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Abstract
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1. Introduction

Recent advances in technology to obtain DNA microarrays have made
it possible to measure quantitatively the expressions of thousands of genes.
These expression levels within subjects may, however, be expected to be
correlated. Since the number of subjects, N , is usually quite small compared
to the number of genes, m, multivariate theory for the situation when m >>
N needs to be developed: classical asymptotic theory requires m fixed so
that m/N → 0. Alternatively, some authors such as Dudoit et al. (2002)
have suggested ordering the m genes by, for example, their sample means
and selecting a very small number of them, much smaller than N , so that
the usual asymptotic theory can be applied. The implicit assumption is that
the remaining genes have mean zero and thus should not have much effect
on the analysis. But unless the selected set is distributed independently of
the remaining set of variables for which the mean is zero, this remaining set
can provide significant information about the mean vector of the selected set;
see, Srivastava and Khatri (1979, p. 115–118).

For example, consider the problem of classifying an individual with m-
dimensional observed vector x, into two known groups with mean vectors µ,
µ+δ, and common positive definite covariance matrix Σ. Using Fisher’s lin-
ear discriminant rule, both errors of misclassification are equal and given by
Φ(−δ′Σ−1δ/2), where Φ(·) is the cumulative distribution function for a stan-
dard normal random variable. If we use only the first m1 components x1 of x,
then the errors of misclassification are equal and given by Φ(−δ′1Σ−111 δ1/2),
where δ and Σ have been partitioned according to the partitioning of x.
Since

δ′Σ−1δ = δ′1Σ
−1
11 δ1 + (δ2 − βδ1)′Σ−12.1(δ2 − βδ1),

where β = Σ−122 Σ′12 and Σ2.1 = Σ22−Σ′12Σ
−1
11 Σ12, we have δ′1Σ

−1δ1 ≤ δ′Σ−1δ,
even when δ2 = 0: equality holds if both δ2 = 0 and β = 0, or δ2 = βδ1.
That is, unless the two sub-vectors x1 and x2 are independent, dropping x2

loses efficiency even when the mean is the same in both groups.
Another problem of importance for the analysis of microarray data is

that of testing the hypothesis that the covariance matrix has an intraclass
correlation structure when N ≤ m. Such a test is needed to select the differ-
entially expressed genes using Benjamini and Hochberg’s (1995) procedure
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to control the false discovery rate at a specified level. It is shown in Ben-
jamini and Yekutieli (2001) that the false discovery rate can be controlled at
a specified level if either the m genes are independently distributed, or the
covariance matrix of the m genes has an intraclass correlation structure with
positive correlation. Verification of intraclass correlation structure is very
important, because if it fails the overall level will be αΣm

j=1(1/j) rather than
α and adjustment for this will lead to a considerably less powerful procedure.

Tests for complete independence of all m genes can be obtained by testing
the diagonality of the covariance matrix, under the assumption of normality.
Such tests have been proposed by Schott (2005) and Srivastava (2005, 2006).
Tests for independence that do not require normality are proposed by Szekely
et al. (2009). The null distribution of these tests is based on simulation from
the permutation distribution.

In this article tests for independence of two sub-vectors and for intraclass
correlation structure are proposed. Both tests apply whether N ≤ m or
N > m.

For the development of these tests we assume the response vector x follows
an m-dimensional normal distribution with mean µ and covariance matrix
Σ, and that we have a sample of N independent and identically distributed
observations x1, . . . ,xN from this distribution. The sufficient statistics for µ
and Σ are

x̄ = N−1
N∑
i=1

xi ,

nS = V =
N∑
i=1

(xi − x̄)(xi − x̄)′ , where n = N − 1 . (1)

Since the testing problem described above remains invariant under the addi-
tive group of transformations, x→ x + c, c 6= 0, we shall base our test on S,
or equivalently, V .

To test the hypothesis of independence of two subvectors, we partition x
as (x1,x2), of length m1, m2, respectively, and consider

H1 : Σ =

(
Σ11 0
0 Σ22

)
versus A1 : Σ =

(
Σ11 Σ12

Σ
′
12 Σ22

)
,

or equivalently
H1 : Σ12 = 0 versus A1 : Σ12 6= 0 , (2)
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where Σ is partitioned compatibly with x.
The hypothesis that the covariance matrix Σ is of the intraclass correla-

tion structure is

H2 : Σ = τ 2 [(1− ρ)Im + ρ1m1′m] vs A2 : Σ > 0, (3)

where Im is the m ×m identity matrix and 1m = (1, . . . , 1)′ is an m-vector
of 1’s. For convenience and simplicity, instead of V , we consider the m×m
random matrix

W = GV G′ ∼ Wm(Ω, n), Ω = GΣG′ , (4)

where G is a known m×m orthogonal matrix, GG′ = G′G = Im, of Helmert
form. The first column is (1m/

√
m)′, and the remaining columns G2 =

(g2, . . . , gm) are given by

gi =

(
1√

i(i− 1)
, . . . ,

1√
i(i− 1)

,− i− 1√
i(i− 1)

, 0, . . . , 0

)′
. (5)

In §2 we propose two test statistics, T1 and T ∗1 , for the problem of testing
independence of two sub-vectors, (2). We show that the limiting distribution
of T1 and T ∗1 are standard normal under H1, when (m,N)→∞, and study
the finite sample performance by simulations. In §3 we propose a test statis-
tic, T2, for testing the hypothesis (3) that the covariance matrix Σ is of the
intraclass correlation structure, show that T2 is asymptotically standard nor-
mal under H2, and study its finite sample performance through simulations.
We compare these test statistics to the relevant likelihood ratio tests, which
are only valid for m < N , and show that the performance of the proposed
tests is generally better than that of the likelihood ratio test. The meth-
ods of proof are similar in the two cases, and use results on invariance and
asymptotic normality that are outlined in the Appendix. In §4, we illustrate
the proposed tests on a microarray dataset.

2. Testing the independence of two sub-vectors

2.1. The proposed test statistics

Our proposed test statistics are based on consistent estimates of two
parametric measures of distance δ21, and δ22 which we now introduce. As
shown in the Appendix, for n < m no invariant test exists under the group
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of non-singular linear transformations. We consider tests that are invariant
under a smaller group of transformations

x→
(
c1Γ1 0

0 c2Γ2

)
x , (6)

where ci > 0, i = 1, 2, and Γ1 and Γ2 are orthogonal matrices. A distance
function between the hypothesis H1 and the alternative A1, invariant under
this group of transformations, is

δ21 =
1

2m
√

2
tr

[
D−1

(
Σ11 Σ12

Σ′12 Σ22

)
−D−1

(
Σ11 0
0 Σ22

)]2
,

where D is a diagonal matrix in which the first m1 diagonal elements are
a
1/2
2(1) and the remaining m2 diagonal elements are a

1/2
2(2), and

a2(1) = tr(Σ2
11)/m, a2(2) = tr(Σ2

22)/m , a(1,2) = tr(Σ12Σ
′
12)/m. (7)

It can be easily seen that

δ2 =
1

2m
√

2
tr

(
0 a

−1/2
2(1) Σ12

a
−1/2
2(2) Σ′12 0

)2

=
a(1,2)√

2a2(1)a2(2)
. (8)

Note that a(1,2) = 0 if and only if Σ12 = 0 and a(1,2) > 0, otherwise.
Let

â(1,2) =
n2

(n− 1)(n+ 2)m

[
tr(S12S

′
12)−

1

n
tr(S11)tr(S22)

]
, (9)

â2(i) =
n2

(n− 1)(n+ 2)m

[
tr(S2

ii)−
1

n
{tr(Sii)}2

]
, i = 1, 2 , (10)

where S, defined at (1), is partitioned compatibly with Σ:

S =

(
S11 S12

S ′12 S22

)
. (11)

Our first test statistic for H1 is

T1 = n
â(1,2)√

2â2(1)â2(2)
. (12)
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A smaller group of transformations is given by the group of m×m non-
singular diagonal matrices

x→ D∗x =

(
D∗1 0
0 D∗2

)
x , (13)

where D∗ = diag(d∗1, . . . , d
∗
m), with D∗1 = diag(d∗1, . . . , d

∗
m1

), and D∗2 the re-
maining components, where we assume 0 < d∗i <∞, i = 1, . . . ,m. Let

R11 = D
∗−1/2
1 Σ11D

∗−1/2
1 , R22 = D

∗−1/2
2 Σ22D

∗−1/2
2 ,

R12 = D
∗−1/2
1 Σ12D

∗−1/2
2 , a∗2(1) = tr(R2

11)/m, a∗2(2) = tr(R2
22)/m.

We choose

d∗i = (σii/a
∗
2(1))

1/2, i = 1, . . . ,m1; d∗i = (σii/a
∗
2(2))

1/2, , i = m1 + 1, . . . ,m,

and consider the distance measure between the hypothesis H1 and the alter-
native A1 as

δ∗2 =
1

2m
√

2
tr

[
D∗−1

(
Σ11 Σ12

Σ′12 Σ22

)
−D∗−1

(
Σ11 0
0 Σ22

)]2
=

a∗(1,2)√
2a∗2(1)a

∗
2(2)

. (14)

Thus we need to obtain consistent estimators of a∗(1,2), a
∗
2(1), and a∗2(2).

Since diag(s11, . . . , smm) is a consistent estimator of (σ11, . . . , σmm), it follows
that consistent estimators are given respectively by

â∗(1,2) =
1

m
{tr(R12R

′
12)−

m1m2

m
}, (15)

â∗2(1) =
1

m
{tr(R2

11)−
m2

1

m
}, (16)

â∗2(2) =
1

m
{tr(R2

22)−
m2

2

m
}, (17)

where

R =

(
R11 R12

R12′ R22

)
= D∗−1/2s SD∗−1/2s ,

D∗s = diag(s11, . . . , smm).
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Thus another test statistic T ∗1 is given by

T ∗1 = n
â∗(1,2)√

2â∗2(1)â
∗
2(2)

. (18)

In the next subsection we show that T1 is asymptotically normally distributed
with mean 0 and variance 1 under H1 : Σ12 = 0. From this result it also
follows that T ∗1 is asymptotically distributed as a standard normal under H1:
this is stated in Corollary 2.1. We require the following assumption, writing
ai = tr(Σi)/m:
Assumption A:

(i) 0 < a0i = lim
m→∞

ai <∞, lim
m→∞

m−1a4 → 0, i = 1, 2

(ii) 0 < lim
m→∞

(mj/m) = cj <∞, j = 1, 2,

(iii) n = O(mδ), δ > 0 .

The following lemma is proved in Srivastava (2005, p.252, Lemma 2.1):

Lemma 2.1. Let V ∼ Wm(Σ, n) and ai = tr(Σi)/m, i = 1, . . . , 4. Then
under Assumption A, unbiased and consistent estimators of a1 and a2 as
(n,m)→∞ are given by

â1 =
tr(V )

nm
, â2 =

1

(n− 1)(n+ 2)m

[
tr(V 2)− 1

n
{tr(V )}2

]
. (19)

2.2. Asymptotic Distribution of the Test Statistic T1

The proposed test statistic is based on consistent estimator of δ2, for
which we need consistent estimators of a2(1), a2(2) and a(1,2). Note that

a2 =
1

m
tr(Σ2) =

1

m
tr

[(
Σ11 Σ12

Σ′12 Σ22

)(
Σ11 Σ12

Σ′12 Σ22

)]
= a2(1) + a2(2) + 2a(1,2) ,

where a2(i), i = 1, 2, and a(1,2) are defined in (7). From the definition of â(1,2)
in (9), and â2(i) in (10), we can write

â2 =
n2

(n− 1)(n+ 2)m

[
tr(S2)− 1

n
{tr(S)}2

]
= â2(1) + â2(2) + 2â(1,2) .
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Since
n2

(n− 1)(n+ 2)m

[
tr(S2

ii)−
1

n
{tr(Sii)}2

]
, i = 1, 2 ,

are consistent and unbiased estimators of (1/m)tr(Σ2
ii), i = 1, 2, by Lemma

2.1 â(1,2) is a consistent and unbiased estimator of a(1,2), under Assumption
A. In the next theorem, we give an expression for the asymptotic variance of
â(1,2).

Theorem 2.1. Let â(1,2) be as defined in (9). Then the variance of â(1,2)
under the hypothesis H1 and assumption A is given by

Var(â(1,2)) =
2

n2
a2(1)a2(2) +O(

1

n3
) .

Proof: Since V ∼ Wn(Σ, n), we can write V = nS = Y Y ′ , where Y =
(y1, . . . ,yn), and y1, . . . ,yn are independent and identically distributed as
Nm(0,Σ), where we write Σ0 for the covariance matrix under H1 : Σ12 = 0.
Let Γ be an m ×m orthogonal matrix given by Γ = diag(Γ1,Γ2), where Γ1

is m1 ×m1 and Γ2 is m2 ×m2, and

ΓΣ0Γ
′ =

(
Γ1Σ11Γ

′
1 0

0 Γ2Σ22Γ
′
2

)
=

(
Dλ(1) 0

0 Dλ(2)

)
,

where Dλ(1) = diag(λ(1)1, . . . , λ(1)m1) and Dλ(2) = diag(λ(2)1, . . . , λ(2)m2) are
diagonal matrices composed of the eigenvalues of Σ11 and Σ22. Thus, with

U = (U (1)′ , U (2)′)′ = Γ′Σ
− 1

2
0 Y ,

V = Γ

 D
1
2

λ(1) 0

0 D
1
2

λ(2)

( U (1)

U (2)

)(
U (1)′ , U (2)′

) D
1
2

λ(1) 0

0 D
1
2

λ(2)

Γ′ .

The n columns of U are independently distributed as Nm(0, Im), U (1) and
U (2) are independently distributed under H1, and the n columns of U (i) are
independently distributed as Nmi

(0, Imi
), i = 1, 2. Writing

U (1)′ =
(
u

(1)
1 , . . . ,u(1)

m1

)
, U (2)′ =

(
u

(2)
1 , . . . ,u(2)

m2

)
, (20)

then u
(1)
1 , . . . ,u

(1)
m1 ,u

(2)
1 , . . . ,u

(2)
m2 are independent and identically distributed
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as Nn(0, I) under H1 : Σ12 = 0. Using (9) we have

â(1,2) =
1

m(n− 1)(n+ 2)

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)j

[(
u

(1)′

i u
(2)
j

)2
− 1

n
(u

(1)′

i u
(1)
i )(u

(2)′

j u
(2)
j )

]
,

' 1

mn2

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)jzij, (21)

where

zij =
(
u

(1)′

i u
(2)
j

)2
− 1

n
(u

(1)′

i u
(1)
i )(u

(2)′

j u
(2)
j ),

= (w2
ij − n)− 1

n
(w

(1)
ii w

(2)
jj − n2), (22)

where wij = u
(1)′

i u
(2)
j , and w

(1)
ii = u

(1)′

i u
(1)
i and w

(2)
jj = u

(2)′

j u
(2)
j are indepen-

dently and identically distributed under H1 for all i, j as χ2
n random variables.

Hence, under H1, E(zij) = 0, Cov (zij, zkl) = 0 for all distinct (j, `) or (i, k)
and Var (zij) = 2(n+ 2)(n− 1) . Hence, under H1, E(â(1,2)) = 0 and

Var(â(1,2)) '
1

m2n4

m1∑
i=1

m2∑
j=1

λ2(1)iλ
2
(2)jVar(zij) =

2

n2
a2(1)a2(2) ,

neglecting terms of O(n−3).

Theorem 2.2. Let â(1,2) and â2(i) be defined as in (9) and (10). Then T1
defined in (12) is asymptotically normally distributed as (m,n) → ∞ under
the hypothesis H1 and Assumption A; i.e.,

lim
(m,n)→∞

P0(T1 ≤ z) = Φ(z)

where Φ(·) is the distribution function of a standard normal random variable
and P0 denotes the distribution under the null hypothesis.

Proof: As noted above â2(1) and â2(2) are consistent estimators of a2(1) and
a2(2) respectively. Thus, we need to find the asymptotic distribution of nâ(1,2)
where we use the asymptotic expression for â(1,2) given at (21).

We note that

Var

(
1

mn3

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)jw
(1)
ii w

(2)
jj

)
=

4

n4
a2(1)a2(2) = O(n−4) .
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Since this is of order O(n−4), the second term of nâ(1,2) converges in proba-
bility to its expectation. Thus

â(1,2)
d
=

1

mn

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)j
[
(w2

ij/n)− 1
]
,

and the asymptotic distribution of nâ(1,2) as (m,n)→∞, is the same as that
of (m1m2

m2

) 1
2 1

(m1m2)
1
2

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)j
[(
η2ijν

2
i /n
)
− 1
]

where
ν2i = u

(1)′

i u
(1)
i , and ηij = u

(1)′

i u
(2)
j /νi.

Given u
(1)
i , ηij has a normal distribution with mean 0 and variance 1 which

does not depend on u
(1)
i ; hence ηij are independently distributed of νi for all

i, j. Noting that ν2i /n = 1+Op(n
− 1

2 ), we find that the asymptotic distribution

of nâ(1,2) is the same as that of [(m1m2)/m
2]

1
2Q , where

Q =
1

(m1m2)
1
2

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)j(η
2
ij − 1) .

Then

1

(m1m2)

m1∑
i=1

m2∑
j=1

λ2(1)iλ
2
(2)j

∫
|γ|>ε√m1m2

γ2 dF(γ) ≤[
m2

(m1m2)

]
a2(1)a2(2)

[
1

ε2m1m2

]
E
(
η4ij
)
.

which goes to zero, as (m1,m2) → ∞. Hence, from the Lyapunov central
limit theorem, it follows that under H1

1

m

m1∑
i=1

m2∑
j=1

λ(1)iλ(2)j

[(
u

(1)′

i u
(2)
j

)2
− 1

]
→ N(0, 2a2(1)a2(2)) .

This proves Theorem 2.2. An alternative proof can be obtained by using
Lemma A.1 of the Appendix.
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Corollary 2.1. Let â∗(1,2) and â∗2(i) be defined as in (15, 16, 17), respectively.

Then T ∗1 defined in (18) is asymptotically normally distributed as (m,n)→∞
under the hypothesis H1 and Assumption A; i.e.,

lim
(m,n)→∞

P0(T
∗
1 ≤ z) = Φ(z)

where Φ(·) is the distribution function of a standard normal random variable
and P0 denotes the distribution under the null hypothesis.

It may be noted that following Srivastava (2005), where a test of inde-
pendence of all components of x is given, another test can be proposed based
on the distance function

δ∗2 =

[
tr(Σ2)

tr(Σ2
11) + tr(Σ2

22)
− 1

]
=

[
a2

a2(1) + a2(2)
− 1

]
,

which takes the value zero if and only if Σ12 = 0; otherwise δ∗2 > 0. A test
based on a consistent estimator of δ∗, namely

T1A =
â2

â2(1) + â2(2)
− 1

=
â2(1) + â2(2) + 2â(1,2)

â2(1) + â2(2)
− 1

=
2â(1,2)

â2(1) + â2(2)
,

can also be proposed. However this test is also based on â(1,2), hence asymp-
totically equivalent to the proposed test statistic T1, and thus needs no further
consideration.

2.3. Power of the Test of Independence and its Attained Significance Level

In this section we consider the performance of the test statistics T1 and
T ∗1 in finite samples by simulation. We first examine the attained significance
level of the test statistic compared to the nominal value α = 0.05. We use Σ =
DRD,D = diag(d1, . . . , dm), R = (rij), rii = 1, rij = (−1)i+j(ρ)|i−j|

0.1
, i 6=

j, i, j = 1, . . . ,m; and report results for the choices di = 2+(m−i+1)/m and
D− i independently distributed as χ2

3. For the hypothesis, we make Σ12 = 0
by taking Σ = diag(Σ11,Σ22), where Σ11 = D1R1D1, Σ22 = D2R2D2, D1
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and R1 are the corresponding sub-matrices of D and R, and D2 and R2 are
similarly defined.

The attained significance level (ASL) is α̂T = #(T1H > z1−α)/r where
T1H are values of the test statistic T1 (or T ∗1 ) computed from data simulated
under H1, r is the number of replications and zα/2 is the 100(1− α)% point
of the standard normal distribution. The ASL assesses how close the null
distribution of T1 (or T ∗1 ) is to its limiting null distribution. From the same
simulation, we also obtain ẑα as the 100(1− α)% point of the empirical null
distribution, and define the attained power by β̂T = #(T1A > ẑ1−α)/r , where
T1A are values of the T1 (or T ∗1 ) computed from data simulated under A1.

In Table 1 we compare the proposed tests T1 and T ∗1 with the likelihood
ratio test, when m < N . We use two approximations to the distribution of
the likelihood ratio statistic

λ∗ = |S|/(|S11||S22|) .

Under H1, −g log λ∗ is asymptotically distributed as χ2
m1m2

, where g = N −
3−m/2, γ = m1m2(m

2
1+m2

2−5)/48, f = m1m2 (Srivastava and Khatri, 1979,
p.222). The test based on this approximation will be denoted LR1. Another
approximation, which may have better performance when m is close to n is

LR2 = (−g log λ∗ − f)/(2f)1/2;

this is asymptotically distributed as N(0, 1) under H1, as n → ∞. The
results in Table 1 show that even for small m and large n, the tests based on
T1 and T ∗1 perform better than both approximations to the distribution of
the likelihood ratio test, and the test based on T ∗1 is better than that based
on T1, which is to be expected since our simulations are consistent with the
invariance structureof (13).

It may be noted that irrespective of the ASL of any statistic, the power
has been computed when all the statistics in the comparison have the same
specified significance level as the cut off points have been obtained by sim-
ulation. Thus the empirical powers for LR1 and LR2 are the same; only
one is shown. The ASL gives an idea as to how close it is to the specified
significance level. If it is not close, the only choice left is to obtain it from
simulation, not from the asymptotic distribution. It is common in practice,
although not recommended, to depend on the asymptotic distribution, rather
than relying on simulations to determine the ASL.
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Szekely et al. (2009) proposed a nonparametric test for independence;
the p-value for their test statistic is estimated by using the permutation
distribution. Limited simulations, not shown here, indicated that compared
to the test based on T1 or T ∗1 , their test has size closer to nominal, although
slightly less power, for N < m, and much lower power for N > m.

3. Testing intraclass correlation

3.1. The test statistic

In this section, we consider the problem of testing that the covariance
matrix Σ has the intraclass correlation structure,

Σ = τ 2[(1− ρ)Im + ρ1m1′m], −1/(m− 1) < ρ < 1 . (23)

When Σ is of the form (3.1), from (1.5) we can write

Ω =

(
Ω11 Ω′12
Ω12 Ω22

)
=

(
λ2 0
0 σ2Im−1

)
, (24)

where λ2 = τ 2[1+(m−1)ρ] > 0, and σ2 = τ 2(1−ρ). Thus, we can re-express
H2 as

H2 : Ω11 = λ2, Ω12 = 0, Ω22 = σ2Im−1, σ2 > 0.

When n > m, the maximum likelihood estimate of Ω11 under A2 remains the
same as the maximum likelihood estimate of λ2 under H2, since both Ω11

and λ2 are unknown scalars. Thus H2 is equivalent to

H2 : Ω12 = 0, Ω22 = σ2Im−1, σ
2 > 0 ,

with Ω11 a nuisance parameter in both H2 and A2. Under H2 we note that

σ2 = tr(Ω22)/(m− 1) ≡ a∗1(2) .

We also define

a∗2(1) =
Ω2

11

m− 1
, a∗2(2) =

tr(Ω2
22)

m− 1
, a∗(1,2) =

Ω′12Ω12

m− 1
, (25)

and make the following assumption:
Assumption B:

13



Table 1: Attained significance level and attained power of the tests of Σ12 = 0 based on
T1 and T ∗

1 given in (12) and (18), compared to two versions of the likelihood ratio test.
The covariance matrix is constructed from D = diag(di) where di = 2+(m− i+1)/m.The
likelihood ratio test can only be used when m < N . These tables are based on 1,000
simulations; additional runs with 10,000 simulations for several cases gave very similar
results.

ASL under H1 Power (ρ = 0.2)
N m1 m2 T1 T ∗1 LR1 LR2 T1 T ∗1 LR1 LR2

2 3 0.064 0.056 0.024 0.033 0.169 0.191 0.060 0.076
5 5 0.075 0.064 0.019 0.027 0.235 0.217 0.034 0.042
10 15 0.054 0.055 — — 0.373 0.347 — —

15 50 50 0.056 0.054 — — 0.612 0.595 — —
50 100 0.051 0.054 — — 0.651 0.606 — —
100 200 0.049 0.047 — — 0.704 0.675 — —
200 300 0.055 0.059 — — 0.710 0.671 — —
400 600 0.047 0.047 — — 0.745 0.733 — —
2 3 0.059 0.054 0.034 0.059 0.315 0.343 0.151 0.193
5 5 0.069 0.069 0.028 0.069 0.389 0.362 0.081 0.102
10 15 0.067 0.066 — — 0.626 0.597 — —
50 50 0.057 0.050 — — 0.845 0.852 — —

25 50 100 0.051 0.044 — — 0.891 0.882 — —
100 200 0.071 0.066 — — 0.917 0.913 — —
200 300 0.061 0.058 — — 0.909 0.904 — —
400 600 0.066 0.067 — — 0.916 0.914 — —
2 3 0.061 0.060 0.037 0.056 0.530 0.528 0.298 0.356
5 5 0.054 0.056 0.035 0.042 0.780 0.782 0.324 0.353
10 15 0.058 0.061 0.061 0.037 0.929 0.921 0.135 0.148

50 50 50 0.048 0.0571 — — 0.994 0.996 — —
50 100 0.042 0.049 — — 0.999 0.998 — —
100 200 0.059 0.058 — — 0.999 0.999 — —
200 300 0.068 0.065 — — 0.999 0.999 — —
400 600 0.061 0.059 — — 0.999 0.998 — —
2 3 0.068 0.056 0.045 0.065 0.848 0.841 0.705 0.750
5 5 0.058 0.064 0.039 0.055 0.972 0.972 0.746 0.773
10 15 0.061 0.060 0.036 0.045 0.998 0.998 0.518 0.542
50 50 0.051 0.045 — — 1 1 — —

100 50 100 0.064 0.061 — — 1 1 — —
100 200 0.044 0.044 — — 1 1 — —
200 300 0.060 0.059 — — 1 1 — —
400 600 0.059 0.059 — — 1 1 — —14



Table 2: Attained significance level and attained power of the tests of Σ12 = 0 based on
T1 and T ∗

1 given in (12) and (18), compared to two versions of the likelihood ratio test.
The covariance matrix is constructed from D = diag(di) where di ≈ χ2

3. The likelihood
ratio test can only be used when m < N . These tables are based on 1,000 simulations.

ASL under H1 Power (ρ = 0.2)
N m1 m2 T1 T ∗1 LR1 LR2 T1 T ∗1 LR1 LR2

2 3 0.074 0.075 0.032 0.047 0.096 0.149 0.058 0.081
5 5 0.055 0.047 0.020 0.024 0.124 0.276 0.035 0.045
10 15 0.060 0.056 — — 0.141 0.385 — —

15 50 50 0.063 0.047 — — 0.188 0.585 — —
50 100 0.064 0.047 — — 0.201 0.640 — —
100 200 0.059 0.061 — — 0.258 0.625 — —
200 300 0.038 0.051 — — 0.454 0.677 — —
400 600 0.058 0.050 — — 0.480 0.712 — —
2 3 0.065 0.048 0.028 0.038 0.202 0.312 0.129 0.168
5 5 0.080 0.054 0.024 0.031 0.234 0.464 0.102 0.121
10 15 0.072 0.052 — — 0.229 0.613 — —
50 50 0.069 0.051 — — 0.344 0.844 — —

25 50 100 0.060 0.050 — — 0.479 0.858 — —
100 200 0.054 0.056 — — 0.608 0.899 — —
200 300 0.060 0.0548 — — 0.685 0.935 — —
400 600 0.072 0.060 — — 0.682 0.910 — —
2 3 0.066 0.066 0.044 0.055 0.250 0.504 0.325 0.390
5 5 0.059 0.063 0.039 0.046 0.487 0.768 0.322 0.366
10 15 0.057 0.058 0.035 0.039 0.782 0.931 0.152 0.164

50 50 50 0.062 0.056 — — 0.631 0.993 — —
50 100 0.054 0.066 — — 0.837 0.996 — —
100 200 0.052 0.062 — — 0.956 0.996 — —
200 300 0.050 0.053 — — 0.969 0.999 — —
400 600 0.055 0.055 — — 0.964 0.998 — —
2 3 0.073 0.069 0.047 0.060 0.662 0.826 0.700 0.750
5 5 0.073 0.060 0.049 0.060 0.704 0.974 0.732 0.768
10 15 0.061 0.060 0.036 0.045 0.739 0.999 0.532 0.550
50 50 0.070 0.062 — — 0.997 1 — —

100 50 100 0.068 0.057 — — 0.992 1 — —
100 200 0.060 0.055 — — 0.997 1 — —
200 300 0.069 0.064 — — 1 1 — —
400 600 0.068 0.067 — — 1 1 — —
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(i) 0 < limm→∞ a
∗
i(2) <∞, i = 1, 2,

(ii) 0 ≤ limm→∞ a
∗
(1,2) <∞,

(iii) n = O(mδ), δ > 0.

The parameters

F1 =
a∗(1,2)√

2a∗2(1)a
∗
2(2)

and F2 =
1

2

(
1−

a∗21(2)
a∗2(2)

)
, (26)

are invariant under the group of transformations

x→
(
c1 0′

0 c2Gm−1

)
x , (27)

where Gm−1 is orthogonal and ci > 0, i = 1, 2. We consider a distance
function that measures the difference between the hypothesis H2 and the
alternative hypothesis A2 : Σ > 0. Let D be an m×m diagonal matrix given
by

D = diag

[
1

2
(2a∗2(1))

− 1
2 ,

1

2
(a∗2(2))

− 1
2 Im−1

]
= diag (d1, d2Im−1) .

We define a distance that measures the difference between the hypothesis H2

and A2 by

η2 =
1

(m− 1)
tr

[
D

(
Ω11 Ω′12
Ω12 Ω22

)
−D

(
Ω11 0
0 a∗1(2)Im−1

)]2
=

1

(m− 1)
tr

[
D

(
0 Ω′12

Ω12

(
Ω22 − a∗1(2)Im−1

) )]2

=
1

(m− 1)
tr

(
0 d1Ω

′
12

d2Ω12 d2

(
Ω22 − a∗1(2)Im−1

) )2

=
a∗(1,2)√

2a∗2(1)a
∗
2(2)

+
1

2

[
1− a∗21(2)
a∗2(2)

]
= F1 + F2
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It may be noted that η2 = 0 if and only if H2 holds, otherwise η2 > 0. Thus,
a test statistic based on a consistent estimator of η2 can be proposed.

We consider tests based on the sample covariance matrix S = n−1V , or
equivalently on the m × m matrix W = GV G′ ∼ Wm(Ω, n), Ω = GΣG′,
where G has the Helmert form described at (4), and W is partitioned to
conform with the partition of Ω at (24).

The following results from Srivastava and Khatri (1979, p.80) hold whether
n < m or n ≥ m:

(i) W2.1 = W22 −W−1
11 W 12W

′
12 ∼ Wm−1(Ω2.1, n− 1)

is independently distributed of (W 12,W11)

(ii) W 12 given W11 ∼ Nm−1(βW11,W11Ω2.1) ,

(iii) W11 ∼ Ω11χ
2
n ,

where
β = Ω−111 Ω12, and Ω2.1 = Ω22 − Ω−111 Ω12Ω

′
12 .

We define

â∗(1,2) =
1

(n− 1)(n+ 2)(m− 1)

[
W ′

12W 12 −
1

n
W11 tr(W22)

]
, (28)

â∗1(2) =
tr(W22)

n(m− 1)
, â∗1(1) =

W11

n(m− 1)
, (29)

â∗2(1) =
W 2

11

(n− 1)(n+ 2)(m− 1)
, (30)

â∗2(2) =
1

(n− 1)(n+ 2)(m− 1)

[
tr(W 2

22)−
1

n
{tr(W22)}2

]
. (31)

We propose the statistic

T2 =
n√
2

(
F̂1 + F̂2

)
, (32)

where

F̂1 =
â∗(1,2)√

2â∗2(1)â
∗
2(2)

= [(n− 1)(n+ 2)(m− 1)]1/2
â∗(1,2)√

2â∗2(2)W11

(33)

, F̂2 =
1

2

(
1−

â∗21(2)
â∗2(2)

)
, (34)
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for testing the hypothesis H2 against the alternative A2. The statistic T2 is
invariant under the transformation:

W →
(
c1 0
0 c2Im−1

)
W

(
c1 0
0 c2Im−1

)
.

Hence, without any loss of generality, we may assume that the matrix Ω = I
when obtaining the distribution of T2 under the hypothesisH2 and calculating
its average significance level (ASL) or power; see the discussion of Tables 3
and 4 below.

3.2. Asymptotic null distribution of T2
Under H2,W ∼ Wm(Ω, n), where Ω = diag(λ2, σ2Im−1). Hence, we can

write W = (z1, Z2)
′(z1, Z2), and

W = (z1, . . . ,zm)′(z1, . . . ,zm) =

(
W11 W ′

12

W 12 W22

)
, (35)

where zi are independently distributed with z1 ∼ Nn(0, λIn) and z2, . . . ,zm ∼
Nn(0, σ2In). Also W11 = z′1z1, W

′
12 = z′1Z2, W22 = Z ′2Z2 . Hence,

nâ∗(1,2)√
â∗2(1)

=
1

(m− 1)1/2(z′1z1)

[
z′1Z2Z

′
2z1 −

1

n
(z′1z1)tr(Z2Z

′
2)

]

=
σ2

(m− 1)1/2

m∑
j=2

[
(z′1zj)

2

σ2(z′1z1)
− 1

nσ2
(z′jzj)

]

By the law of large numbers, (nσ2)−1(z′jzj)
p→ 1 as n→∞. Given z1, z

′
1zj/σ(z′1z1)

1/2

is standard normal, so [
(z′1zj)

2/σ2(z′1z1)
]

is distributed as χ2
1, independently of z1. From Slutzky’s theorem and the

central limit theorem,

nâ∗(1,2)

σ2
√

2â∗2(1)

=
1

(m− 1)1/2

m∑
j=2

1√
2

[
(z′1zj)

2

σ2(z′1z1)
− 1

nσ2
(z′jzj)

]
→ N(0, 1) , (36)

as (m,n)→∞. A consistent estimator of σ2 is given by â
∗1/2
2(2) . Hence, we get

the following theorem.
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Theorem 3.1. Let W ∼ Wm(Ω, n), where Ω12 = 0, Ω22 = σ2Im−1, and Ω
is partitioned as in (24). Then, under the hypothesis H2 and the assumption
(B), nF̂1 defined in (33) is asymptotically distributed as N(0, 1) as (m,n)→
∞:

lim
(m,n)→∞

P0(nF̂1 ≤ f1) = Φ(f1) ,

where P0 denotes the distribution under the hypothesis H2.

Since limm→∞ λ
2/m = τ 2ρ <∞, we have the following Corollary.

Corollary 3.1. As (m,n) → ∞, the limiting distribution of nâ∗(1,2) under

H2 is N(0, 2a∗2(1)a
∗
2(2)).

Next, we obtain the asymptotic normality of F̂2. It may be noted that F̂2

is invariant under scale transformation of the observation vectors and thus
we shall assume without loss of generality that z2, . . . ,zm are iid Nn(0, In).
Now, from the definition of â∗2(2), we have

â∗2(2) =
1

(n− 1)(n+ 2)(m− 1)

[
tr (W 2

22)−
1

n
{tr(W22)}2

]
(37)

=
1

(n− 1)(n+ 2)(m− 1)

[
m∑
j=2

(z′jzj)
2 + 2

m∑
2≤k<l

(z′kzl)
2 −

− 1

n

m∑
j=2

(z′jzj)
2 − 2

n

m∑
2≤k<l

(z′kzk)(z
′
lzl)

]
= Q1 +Q2, say,

where

Q1 =
n− 1

n(n− 1)(n+ 2)(m− 1)

m∑
j=2

(
z′jzj

)2
, (38)

Q2 =
2

(n− 1)(n+ 2)(m− 1)

m∑
2≤k<l

[
(z′kzl)

2 − 1

n
(z′kzk)(z

′
lzl)

]
, (39)

and

E(Q1) = 1, Var(Q1) ' 8/(nm),

E(Q2) = 0, Var(Q2) ' 4/n2.
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It follows from the central limit theorem that as (m,n)→∞

√
mn

(
Q1

σ4
− 1

)
d→ N(0, 8),

where now we give the result for general σ2.
To find the distribution of Q2, let

ηj =
2

n(m− 1)

j−1∑
i=2

[
(z′izj)

2 − 1

n
(z′izi)(z

′
jzj)

]
, j = 3, . . . ,m− 1 (40)

Then
E(ηj|Fj−1) = 0, and E(η2j |Fj−1) <∞ .

where Fj is the σ-algebra generated by the random vectors z2, . . . ,zj. Let-
ting z1 = 0, and F1 = (∅,X ), where Φ is the empty set, and X is the whole
space, we find that F1 ⊂ F2 ⊂, . . . ,⊂ Fm ⊂ F , and {ηj,Fj} is a sequence of
integrable martingale differences. We note that

nQ2 '
m∑
j=3

ηj . (41)

We need to show that the Lindeberg condition

L =
m∑
j=3

E
[
η2j I(|ηj| > ε) | Fj−1

] p→ 0

is satisfied. From Markov’s inequality and the Cauchy-Schwarz inequality,
as in the Appendix, we have

P (L > ξ) ≤
m∑
j=3

E
(
η4j
)
/ε2ξ.

As in §2, write

uij = (z′izj)
2 − 1

n
(z′izi)

(
z′jzj

)
.

Then, it can be shown that

n4(m− 1)4
m∑
j=3

E
(
η4j
)

= 16
m∑
j=3

E

(
j−1∑
i=2

u4ij + 6

j−1∑
2≤k<l

u2kju
2
il

)
= O

(
m3n4

)
.
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Thus, the Lindeberg condition is satisfied. We now show that

M =
m∑
j=3

E(η2j |Fj−1)
p→ 4, and Var(M)→ 0.

The variance of M is

V2 = Var

[
4

n2(m− 1)2

m∑
j=3

(
j−1∑
i=2

b
(j)
in + 2

j−1∑
2≤k<l

c(j)kln

)]
,

where
b
(j)
in = E(u2ij | Fj−1), c

(j)
kln = E(uklulj | Fj−1).

It can be shown that

E

[
m∑
j=3

E(η2j | Fj−1)

]
=

m∑
j=3

E(η2j ) ' 4 .

As well,

Var

[
4

n2(m− 1)2

m∑
j=3

m−1∑
i=2

b
(j)
in

]
= O(m−1n−2) , and

Var

[
8

n2(m− 1)2

m∑
j=3

∑
2≤k<l

c
(j)
kln

]
= O(m−1n−2), so V2 → 0.

Hence, from Theorem 4 of Shiryayev (1984), as (m,n) → ∞, the limiting
distribution of nQ2 is N(0, 4). Next, we consider the joint distribution of
â∗1(2) and Q1, where

â∗1(2) =

∑m
j=2(z

′
jzj)

n(m− 1)
and Q1

d
=

n− 1

n2(m− 1)

m∑
j=2

(z′jzj)
2 .

As before, σ2 will be assumed to be one. Let ε1i = (z′izi − n) /
√
n, ε2i =

[(z′izi)
2 − n(n + 2)] /

√
n(n+ 2)(n+ 3) , i = 2, ...,m . Then E(ε1i) =

0, Var(ε1i) = 1, E(ε2i) = 0, Var(ε2i) = 1, and Cov(ε1i, ε2i) = 4δn, δn =√
(n+ 2)/(n+ 3). The bivariate random vectors (ε1i, ε2i)

′ are independent
and identically distributed with mean vector 0, and finite covariance matrix,
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i = 2, . . . ,m. Hence, from the multivariate central limit theorem, it follows
that as (m,n)→∞ , in any manner,

√
mn

(
â∗1(2)
Q1

)
d→ N2

[(
1
1

)
,

(
2 4
4 8

)]
It can easily be shown that Cov(â∗1(2), Q2) = 0. Now we apply Lemma A.1 in

the Appendix to conclude that â∗(1,2), â
∗
1(2)and â∗2(2) defined in (3.6) – (3.9) are

jointly normal. From this, it follows that â∗(1,2) and (â∗1(2), â
∗
2(2)) are asymptot-

ically independently distributed under H2. Since â∗2(2)
p→ σ4 and â∗2(1)

p→ λ2, it

follows that F̂1 and F̂2 are asymptotically independently distributed. To find
the distribution of F̂2, we apply the delta method to the joint distribution of
â∗1(2) and â∗2(2), using

∂F2

∂â∗1(2)
=

2â∗1(2)
â∗2(2)

, and
∂F2

∂â∗2(2)
= −

â∗21(2)
â∗22(2)

,

and

(2,−1)

(
2
nm

4
nm

4
nm

8
nm

+ 4
n2

)(
2
−1

)
=

(
0,− 4

n2

)(
2
−1

)
=

4

n2
.

Hence, as (m,n)→∞, (n/2)F̂2
d→ N(0, 1), and we have the following:

Theorem 3.2. Let W ∼ Wm(Ω, n), where Ω12 = 0, Ω22 = σ2Im−1, Ω11 =

λ2, and limm→∞(λ2/m) < ∞. Then under H2 and assumption B, T2
d→

N(0, 1), as m and n →∞ .

3.3. Power of the test T2 and its attained significance level

As in §2, we examine attained significance level (ASL) first. Since the
statistic T2 is invariant under scale transformations of the first component
and the remaining (m − 1) components, we shall assume without loss of
generality that Ω = GΣG′ = Im. For the alternative, we consider Ω =
DRD, D = diag(d1, . . . , dm), di = 2 + (m − i + 1)/m, R = (rij), where

rii = 1, rij = (−1)i+j(ρ)|i−j|
0.1

. . The ASL and power are defined in the same
manner as in §2.3.

We compare the performance of T2 with that of the likelihood ratio statis-
tic

λ∗ =
|W2.1|

[tr(W22)/(m− 1)]m−1
,
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given by Wilks (1946). The asymptotic distribution as n → ∞ can be
obtained from a general result of Box (1949). Let

Q̃ = −[(n− 1)−m(m+ 1)2(2m− 3)/{6(m− 1)(m2 +m− 4)}] log λ∗.

Then

LR1 = Q̃ ∼ χ2
g , g =

1

2
m(m+ 1)− 2,

and

LR2 =
Q̃− g√

2g

d→ N(0, 1) .

The likelihood ratio statistic is not invariant under the group of transforma-
tions (27), although it is invariant under the smaller group of transformations

x→
(
c 0′

0 cGm−1

)
x .

The test based on T2 has better ASL and power than the likelihood ratio
test, even when m < N . In Table 4 we computed the percentage points by
simulation, as in Table 3, but with λ2 = 10 and σ2 = 2, to demonstrate the
fact noted at the end of §3.1 that the results are the same whether or not we
impose the assumption Ω = I.

4. Example

For illustration we applied the proposed test statistics to a microarray
dataset, which has expression levels for 6500 human genes, for 40 samples of
colon tumour tissue and 22 samples of normal colon tissue. A selection of
2000 genes with highest minimal intensity across the samples was made in
Alon et al. (1999), and we use these 2000 genes. Thus m = 2000 and there
are 60 degrees of freedom for estimating the covariance matrix. These data
are publicly available at http://www.molbio.princeton.edu/colondata.
The expression levels have been transformed by log10 transformation.

The description of the datasets and preprocessing are due to Dettling
and Buhlmann (2002), except that we do not standardize each tissue sample
to have zero mean and unit variance across genes, as it may invalidate our
normality assumptions, and is not necessary. The preprocessed datasets were
obtained from Professor Tatsuya at http://www.tatsuya.e.u-tokyo.ac.

jp/data1/colon_xtr.
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Table 3: Attained significance level and attained power of the test of intraclass correlation
based on T2 given in (32), compared to two versions of the likelihood ratio test. The
covariance matrix under H2 is the identity. The likelihood ratio test can only be used
when m < N . The number of simulations is 10,000.

ASL Under H Power (ρ=0.4)
N m T2 LR1 LR2 T2 LR1

5 0.0408 0.0287 0.0262 0.6209 0.4866
20 0.0457 — — 0.9513 —

15 50 0.0450 — — 0.9934 —
75 0.0464 — — 0.9971 —
100 0.0464 — — 0.9988 —
200 0.0467 — — 0.9999 —
5 0.0404 0.0382 0.0345 0.8985 0.8174
20 0.0469 0.1683 0.1251 0.9988 0.9370

25 50 0.0470 — — 0.9999 —
75 0.0447 — — 1 —
100 0.0448 — — 1 —
200 0.0468 — — 1 —
5 0.0419 0.0445 0.0398 0.9975 0.9944
20 0.0533 0.0425 0.0504 1 1

50 50 0.0492 — — 1 —
75 0.0461 — — 1 —
100 0.0493 — — 1 —
200 0.0474 — — 1 —
5 0.0455 0.0457 0.0412 1 1
20 0.0503 0.0415 0.0456 1 1

100 50 0.0469 0.0922 0.0663 1 1
75 0.0486 0.7705 0.6772 1 1
100 0.0487 — — 1 —
200 0.0501 — — 1 —
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Table 4: Attained significance level and attained power of the test of intraclass correlation
based on T2 given in (32), compared to two versions of the likelihood ratio test. The
covariance matrix under H2 is the matrix at (24) with λ2 = 10 and σ2 = 2. The likelihood
ratio test can only be used when m < N . The number of simulations is 10,000.

ASL Under H Power (ρ=0.2)
N m T2 LR1 LR2 T2 LR1

5 0.0368 0.0289 0.0261 0.1679 0.1245
20 0.0446 — — 0.4546 —

15 50 0.0447 — — 0.6695 —
75 0.0429 — — 0.7741 —
100 0.0449 — — 0.8163 —
200 0.0474 — — 0.9111 —
5 0.0380 0.0385 0.0350 0.3116 0.2456
20 0.0447 0.1637 0.1288 0.7645 0.3122

25 50 0.0483 — — 0.9334 —
75 0.0472 — — 0.9708 —
100 0.0438 — — 0.9876 —
200 0.0463 — — 0.9975 —
5 0.0382 0.0442 0.0392 0.6664 0.5972
20 0.0447 0.0409 0.0475 0.9912 0.9554

50 50 0.0495 — — 1 —
75 0.0449 — — 1 —
100 0.0492 — — 1 —
200 0.0453 — — 1 —
5 0.0412 0.0502 0.0434 0.9635 0.9449
20 0.0506 0.0409 0.0479 1 1

100 50 0.0507 0.0863 0.0615 1 1
75 0.0492 0.7640 0.6741 1 1
100 0.0494 — — 1 —
200 0.0451 — — 1 —
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Table 5: Tests of independence for the colon data set, based on T1 defined at (12), for
various values of m. Results based on T ∗

1 (not shown) were more extreme. The associated
p-values are all essentially 0, since T1

.∼ N(0, 1).

m1 25 50 100 200 1000 1500 1900
T1 24.958 26.402 30.098 32.883 39.613 36.655 28.730

The tests developed in §2 and §3 are for a sample from the same normal
distribution, whereas the colon dataset has two sub-samples, from normal
distributions with potentially different means. To accommodate this we use
the pooled estimate of the covariance matrix

Σ̂ = (n1S1 + n2S2)/n,

where Si is the sample covariance matrix of the ith group. The implicit
assumption of a common covariance matrix was tested using the method
given in Srivastava and Yanagihara (2010), and there was no evidence that
the covariance matrices differed (p = 0.5). Consistent with the suggestion in
Dudoit et al. (2002), we re-ordered the genes according the magnitude of the
t-statistic for comparing the two groups. We then tested the independence
of the first m1, and the remaining m2, genes: under independence there is
no loss of power in retaining only the set of m1 corresponding to the largest
values of the t-statistic.

Table 5 shows the results of applying the test of independence, based
on T1. There is strong evidence against the hypothesis of independences of
the first m1 genes from the remaining m2 = m −m1, for a range of values
of m1. This implies that the second set of variables cannot be omitted,
without losing power in testing, or the probability of correct classification
in a discriminant analysis. Results obtained by applying T1 separately to
the tumor and normal classes are consistent with the conclusions of Table 5;
the sub-vectors of differentially-expressed genes are not independent of the
remaining set.

We also applied the test for intraclass correlation structure, based on T2,
to this dataset, both before, and after, re-ordering according to the magnitude
of the m two-sample t-statistics. The test statistic took the values 26.5 before
re-ordering, and 27.7 after re-ordering; thus there is strong evidence that the
intraclass correlation model does not hold, and the method of false discovery
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rates should no be applied for this dataset.

5. Concluding Remarks

In this paper, we propose test statistics for testing independence, as well
as for testing intraclass correlation structure, based on consistent estimators
of the distance function between the hypothesis and the alternative. We have
compared the attained significance level with the nominal level α = 0.05. It
seems that the asymptotic null distributions provide good approximations
to the significance level, and the power of the tests are excellent. It may be
noted that the proposed tests are valid for both m < N and m > N , and
can thus be recommended over the likelihood ratio test, which can only be
used when m < N . Particularly when m is close to N , results in Tables 1
and 2 indicate that the likelihood ratio test can have very poor power.

Appendix

In §2 and §3 we used invariance arguments and a central limit theorem
for independent but not identically distributed random variables. In this
appendix we present these results in general notation.

Assume that the sample of n observations x, i = 1, . . . , n are indepen-
dent and identically distributed with mean 0 and positive definite covari-
ance matrix Σ. Since n < m, the sample covariance matrix S as well as
V = nS are singular. Consider two sample points X = (x1, . . . ,xn) and
X∗ = (x∗1, . . . ,x

∗
n) and let

Z = (X,X1) and Z∗ = (X∗, X∗1 )

where X1 and X∗1 are both m× (m− n) matrices of arbitrary values so that
the m×m matrices Z and Z∗ are nonsingular. Let Ir denote the r×r identity
matrix. Then,

Im = (Z∗)−1Z∗ = (Z∗)−1(X∗, X∗1 )

=
[
(Z∗)−1X∗, (Z∗)−1X∗1

]
=

(
In 0
0 Im−n

)
.

Hence,

(Z∗)−1X∗ =

(
In
0

)
, and Z(Z∗)−1X∗ = (X,X1)

(
In
0

)
= X,
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and X = AX∗, A = Z(Z∗)−1, where A is nonsingular. Thus for any two
points, there exists a nonsingular matrix taking one to the other; i.e. the
whole space is a single orbit. This implies that the group of nonsingular
transformations is transitive, and no invariant statistic exists.

For example, for testing the independence of two subvectors x1 and x2

where x′ = (x′1,x
′
2), no invariant test exists under the nonsingular group of

transformation

x→
(
A1 0
0 A2

)
x ,

where A1 and A2 are m1×m1 and m2×m2, m1 +m2 = m are non singular
matrices. For this reason we consider in §2 and §3 the more restricted group
of transformations given at (2.1) and (3.5).

We now give a lemma to establish the joint asymptotic normality of the
k statistics

t
(n)
i,m =

m∑
j=1

x
(n)
ij , i = 1, ..., k.

where x
(n)
ij is a sequence of random variables which may depend on n. We

consider an arbitrary linear combination of these k statistics, namely,

t(n)m = c1t
(n)
1,m + ...+ ckt

(n)
k,m =

m∑
j=1

k∑
i=1

cix
(n)
ij ≡

m∑
j=1

y
(n)
j

where without any loss of generality, we assume that c21 + ...+ c2k = 1. From
the definition of multivariate normality, see Srivastava and Khatri (1979,

p. 43), joint normality of t
(n)
im , i = 1, ..., k, will follow if the normality of

t
(n)
m is established for all c1, . . . , ck . Let F (n)

` be the σ-algebra generated

by the random variables (x
(n)
1j , . . . , x

(n)
kj ), j = 1, ..., `, ` = 1, ...,m. Then

F0 ⊂ F (n)
1 ⊂ ... ⊂ F (n)

m ⊂ F , where (Ω,F , P ) is the probability space,
F0 = {∅,Ω}, ∅ is the null set and Ω is the whole space.

Lemma A.1 Let x
(n)
ij be a sequence of random variables, y

(n)
j =

∑k
i=1 cix

(n)
ij ,

i = 1, . . . , k, j = 1, . . . ,m, and n = O(mδ), δ > 0. We assume that

(i) E(y
(n)
j | F

(n)
j−1) = 0,

(ii) lim
(n,m)→∞

E[(y
(n)
j )2] <∞,
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(iii)
m∑
j=0

E[(y
(n)
j )2 | F (n)

j−1]
p−→ σ2

0, as(n,m)→∞,

(iv) L ≡
∑m

j=0E[(y
(n)
j )2 I(|y(n)j | > ε) | F (n)

j−1]
p−→ 0, as (n,m)→∞,

Then

t(n)m =
m∑
j=1

y
(n)
j

d→ N(0, σ2
0), as (n,m)→∞.

The proof of this lemma follows from Theorem 4 of Shiryayev (1984, p. 511),

since the first two conditions imply that {x(n)j ,F (n)
j } forms a sequence of in-

tegrable martingale differences. Condition (iv) is known as Lindeberg’s con-
dition. To verify this condition, we note that from the Markov and Cauchy-
Schwarz inequalities

P [L > δ] ≤
m∑
j=0

E[(y
(n)
j )2I(|y(n)j | > ε]/δ

≤
m∑
j=0

E[(y
(n)
j )4]/δε2 .

We also know that

E[(y
(n)
j )4] ≤ k3

k∑
i=1

c4iE[(x
(n)
ij )4].

Hence, if
∑m

j=0E[(x
(n)
ij )4]→ 0, for all i = 1, ..., k, the Lindeberg condition is

satisfied. It is rather simple to evaluate σ2
0 in most cases.
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Székely, G.J. and Rizzo, M.L. (2009). Brownian distance covariance. Ann.
Appl. Statist. 3, 1236–1265.

Wilks, S.S.(1946). Sample criteria for testing equality of means, equality of
variances, and equality of covariances in a normal multivariate distribution.
Ann. Statist. 17, 257–281.

30


	Introduction
	Testing the independence of two sub-vectors
	The proposed test statistics
	Asymptotic Distribution of the Test Statistic T1
	Power of the Test of Independence and its Attained Significance Level

	Testing intraclass correlation
	The test statistic
	Asymptotic null distribution of  T2
	Power of the test T2 and its attained significance level

	Example
	Concluding Remarks

