental agent,
several different models may be fitted to the data, including
perhaps various transformations of the exposure measure-
ments, different levels of control for confounding, and so on.
Again the evidence provided by any single reported signifi-
cance test needs to be considered in the light of the many other
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Figure 1 The p-value associated with an observed t-statistic equal to
2.0, as a function of the sample size.

Significance, Tests of 961

International Encyclopedia of the Social & Behavioral Sciences, Second Edition, 2015, 957–962

Author's personal copy



tests that may have been formally or informally applied to the
same data.

The reliance on multiple significance tests forms a part of
the increasing concern, in the academic and in the popular
press, about the replicability of published scientific research;
see for example, Ioannidis (2005), or Economist (2013).
Research in this area is ongoing; for a recent discussion in the
medical context see Jager and Leek (2013) and the accompa-
nying discussion.

Conclusion

A test of statistical significance is a mathematical calculation
based on a test statistic, a null hypothesis, and the distribution
of the test statistic under the null hypothesis. The result of the
test is to indicate whether the data are consistent with the null
hypothesis: if they are not, then either we have observed an
event of low probability, or the null hypothesis is not correct.

The choice of test statistic is in principle arbitrary, but in
practice might be determined by convention in the field of
application, by intuition in a relatively new setting, or by one or
more considerations developed in statistical theory. It is
convenient to use test statistics whose distributions can be
easily calculated exactly or to a good approximation. It is useful
to use a test statistic that is sensitive to the particular departures
from the null hypothesis that are of particular interest in the
application.

A test of statistical significance is just one component of the
analysis of a set of data, and should be supplemented by esti-
mates of effects of interest, considerations related to sample
size, and a discussion of the validity of any assumptions of
independence or underlying models that have been made in
the analysis. A statistically significant result is not necessarily an
important result in any particular analysis, but needs to be
considered in the context of research in that field.

An eloquent introduction to tests of significance is given in
Fisher (1935: Chapter II). Kalbfleisch (1979: Chapter 12) is
a good text book reference at an undergraduate level. The
discussion here draw considerably from Cox and Hinkley
(1974: Chapter 3), which is a good reference at a more
advanced level. An excellent overview is given in Cox (1977).

See also: Bayesian Statistics; Distributions, Statistical:
Approximations; Distributions, Statistical: Special and Discrete;
Hypothesis Testing in Statistics; Multiple Comparisons,
Statistics of; Statistical Sufficiency.
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