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Accurate Directional Inference for Vector Parameters
in Linear Exponential Families

A. C. DAVISON, D. A. S. FRASER, N. REID, and N. SARTORI

We consider inference on a vector-valued parameter of interest in a linear exponential family, in the presence of a finite-dimensional
nuisance parameter. Based on higher-order asymptotic theory for likelihood, we propose a directional test whose p-value is computed
using one-dimensional integration. The work simplifies and develops earlier research on directional tests for continuous models and on
higher-order inference for discrete models, and the examples include contingency tables and logistic regression. Examples and simulations
illustrate the high accuracy of the method, which we compare with the usual likelihood ratio test and with an adjusted version due to
Skovgaard. In high-dimensional settings, such as covariance selection, the approach works essentially perfectly, whereas its competitors can

fail catastrophically.

KEY WORDS: Contingency table; Covariance selection; Exponential family model; Higher-order asymptotics; Likelihood ratio test;

Logistic regression

1. INTRODUCTION

The likelihood ratio statistic is probably the most widely used
approach to the comparison of nested parametric models—for
example, deviance tests in generalized linear models (McCul-
lagh and Nelder 1989) are of this type—and provides a general
and powerful framework for such comparisons. It also moti-
vates the construction of test statistics in many other settings,
such as empirical and semiparametric likelihood inference. In
large samples, chi-squared approximations to the distribution
of the likelihood ratio statistic may be used, but their accuracy
may be poor, for example, in sparse contingency tables or high-
dimensional graphical models. Thus, it is of wide interest to
consider potentially more accurate approximations.

In this article, we discuss a directional approach derived from
higher-order approximations for likelihood inference on vector
parameters of interest. For a scalar parameter of interest, a piv-
otal quantity, often called r*, can be constructed, which follows a
standard normal distribution with relative error O(n~3/?), when
the response y is continuous, and with relative error O(n~"),
when y is discrete. Since these approximations have bounded
relative error both in the center of the distribution and in large-
deviation regions, they provide highly accurate inferences well
into the distribution tails. A review of this literature and several
examples are given in Brazzale, Davison, and Reid (2007) and
Brazzale and Davison (2008); the discrete case is considered in
more generality in Davison, Fraser, and Reid (2006). A develop-
ment for vector parameters of interest, parallel to that of r*, was
given in Skovgaard (2001). The resulting test statistic has a dis-
tribution close to x? and was derived analogously to r*, so that
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the approximation is also accurate in large-deviation regions.
The present article provides an alternative approach for linear
exponential family models, which improves on the usual like-
lihood ratio statistic, seems to be more accurate in simulations
than Skovgaard’s statistic, and is very easy to compute.

Directional tests for vector parameters of interest were pro-
posed by Fraser and Massam (1985) and Skovgaard (1988). Our
approach starts with a vector-valued measure of departure from
the hypothesis, and computes p-values based on the magnitude
of this measure, conditional on its direction, thus generalizing
one-sided tests for a scalar parameter of interest. For exponential
family models, Cheah, Fraser, and Reid (1994) proposed using
the sufficient statistic for the parameter as the vector measure of
departure, and adapted the one-dimensional approximation to
the vector setting. That article and Skovgaard (1988) used inte-
gration by parts arguments analogous to that yielding r*, though
with a Xf, rather than standard normal, base distribution, but for
reasons that are unclear the resulting approximation is much less
accurate than the normal approximation to the distribution of r*,
a phenomenon also noted by Wood, Booth, and Butler (1993).
The approach described here simplifies these earlier proposals
and computes the p-value by one-dimensional numerical inte-
gration, evaluated conditionally on the direction of the variable;
see (8) and (10). This is both computationally fast and very
accurate, thus allowing the routine use of directional tests in
practice.

In this article, we restrict attention to exponential family mod-
els in which the parameter of interest is linear in the canonical pa-
rameter. Not only does this encompass many important models,
but other approximations are available with which our approach
can be compared, thus giving a broad indication of how they
are likely to perform when extended to more general settings.
As examples we consider multidimensional contingency tables,
binary regression, comparison of variances in normal models
and rate parameters in exponential models, and inference about
the concentration matrix in graphical models. In simulations
our proposed approach is shown to be extremely accurate, even
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when examined unconditionally, and also in high-dimensional
settings, where its competitors break down. The method also
captures the structure of the models, for example, reproducing
the F-test for comparing two variances in Section 5.1.

2. BACKGROUND

Suppose we have a parametric model f(y;), where y =
(y1, - - - yn) is a vector of independent . components and 0 € R?.
The maximum likelihood estimator # = #(y) maximizes the
log-likelihood function £(8; y) = log f(y;0); we often abbre-
viate this to £(@). We denote the observed data point by y°, with

associated maximum likelihood estimate 50 = 5( ¥0).

We write ¥ (@) for the d-dimensional parameter of inter-
est, and consider inference for ¥ by assessing the hypothesis
Hy : ¥(0) = ¢. In several examples § = (¢, L), that is, ¥ is
a component of the full parameter, possibly after reparameteri-
zation. We let 0y denote the constrained maximum likelihood
estimator of @ under Hy; in component form 6y = (¥, 5:,/,).

To a first order of approximation,  follows a normal distri-
bution with mean # and covariance matrix estimated by j~'(6),
where () = —32£(0)/06 30" is the observed Fisher informa-
tion function; an analogous result holds for 6,,, under Hy (Cox
and Hinkley 1974, sect. 9.3). A parameterization-invariant mea-
sure of departure of # from Hy is given by the likelihood ratio
statistic

w(y) = 2{€0) — £@y)}. (1)

With relative error O(n~"), w(y) follows a Xf distribution,
with degrees of freedom d equal to the number of constrained
parameters in Hy . The apparent improvement from O (n~!/?) for
the distribution of the maximum likelihood estimator to O(n~")
for the likelihood ratio statistic is somewhat artificial; if d = 1
the O(n~'/?) terms in the error in each tail of the distribution
cancel, but one-sided inferences do not improve.

Skovgaard (2001) attributed the exceptional accuracy of the
r* approximation for inference about a scalar interest parameter
both to the relative error in the approximation and to its large-
deviation properties, and proposed an analogous version for
vector interest parameters designed to maintain accuracy in the
tails of the distribution. The resulting quantity

2
w ) = w <1 - l‘)ﬂ) , @)
w

uses a correction factor y that compares w to an asymptotically
equivalent quadratic form. Skovgaard (2001) showed that in
addition to having good large-deviation properties, w*(¢¥) is
also easier to calculate than the Bartlett adjustment discussed
in Section 6. This approach may be applied beyond the linear
exponential families considered in the present article.

Like the likelihood ratio w(¥), Equation (2) gives an omnibus
measure of departure; all potential directions away from the
hypothesis Hy are averaged in the calculation of the p-value. We
propose a measure of departure that incorporates information in
the data about the relevant direction of deviation from Hy, by
conditioning. Some comparison of omnibus and directional tests
is given in Fraser and Reid (2006).

We consider testing independence for the data in Table 1
to illustrate the ideas in a context in which they can readily
be visualized. The nuisance parameter A is four-dimensional,
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Table 1. Retarded activity among psychiatric patients (Everitt 1992,

Table 3.3)
Affective disorders Schizophrenics Neurotics
Retarded 12 13 5
Not retarded 18 17 25

consisting of the intercept, one row effect, and two parame-
ters for column effects, which are eliminated from inference by
conditioning on the table margins. The full model has an ad-
ditional two-dimensional parameter of interest, ¥, representing
the interaction between rows and columns, and the hypothesis
of independence is Hy : ¥ = 0. Both models can easily be fitted
using software for generalized linear models.

We measure departure from Hy on a line in the sample space,
indexed by ¢ € R. As ¢ varies from zero to its maximum possible
value, the magnitude of departure varies from the null hypothe-
sis, through the observed table, and through other 2 x 3 tables
with the same margins. Four of these tables are indicated in
the right-hand side of Figure 1: the independence table, t = 0,
an intermediate table, + = 0.5, the observed table, t = 1, and
the most extreme table consistent with the margins, t = 2. The
upper left panel shows the density A(¢; ¥), given in (8), on this
line, with points ¢ = 0, 0.5, 1, 2 indicated. The lower left panel
shows the shape of the relative density t*~'h(t; y), for t > 0,
used in (10) to compute the directional p-value.

The directional p-value (10) is computed using one-
dimensional numerical integration and equals 0.050; the first-
order p-value obtained using the asymptotic x; distribution of
the likelihood ratio statistic is 0.047. Skovgaard’s (2001) w*
gives 0.048, and a conditional simulation using the method of
Kolassa and Tanner (1994) gives 0.051. The sample size in this
example is too large for the p-values to differ by much.

h(t) t=0
10 10 10
20 20 20

t=20.5

110 | 115 | 75
19.0 | 18.5 | 22.5

0o 05 1 2
t=1
'h(t) 12 13 5
18 17 25
t=2
14 16 0
16 14 30
T T T 1
0o 05 1 2

t

Figure 1. Directional inference for the data in Table 1. The con-
ditional density Ai(t; ¥) on the line indexed by ¢ (top left) and the
directed radial distance from the value expected under independence,
t4=Vh(t; ¥) (bottom left). The shaded area represents the directional
p-value. On the right side, the expected data under the hypothesis
(t = 0) and the observed data (r = 1) are indicated, together with the
expected data for an intermediate case (+ = 0.5) and the boundary case
(t = tnax = 2).
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In the next section, we give the details for the directional
approximation and in Section 4 illustrate its accuracy on some
larger contingency tables.

3. DIRECTIONAL TESTS IN LINEAR
EXPONENTIAL FAMILIES

3.1 Dimension Reduction by Conditioning

We assume that the model is an exponential family with
canonical parameter ¢ = ¢@(#) and score variable or sufficient
statistic, u = u(y),

[(3:0) = explo(6) u(y) — K{@@)}1h(y),

with associated log-likelihood function £(; y) = @(0) "u(y) —
K{p(#)}, where in all log-likelihood functions we ignore ad-
ditive terms that do not depend on 8. Since u is sufficient for
@, the marginal density for u is of the same form, f(u;0) =
expl@(0)'u — K {¢(0)})A(n), and the log-likelihood function is
€0;u) = 90) u— K{p®)).

It is convenient in what follows to center the sufficient statis-
tics at the observed data point u° = u(y°), sowelets = u — u°,
and write

00;5) =0 s +°0) = 00 (u—u’) +£0;u"), (3)

where £2(0) = €(0; s = 0) = £(9; u = u°). The function £(8; s),
which we call the tilted log-likelihood function, is the key in-
gredient for the calculation of directional p-values, and the cen-
tering ensures that the observed value of s is s° = 0.

We further assume that both the parameter of interest and the
nuisance parameter are linear in @, so ¢ = 6 = (¥, L), and thus
write

Upss) =9 51+ 1752+, 1), 4)

where ¥ and §; are d-dimensional. In this simpler model, the
conditional distribution of sy, given s,, depends only on ¥, and
also has exponential family form:

f(s11s259) = exp{yr"s1 — K(W)}ha(s1), (&)

although K (-) and &,(-) can rarely be computed explicitly. Con-
ditioning on the observed value of s, is equivalent to fixing the
constrained maximum likelihood estimate under Hy, which is
'(p‘w = (v, ’):,,,), and when computed at y° is denoted by aow.

The saddlepoint approximation to this conditional density can
be expressed as

f(s:9)ds = cexp [€(@Y:5) —£{@(s): 5}]
X |](p(p{/(p\(s);s}|7l/2 dS, S € ‘CO’ (6)

where ¢ normalizes the conditional density and £° is a d-
dimensional plane defined by setting s, = 0, or equivalently set-
ting 5:,,, = /):?,, In (6), @(s) is the solution in ¢ of the score equa-
tion from (4); s = —Zg((p) = —30%¢)/d¢, and Joo(@:8) =
—3%U(@;5)/0pdg .

Although it is more conventional to write f (s1]82;%) or
a similar expression for the saddlepoint approximation to the
conditional density, the conditioning is here implicitly accom-
modated by taking a “slice” through the full density, that is,
constraining s to lie in £°. The saddlepoint approximation to
the conditional density is derived in Barndorff-Nielsen and Cox
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(1979) and for generalized linear models is discussed in Davi-
son (1988), though it was introduced, in the context of binomial
data, by Daniels (1958). Butler (2007) gave a comprehensive
review of saddlepoint approximations and their statistical appli-
cations. A direct derivation and presentation entirely in terms
of likelihood, as above, is given in Fraser and Reid (2014), and
generalized there to inference for nonlinear functions of the
canonical parameters and to approximate exponential models.

3.2 Directional Departure

The density (6) on the d-dimensional subspace L is the basic
density for inference about ¥, and leads to unbiased tests that
are similar on the boundary in the usual way (Lehmann and
Romano 2005, chap. 4): the nuisance parameter is eliminated
from the model by conditioning. This conditional model can be
used, for example, to derive a likelihood ratio test of Hy; the
asymptotic distribution of the log-likelihood ratio statistic is x 2,
under the usual regularity conditions.

For more accurate p-values, we develop instead a one-
dimensional model by considering the magnitude of s, con-
ditional on its direction. To this end we examine the line £*, in
L, obtained by joining the observed value of s, which is s = 0,
and the value sy, which is the value of s for which ¢ = fﬁ(,;, is
the maximum likelihood estimate; from (4)

—09 (%
sy = —L5@}) = [ ‘”0("’*”)} : (7)

and the value of s depends on y°. We parameterize this line by
teR,

s(t) = sy +1(" —sy) = (1 — )sy;

the maximum likelihood estimates @(s) in (6) vary with s(z).
As t increases, they trace out a curve in the parameter space
that passes through the constrained maximum likelihood esti-
mate fﬁ% when ¢ = 0 and through the full maximum likelihood
estimate @° when ¢ = 1. The mapping of the line £* to the
maximum likelihood estimates @(¢) is indicated in Figure 2.

The saddlepoint approximation constrained to £* is simply
obtained from (6) as

h(t;9) = fs@) ¥} = cexp (C{@y: 5D} — LI@ls@)}; 5(1)])
X |J o [@{s()}: ()] |72, ®)

This expression does not require an explicit parameterization
of the nuisance parameter for its computation, if we use the
more general form av, = arg supyy)—y £%(¢) to define the con-
strained maximum likelihood estimator. This is useful for the
examples considered in Section 5.

To measure departure from the null hypothesis along this
line, we now determine the conditional distribution of | s,
given the unit vector @ = §/||s||. This conditional distribution
is obtained from (6) by a change of variables from s to (||s]|, @).
The Jacobian of the transformation—which is on R, not
RP?, because s, is fixed on L£L*—is proportional to 141 as ¢
represents the radial distance, and a the vector of d — 1 angles.
The resulting expression from (8) is

7 (e ¥) oc 177 exple(@y; s(0)) — £4@; (1)}
X 1Jpp@)I7"%, 1 € R; ©)
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Figure 2. The line £* for testing ¥ = 0, using the data of Table 1. In the plane £, on the left, the axes show the two components of s, as
s> = 0 on £y. The line £* joins the (first two) components of sy (o) and of 59 (x); see (7). In the right panel, the observed profile log-likelihood
contours are plotted in (v, ¥ ); the constrained maximum likelihood estimate under Hy,, and the full maximum likelihood estimate are marked
with the same symbols as in the left panel. The curve in the right panel is the mapping of £* to the parameter space.

@ depends on ¢ through s, which is constrained to the line £*
in £0.

More detail is given in Cheah, Fraser, and Reid (1994), where
the variables ||s|| € R and @ € R?~! are related to parameters
w and v, where (w, v) is a transformation of ¥, with w hav-
ing the role of a scalar parameter of interest and v that of a
d — 1-dimensional nuisance parameter. The conditional density
of ||s|| given a is obtained from a change of variables in (6).
The accuracy of (9) is thus inherited from that of the original
saddlepoint approximation. This requires smoothness assump-
tions on the underlying model, including the assumption that the
log-likelihood function has a unique maximum in the interior of
the parameter space.

The directional test uses A(f; ¥) to compute the p-value as
the probability that s(z) is as far or farther from sy than is the
observed value 0; this distribution is on the part of £* for which
t > 0. The directed p-value is thus

[ 19 h(e ) de

p¥) = [ (e ) i

(10)

wheret = Oandt = 1 correspond, respectively, to s = sy and to
the observed value s = 0. This is a refinement of the approach
thatuses 2 min{p(¥), 1 — p(¥)} in the scalar parameter ¥ case,
described, for example, in Cox and Hinkley (1974, chap. 3).
The density A(¢; ¥) and the function 14 (e, ¥) are illustrated
in Figure 1.

The upper limit of the integrals in (10) is the largest value
of ¢ for which the maximum likelihood estimator corresponding
to s(z) exists; for instance, f,.x = 2 in the example of Figure
1, though 7,,x may be infinite in some cases. Figure 3 shows
the contours of the log-likelihood function £{¢; s(¢)} at four
different values of ¢, including the observed table, r = 0, an
intermediate case t = 0.5, the value under the hypothesis of

independence, t = 1, and the extreme case t = fi,ax. These log-
likelihood functions correspond to the four 3 x 2 tables shown
in the right column of Figure 1.

The theoretical accuracy of the approximation (10) stems
from that of the renormalized saddlepoint approximation (6),
so there is at worst a relative error of O(n~!) (Butler 2007,
p. 112), even in large-deviation regions and in local-deviation
regions that are of most statistical interest; the relative error is
O(n=3/?) for continuous responses. In some cases, the accu-
racy may even be better, perhaps because of the ratio of similar
integrals in (10), for example, in the normal distribution set-
tings of Section 5.1, the approximation seems to be essentially
exact.

Directional tests were proposed in Fraser and Massam (1985)
as a means of simplifying computations of high-dimensional
marginal densities by replacing them with one-dimensional con-
ditional densities, in the context of marginal inference for regres-
sion parameters in nonnormal linear models. Skovgaard (1988)
proposed directional testing as a means of using the saddle-
point approximation to a sample mean in R, arguing that it
is first order equivalent to the likelihood ratio test, but would
give a more accurate approximation to the p-value, especially
for small p-values, because saddlepoint methods maintain their
accuracy into the tails of the distribution. His directional tests
also used the length of the score variable; he suggested this
for quite general models, although his examples are linear ex-
ponential families. Unfortunately, as mentioned in Section 1,
approximating the integral that defines the p-value involves as
base distribution a Xz distribution, rather than a normal, and
the accuracy of the resulting approximation to the p-value is
poorer than that of numerical integration. Approximations sim-
ilar to those of Skovgaard (1988) were developed in Cheah,
Fraser, and Reid (1994), but the expressions in both articles are
cumbersome and can be inaccurate.
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Figure 3. The tilted log-likelihood function, (4), used in (10), and the (red) curve in the parameter space traced by the maximum likelihood
estimate as s(¢) varies along L£*, for the data and model of Table 1. Each contour plot shows a point on this curve for the value of ¢ indicated
above it; the corresponding 2 x 3 tables are in the right column of Figure 1. The maximum likelihood estimate ¥ {s(¢)} is marked with x, and
;ﬁ\{s(O)} with o. The lower left plot corresponds to the observed table, and the left panel of Figure 2.

3.3 Skovgaard’s Adjusted Likelihood Ratio Statistic

Skovgaard (2001) suggested a direct adjustment to the log-
likelihood ratio statistic w(¥), given at (1), as an alternative to
directional tests. This was motivated by the arguments used to
derive the r* approximation for inference about a scalar parame-
ter. The adjustment takes the form given in (2), where y is given
in Skovgaard (2001, eq. (10)), and simplified to exponential
families in his eq. (13). In our notation, the expression for y is

s - s,/,)TJ;(,l,(aw)(S —sy)}? 1790@y )| v (1n
T w2l — Dy) (s — sy) 1790 @)

and for calculating the p-value it would be evaluated at s = 0,
corresponding to y = y°.

Expression (11) adjusts w, at least approximately, by a fac-
tor that depends on the ratio of w(y) to the quadratic form
for the score test, and in this sense is closely related to the
r* approximation for scalar parameters. On the other hand,
it continues to be an “omnibus” test, in the sense that it at-
tempts to correct the likelihood ratio statistic everywhere in
the parameter space. The directional test is designed to cap-
ture the alternative suggested by the observed data, although the
simulations show that it has good unconditional properties as
well.
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4. MODELS WITH DISCRETE RESPONSES
4.1 Contingency Tables

The calculations are particularly straightforward for a generic
contingency table, as in the example in Section 2. Denote the
observed cell frequencies by y° = (y1, ..., yc), where C is the
total number of cells in the table; for instance, C = IJ in a two-
way contingency table with / rows and J columns. With X and
0 denoting the C x p design matrix and the p x 1 parameter
vector, we assume a log-linear model for the cell frequencies
with expected value u(0) = exp(X#@), such expressions being
understood coordinatewise.

The model is a linear exponential family with canonical pa-
rameter ¢ = 6 and observed log-likelihood function

@) =9" Xy — 10X,

where 1¢isa C x 1 vector of ones and X " y is the minimal suf-
ficient statistic. The score function and the observed information
are, respectively,

lo(@) = XT(y —e**) = XT{y’ — u(e)}.
Joo(9) = X diag(e**)X = X "diag{n(¢)}X.

For inference about a component parameter ¥ of ¢, the columns
of the design matrix are partitioned as X = [X| X;], in confor-
mity with ¢ = (¢, A). The hypothesis Hj : ¥ = 0 corresponds
to the equivalence of the two nested models with linear predic-
tors X,A and X¢. The constrained maximum likelihood esti-
mate of ¢ satisfies Z;\('@?ﬁ; W) =X,0° - X9y = 0.

For directional assessment of the null hypothesis, the ob-
served data point s° equals 0 and the expected value sy defined
in (7) is

—X| ()" — ") _
sy = [ " =-X"{y’ - n@y)}
The directional p-value is obtained numerically from (10). To
determine f,,,¢, note that the maximum likelihood estimate sat-
isfies the condition

XY =XTp@": (12)

the observed value of the sufficient statistic equals the expected
value under the assumed model. In a contingency table, Equa-
tion (12) implies that some marginal totals are equal in the
observed table and in the fitted table (Birch 1963). Moreover, if
some of these totals are zero, then the maximum likelihood es-
timate will lie on the boundary of the parameter space (see, e.g.,
Agresti 2002, sec. 9.8.2). When we need to compute (), which
maximizes £(@;t) = £°(@) + @ " s(¢), Equation (12) becomes

Xy + 1@ — g} = XTRQ), (13)

where &% = u(9°), iy, = p(@}y), and f(r) = p{@(1)}. For any
given value of ¢ larger than 1, the maximum likelihood estimate
(1) and corresponding mean parameter J£(¢) can be easily ob-
tained by solving (13) using iteratively reweighted least squares.
A value of ¢ is admissible if the corresponding fitted cell fre-
quencies fi(z) are all nonnegative and the marginal totals implied
by (13) are all positive; ;. is the largest such value of ¢.
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Table 2. Sexual enjoyment data (Kolassa and Tanner 1994, sec. 3.1)

Wite’s response

Never or Fairly Very Almost
Husband’s response occasionally often often always
Never or occasionally 7 7 2 3
Fairly often 2 8 3 7
Very often 1 5 4 9
Almost always 2 8 9 14

Furthermore, if the larger model is saturated, X will be an
invertible matrix of dimension C x C. Then (13) simplifies to

R =Ry +1 (R -7y

and for the value of  to be admissible each element of ft(¢) must

be positive, that is,
-0
o (®),
[ <lmx = _min TN e
R0 (R ) — @)

The directional p-value is obtained from (10) with z(¢; ¥) given
in (8), here equal to

nies ) = exp [1E (R = By} = BT {log o) — log 2y }]
x | X diag{m(n)) X |7/

As asecond example, we use the data in Table 2. The structure
of the model is similar to that for the data in Table 1, but here A
and ¥ have dimensions 7 and 9; again we test the null hypothesis
Hy : ¥ = 0 of independence. The directional p-value (10) is
0.139, while the first-order and Skovgaard’s w* p-values are,
respectively, 0.078 and 0.165. Kolassa and Tanner (1994, sec.
3.1) reported a simulated conditional p-value of 0.111.

Finally, we consider the data in Table 9.17 of Agresti (2002, p.
401), which describes the joint distribution of four dichotomous
variables: age of mother (A), length of gestation (G), infant
survival (I), and number of cigarettes smoked per day during
gestation (S). It is appropriate to treat length of gestation and
infant survival as responses and the other variables as explana-
tory. As a null model we take that with all main effects and
three first-order interactions (IG, IA, and SA); this has an eight-
dimensional parameter A consisting of the intercept, all four
main effects, and three first-order interactions. A larger model
includes two additional first-order interaction parameters: IS
and GA. The directional p-value (10) for testing equivalence of
the two models is 0.050, while the first-order p-value based on a
chi-squared approximation is 0.052, and Skovgaard’s w* gives
p-value 0.048.

4.2 Simulations

In each example above, the p-value from the x2 approxi-
mation to the likelihood ratio statistic is slightly smaller than
the directional p-value, although not enough to make a practi-
cal difference. We performed some simulations to investigate
the accuracy of the directional p-values, when examined un-
conditionally. The first set of simulations was based on Table
1: 100,000 2 x 3 tables, with total sample size n = 90, were
generated from the independence model. Table 3 shows that the
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Table 3. Comparison of p-values (%) for tests of independence in 100,000 simulated contingency tables of dimensions 2 x 3, 4 x 4, and
6 x 3 x 2. For the 4 x 4 tables, the likelihood ratio statistic was used instead of (10) or (2) for 4747 tables with zero counts in the margins. For
the 6 x 3 x 2 tables replacement took place for 14,417 such tables

10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

Dimension Nominal 1.0 2.5 5.0
2x3 Lik. Ratio, (1) 1.1 2.8 5.5
Pearson’s x> 0.9 2.4 5.1
Skovgaard’s w*(¢¥), (2) 1.0 2.5 5.0
Directional, (10) 1.0 2.4 5.0
4 x4 Lik. Ratio, (1) 1.4 34 6.4
Pearson’s x> 0.9 2.3 4.8
Skovgaard’s w*(¢¥), (2) 1.1 2.7 5.2
Directional, (10) 1.1 2.6 5.1
6x3x2 Lik. Ratio, (1) 1.5 3.6 6.9
Pearson’s x> 1.0 2.5 5.1
Skovgaard’s w*(¢¥), (2) 1.2 3.0 5.8
Directional, (10) 1.2 2.9 5.8
Standard error 0.0 0.0 0.1

10.7 26.0 51.0 75.7 90.5 95.2 97.4 99.2
10.3 25.7 50.8 75.7 90.5 95.2 97.4 99.2
10.1 25.1 50.1 75.2 90.0 95.0 97.3 99.1
10.0 25.0 50.1 75.2 90.2 95.0 97.3 99.2

12.3 28.5 53.6 71.3 91.1 95.5 97.7 99.1

9.9 25.5 51.2 76.2 90.8 95.4 91.7 99.1

10.2 25.1 49.7 74.6 89.8 94.8 97.3 98.9
10.0 24.8 49.5 74.6 89.9 94.9 97.4 98.9

12.9 29.5 54.8 78.3 91.6 95.9 98.0 99.2
10.4 26.1 52.1 77.0 91.1 95.7 97.9 99.2
11.1 26.2 50.9 75.4 90.2 95.1 97.6 99.0
10.9 25.8 50.3 75.0 89.9 95.0 97.5 99.0

0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

directional p-values are unconditionally very accurate, as are
Skovgaard’s (2001) large-deviation version w* and Pearson’s
x? statistic. The likelihood ratio statistic has the worst perfor-
mance in this setting.

We increased the parameter dimensions by simulating 4 x 4
tables; there are seven nuisance parameters and nine interest
parameters that when equal to zero yield independence of the
row and column classifications. In 100,000 simulations with
total sample size n = 150, 4747 of the simulated tables had a
cell margin of zero, in which case neither the directional method
nor Skovgaard’s (2001) method can be used. In these cases, we
substituted the first-order likelihood ratio test when computing
the simulated p-values. Again both w* and the directional test
give very accurate results, improving on both Pearson’s x? and
the likelihood ratio test.

The final simulation tests independence in a 6 x 3 x 2 table,
with total sample size n = 1000. Such a large sample size is
needed to avoid too many simulations with zeros in the margins;
14,417 of 100,000 simulated tables had at least one marginal
zero. In such cases, the simulation p-values were again com-
puted using the Xlz approximation to the likelihood ratio statistic
w(¥). In this setting, there are 27 parameters of interest, with
nine nuisance parameters. The directional test and Skovgaard’s
(2001) large-deviation test again largely retain their accuracy,
though the large number of cases in which w(¢) must be used
leads to some deterioration in the lower tail.

The differences between the approximations are small in all
three cases, and here Skovgaard’s (2001) large-deviation statis-
tic and the directional test yield essentially identical p-values.
This is not the case in general, however, as is seen in Section 5.

4.3 Binary Regression

Consider the data on page 249 of Andrews and Herzberg
(1985) concerning calcium oxalate crystals in samples of urine.
The binary response is an indicator of the presence of such
crystals, and there are six explanatory variables: specific gravity,
that is, the density of urine relative to water; pH (ph); osmolarity
(mOsm); conductivity (mMho); urea concentration (millimoles
per liter); and calcium concentration (millimoles per liter). In the

following analysis, we use the n = 77 complete observations. A
natural starting point for analysis is a logistic regression model
with

exp(x; 6)

Pr(y; = 1) = u;i(0) = ————=—,
r(y ) = 1i(0) [ exp(x 0)

i=1,...,n,
where x; represents the vector of explanatory variables asso-
ciated with the ith response y;. The log-likelihood is of linear
exponential form with canonical parameter ¢ = 0, that is,

U y) = X"y —1, log(l, +exp(X9)},
where y = (yy, ..., y,,)T
variables, with ith row x;r.
The development of the directional p-value is similar to that
for contingency tables in Section 4.1. In particular, to compute
@(t) we again solve Equation (13) through iterative weighted
least squares, but now with u(¢) = exp(X¢@)/{1 + exp(X¢)}.
In this case, the largest admissible value 7, is the largest value
of ¢ for which all fitted probabilities in 7(¢) lie in the interval
[0, 1]. The function A(t; ¥) in (10), given by (8), is then

h(t; ¥) = exp ((1)" {log ﬁ(,;, — log (1)}
+ {1 = )" [log (1, — ) — log(1, — @®}])
x | X Tdiag[R(){1 — A(ONX|"V2.

and X is the matrix of explanatory

For illustration, we compare a smaller model with the three
covariates pH, osmolarity, and conductivity to a full model with
all six covariates, as in the formulation of Brazzale, Davison,
and Reid (2007, p. 42); there are four nuisance parameters and
three interest parameters. The directional p-value (10) for testing
equivalence of the two models is 0.010, while the p-value from
the X32 approximation to the log-likelihood ratio test is 0.004, and
to Skovgaard’s w* is 0.011. Brazzale and Davison (2008, sec.
4.2) discussed why higher-order corrections may be expected to
be large in binary response models.

Inference for vector parameters is often needed when one or
more covariates are factor variables with several levels, as the
natural hypothesis of interest is that the factor variable has no
effect on the response. As an example, we use the bacteria data
from Venables and Ripley (2002, sec. 10.4), which has a binary
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response, presence/absence of bacteria, and measurements on
50 subjects at five times. There are just 24 subjects that are
informative for ¥, and 108 observations, an average of 4.5
observations per subject. The parameter of interest ¥ is a 5-
level factor variable for time, and the nuisance parameters are
the 24 subject-specific intercepts. Venables and Ripley (2002)
used this example to illustrate the use of conditional likelihood
with large numbers of nuisance parameters. The test of the
hypothesis that the four between-week contrasts are all zero
using the likelihood ratio statistic gave a p-value of 0.0005. The
more accurate directional test gave a much larger p-value of
0.0054, Skovgaard’s w* gave a p-value of 0.0043. The exact
conditional p-value is 0.0038; the difference between this and
the two higher-order approximations is due to approximating a
discrete distribution by a continuous one.

5. EXAMPLES WITH CONTINUOUS RESPONSE
5.1 Comparison of Normal Variances

Suppose y;; are independent random variables with distribu-
tions N(u;,02), fori=1,...,g, j=1,...,n;.. We want to
test the null hypothesis of homogeneity of variances among the
g groups, that is,

Hozaf:n-:a;,
against the alternative that at least one equality does not hold.

The model is a full exponential family and the log-likelihood

for the parameter @ = (1, ..., fg, O, ..., 05) is

1< 1 &
0Oy = =33 ymilogof + — 3 vy =)’ . (4

i=1 i j=1

The full and the constrained maximum likelihood estimates are,
respectively,
" . = 2 2 n - ) )
0= (yl,...,yg,vl,...,vg), 00=F1,...,¥g, 07, ..., U),
S -1 i -1 i S =
where 3; = n;' 3 vij, 7 =0y YL (i — §i)?, and 7 =
Y8 nivi/ Y%, n; . Hence, the log-likelihood ratio statistic is

g
w= Zn,- log (9%/7),
i=1

which follows asymptotically the Xg2—1 distribution, under the
null hypothesis. The usual statistic for testing Hy is due to
Bartlett (1937),

> 5 (n; — 1)1og(5%/s?)
L+ {38 i = D) =V =)'} /(Bg — D}V

where N = Y% n;, s7 = n;jv?/(n; — 1), and 52 = Nv* /(N —
g) . This is derived by Bartlett correction of the likelihood ratio
statistic derived from the marginal likelihood for 012, e, crgz,
based on the distribution of slz, e, sg (Barndorff-Nielsen and
Cox 1994, Example 6.16); see Section 6.

The model (14) is a full exponential family of order 2g with
canonical parameter ¢ = (¢, ..., ¢2,) and sufficient statistic

s = (uy, ..., uze). The components of the canonical parameter

w =

309

are

/,L,'/O’iz, i=1,...,¢g

8), —
$ON= o), imgtt, .. 2

while the sufficient statistic has components u; = n;y;, ugy; =
Z;lzl ylzJ for i =1,...,g. The hypothesis of equal vari-
ances can be written as Hy: ¥ =0, with ¥; = Qo114 —
@e+j» J =1,...,g— 1. This hypothesis places linear con-
straints on the canonical parameter ¢, and K(¢)=
— Y8 ni{210g(—2¢,4i) + 979, }/4. The global and con-
strained maximum likelihood estimates are

~T )_)1 )_}g 1 1
=|l=,....=, —,....—= ), 15
¢ (vl2 vl 2uf 2v§> (13)
or— (2 ¥ 1 1
‘p0_<1725""627 262""7 262)7 (16)

where for simplicity we write @ for @° and @, for ’(5?#

For the computation of the directional p-value, we need the
tilted log-likelihood £(@;s) = £°(¢) + ¢ s, as at (4), where
s =0and

sy=—Lo@)={0.....0,—n (v]=0°),..., —ng (v — %)}

In this example, the log-likelihood along the line s(r) = ¢s° +
(1 —1)sy = (1 — t)sy that joins the expected value sy and the
observed value s° can be computed explicitly, giving

Upst) = to; s(1)}

8
- n (m,- T gt [32 4 {02 + (1 - 02}

i=1
1 I,
+ 5 log(_2¢g+l) + Z(ﬂ, (pg+i )

which is maximized at

—~ yi - 1
i) = —F"——, it) = — ’
v =i O T a s o
i=1,...,¢. 17
As expected, t = 0 and r = 1 give (16) and (15), respectively.
Moreover, since $g+i(t) must be negative for alli =1, ..., g,
we have that
t 1, v
< max = —;
72 — min; v?

l

S(tmax) 1s the last value of s along the line s(¢) that leads to an
admissible maximum likelihood estimate (17). The directional
p-value is computed from (10), with (8) giving

g
ht; ) oc [ [{rv? + 1 =0}
i=1
Skovgaard’s (2001) modified likelihood ratio statistic w* can

also be computed explicitly for this example, as the correction
factor y simplifies to

IO R L N /=
=2 Ms) /)

i=1 1
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Table 4. Data used to illustrate comparison of variances (NIST 2012)

Batch 1 2 3 4 5 6 7 8 9 10

10?5 99.80 99.91 99.54 99.82 99.19 99.88 100.15 100.04 99.83 99.48

1057 1.70 2.45 1.42 1.34 5.17 8.80 5.59 1.18 1.54 2.56

NOTE: Sufficient statistics for the gear diameter measurement of g = 10 batches each of n = 10 observations.

When g = 2, so that the parameter of interest is scalar, and
with equal group sizes n| = n;, the directional p-value is iden-
tical to the p-value from the usual F-test. Such equality does not
hold for n; # n,, although simulations not given here indicate
that the differences are slight. When d = 1, Skovgaard’s (2001)
w* = r*2, which is very close numerically to the F-statistic, but
not identical to it.

We illustrate these calculations using data on measurements
of gear diameter for g = 10 batches of gears, with n; = 10
observations from each batch. Summary statistics for the data are
given in Table 4. The first-order p-value based on the likelihood
ratio statistic w is 0.0042; Bartlett’s test gives a much larger
p-value of 0.0136. The directional p-value 0.0389 is still larger,
and Skovgaard’s w* gives a p-value of 0.0622. The pattern
illustrated by these results is typical of the examples we have
looked at; the first-order p-value seems to be too small, while
w* seems to overcorrect.

We compared the accuracy of the approximations by sim-
ulation of balanced samples with varying numbers of groups,
g, and observations per group, n. These were summarized by
graphs that compare the p-values obtained from simulations
under the hypothesis to the uniform distribution. For each con-
figuration we considered 100,000 replications, with oiz = 1land

Likelihood ratio statistic Bartlett’s test

ui =2(g—i)fori =1,...,g. The results are shown for two
cases in Figure 4. In the left panel, g = 3 and n; = 5, giving two
interest parameters and four nuisance parameters. As might be
guessed from the gear data example, the likelihood ratio statis-
tic yields p-values that are too small, but this is corrected by
Bartlett’s statistic @. The directional p-value is remarkably ac-
curate in all cases, with a distribution practically indistinguish-
able from that of w, although the p-values in individual cases
can be different. In the right panel, we took the extreme case
of g = 1000 with n; = 5; this has 999 interest parameters and
1001 nuisance parameters. Inferences based on the likelihood
ratio statistic or on Skovgaard’s (2001) statistic w* break down
completely, but Bartlett’s test and the directional test maintain
their level extremely well. In further simulations with the more
realistic values g = 10 and n; = 20 (not shown), the likelihood
ratio test and Skovgaard’s statistic are noticeably nonuniform,
whereas the directional test and Bartlett’s test are essentially
exact. In fact the directional test seems to duplicate Bartlett’s
test for homogeneity of variances, but we have not been able to
verify this analytically.

We also computed an alternative version of w*, w** = w —
2log y, which is asymptotically equivalent to w* in (2), but in
all cases w* outperforms w**.

Likelihood ratio statistic Bartlett’s test
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Figure 4. Simulations for testing common variances in g = 3 groups with n; = 5 observations per group (left panels), and in g = 1000 groups
with n; = 5 observations per group (right panels), based on 100,000 replications. We compare the simulated p-values under the null hypothesis

to the uniform distribution.
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5.2 Comparison of Exponential Rates

In the model of the previous subsection, the dimensions of
both interest and nuisance parameters increase with the num-
ber of groups, g. We now consider a model where the nuisance
parameter is always scalar, although the dimension of the inter-
est parameter increases. Suppose y;; are independent random
variables following an exponential distribution with rates 6;, for
i=1,...,gand j=1,...,n;. The hypothesis of interest is
homogeneity of the rates among the g groups, 6, = --- =6,,
the alternative being that at least one equality does not hold.
The log-likelihood for the parameter @ = (64, ..., 6,) is

8
€0;y) =) (—uib; +n;loghy),

i=I

where u; = n;y; = Z?’:l ij, the canonical parameter is ¢ =
—0, and the sufficient statistic is u = (uy, . .., u,). The hypoth-
esis can be expressed as a linear constraint on the canonical
parameter, that is,

Hy: Y1 =---=v,1=0,

with, for instance, ¥; = 60,1 — 6;,fori =1,...,g— 1.
The full and the constrained maximum likelihood estimates
are, respectively,

O=(' ), =0,

where y =Y %_ n;5;/ Y% n; and the log-likelihood ratio
statistic is

8 8
w =2 nlog®/0") =2 nilog3/5),  (I8)

i=l1 i=1

which has an asymptotic X§71 distribution under the null hy-
pothesis.
The tilted log-likelihood (4) along the line s(#),

Upst) = g s(t)} = (@) + ¢ s(t)
8
= > [ui +mi(1 = 0)(F — 5} + n; log(—e)],
i=1

is maximized at
1

y—tG =5’

The line for the directional test goes through s° and sy =
- - . ~ ~0

{=n1(31 =), ..., —ng(yg — )}, where 9(0)=—-60", and

@i(t) = — i=1,...,g.
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since @;(¢) has to be negative for all i =1,..., g, we have
that
<thax = —"7"T7— y. — -
y —min; y;

The directional p-value (10) uses A(t; ¥) from (8), resulting
in

8
() oc [ J11 =15 = 7)/5)" ",

i=1

since | J,,(9: )| =T1;_, nio; .
Skovgaard’s (2001) modification can again be computed ex-
plicitly, and is

] ()

/ {w(gl)/2 Xg: ni()_’i_: y)? } _ (19)
i=1

YYi

We illustrate these calculations by testing the equality of the
mean times between failures of the air-conditioning equipment
in 10 Boeing 720 aircraft (Proschan 1963; Cox and Snell 1981).
The first-order p-value based on (18) equals 0.0198, the direc-
tional p-value (10) equals 0.0227, and Skovgaard’s modified
likelihood ratio statistic (2) equals 0.0274.

Table 5 summarizes two simulation studies; one using the
same sample sizes as in the example, and one using g = 1000
groups of size 5, which has 999 parameters of interest, but just
one nuisance parameter. The results confirm the very accurate
behavior of the directional approach, while showing a substan-
tial worsening of the performance of both the likelihood ratio
statistic and, more remarkably, Skovgaard’s statistic in the sec-
ond setting.

5.3 Covariance Selection

A linear exponential model of interest in the analysis of graph-
ical models concerns inference about entries of the concen-
tration, or inverse covariance, matrix in a multivariate normal
distribution. A zero entry in the concentration matrix implies
conditional independence of two variables given the values of
other variables and corresponds to no arc between nodes repre-
senting the two variables in a conditional independence graph
(Lauritzen 1996).

Let yi, ..., y, be a sample of independent random vectors
from a multivariate normal N, (u, A", where the mean p and

Table 5. Simulated empirical distribution (%) of p-values for testing equality of exponential rates, based on 100,000 replications

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
Likelihood ratio, (18) 1.1 2.7 5.4 10.6 25.8 50.7 75.5 90.3 95.2 97.6 99.0
Skovgaard’s w*, (19) 0.9 2.4 4.7 9.6 239 48.2 73.1 88.7 94.2 96.9 98.6
Directional, (10) 1.0 2.6 5.0 10.2 25.0 49.9 74.9 90.0 95.0 97.5 99.0
Likelihood ratio, (18) 5.8 11.3 18.4 29.7 52.6 76.9 91.8 91.7 99.1 99.6 99.9
Skovgaard’s w*, (19) 0.0 0.0 0.0 0.0 0.0 0.2 1.2 4.5 8.9 14.6 23.8
Directional, (10) 1.1 2.6 5.0 10.1 253 50.3 75.3 90.1 95.1 97.5 99.0
Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

NOTE: The upper figures are for data with g = 10 groups with sample sizes 23, 29, 15, 14, 30, 27, 24, 9, 12, 16, and the lower ones are for g = 1000 groups and sample sizes n; = 5.
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the concentration matrix A are unknown and arbitrary apart
from the restriction that A is symmetric and positive definite.
Let y denote the n x ¢ matrix with ith row vector y[T. Then the
log-likelihood for = (i, A) is

n 1 n
00;y) = 5 log |A| - Etr(AyTy) +1, yAp — EMTAIL-

This model is saturated and the maximum likelihood estimate
exists if and only if the matrix y'y — y"1,1] y/n is positive
definite, which happens with probability one if n > ¢ (Lauritzen
1996, Theorem 5.1). The maximum likelihood estimate 5 has
components

B=y L/n. A=y yn—y 1,1 y/n

Consider now a reduced model in which some off-diagonal
elements of A equal zero. With ¢ denoting the d x 1 vector
of these components, the reduced model corresponds to the
null hypothesis Hy : ¥ = 0. Under H, the constrained max-
imum likelihood estimate of 6 is 60 =, KO), where Ko is
typically obtained numerically, for instance using the R func-
tion fitConGraph in package ggm, and as n — oo the log-
likelihood ratio statistic,

w = —nlog(|A ' Aol), (20)

follows the Xf distribution.
The canonical parameter for this exponential family is ¢ =
(&, A) = (A, A), with corresponding log-likelihood

n 1 n
tg;y)=> log |A|—5tr<AyTy> +1)yE— ESTA*‘s. @21)

The expected value sy defined in (7) is sy = —{€:(@y),
eA@o)} = {0, n(A~" — A, ')/2}. The tilted log-likelihood (4)
along the line s(t) = (1 —t)sy can be obtained using (21).
The maximization is straightforward in the 6 parameteriza-
tion and yields 8(r) = {fi, A(1)}, with A()' = 1A + (1 —
t)X(; ' The last value 0£ s along the line s(f), s(fmax), is the
largest value such that A(¢) is positive definite, and this can
easily be found numerically.

The directional p-value (10) uses A(t; ¥) from (8), and since
17 [@{s)}; (117172 = [A@)| @2/ we find that

h(t; ) o A" o (R + (1 = DA, |22
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In this example, Skovgaard’s (2001) modified likelihood ratio
statistic (2) has

1 ~— ]~ o~ ]~ /2 ~_ ]~
y = [5 {tr(A "AoA 1AO)—q” A A2

/ % {tr(XX&l) - q} (— log |X,1X0|)d/271 (22

We illustrate this model using the dataset of Kenward (1987,
Table 1), which consists of repeated measurements of weights
(kg) of 60 calves from a trial on the control of intestinal parasites.
The animals were put out to pasture at the start of the grazing
season, and each was then weighed on 11 occasions. The first 10
measurements were made at two weekly intervals, with a final
one made after a further week. We test first-order Markovian
dependence of the measurements, that is, we test that all off-
diagonal elements of A are zero, except those closest to the
diagonal. In the saturated model A has 66 parameters, while
in the reduced model it has 21 parameters, so d = 45. The log-
likelihood ratio statistic is w = 68.377 and gives p-value 0.0139
based on its asymptotic x 35 distribution. The directional p-value
is 0.0706, while Skovgaard’s w* = 57.243, with p-value 0.1042.

The upper part of Table 6 summarizes a simulation study
from the fitted reduced model. The results underline the high
accuracy of the directional approach, while the performances
of the first-order and Skovgaard’s statistics are, respectively,
poor and not very accurate. To explore how robust this finding
is to the dimension, we considered much larger matrices, with
g = 30 and 50, giving likelihood ratio tests with 406 and 1176
degrees of freedom, respectively: the last two approaches are
catastrophically bad, but the directional approach retains its
excellent performance.

Inference on covariances in the multivariate normal models
is sometimes based on the Wishart marginal distribution of the
sample covariance matrix, which is free of the nuisance param-
eters i; in some contexts this is called the restricted likelihood
function, or REML. The directional p-value obtained using this
marginal distribution is identical to the one developed above
starting from the full likelihood (21). The p-values using w and
w* would be slightly different, although simulation results not
shown here indicate that numerically there is no practical dif-
ference in using the full or the marginal likelihoods to compute
w and w*.

Table 6. Simulated empirical distribution (%) of p-values for testing first-order Markov dependence with n = 60, based on 100, 000 replications

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
Likelihood ratio, (20) 5.5 10.5 17.0 27.0 48.7 73.0 89.5 96.7 98.5 99.4 99.8
Skovgaard’s w*, (22) 0.7 1.8 3.6 7.4 19.6 422 67.8 85.2 91.9 95.5 98.0
Directional, (10) 1.1 2.6 5.0 10.1 24.8 49.8 74.9 89.9 94.9 97.4 99.0
Likelihood ratio, (20) 91.2 95.4 97.5 98.9 99.8 100 100 100 100 100 100

Skovgaard’s w*, (22) 0.0 0.0 0.0 0.2 1.1 4.7 14.8 31.5 44.0 55.6 68.5
Directional, (10) 1.0 2.5 5.0 10.1 25.2 50.2 75.1 90.1 95.0 97.5 99.0
Likelihood ratio, (20) 100 100 100 100 100 100 100 100 100 100 100

Skovgaard’s w*, (22) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 1.6 2.9 5.6
Directional, (10) 1.0 2.5 5.0 10.0 25.0 49.8 74.8 89.9 94.9 97.5 99.0
Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

NOTE: The dimension ¢ of the covariance matrix is 11, 30, and 50 for the top, middle, and lower rows, respectively; the dimension of the parameter of interest is correspondingly 45,

406, and 1176.
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6. DISCUSSION

We have presented the formulas for the conditional density
h(t; ¥) on the line, (8), and associated p-value, (10), in the con-
text of inference for linear functions of the canonical parameter
in an exponential family. Elimination of nuisance parameters
by conditioning is only available in this setting. To construct
a directional test for inference on nonlinear functions of the
canonical parameter, we first need a reference density analo-
gous to (6). Ongoing work derives such a reference distribution
as a marginal density for a derived variable, and shows that
the saddlepoint approximation to this density has a form simi-
lar to (6), but with an additional adjustment for curvature. The
construction of a directional test from this marginal density pro-
ceeds in the same way as in the linear case treated here, and
Fraser and Reid (2014) illustrate this on a number of examples.

More generally, if the underlying model is not an exponential
family, then the method may be extended by first approximating
the model by a so-called tangent exponential family. This en-
tails constructing a nominal canonical parameter ¢(@) from the
original model, using arguments built on approximate ancillar-
ity. The tangent exponential family was used to develop r*-type
approximations in Fraser and Reid (1995); see also Fraser, Reid,
and Wu (1999) and Brazzale, Davison, and Reid (2007, chap. 8).
The r*-type approximations provide inference for scalar param-
eters of interest only. Application of the directional method for
inference about vector parameters in tangent exponential mod-
els seems relatively straightforward, but as yet we have little
experience with concrete applications.

The chi-squared approximation to the distribution of w(y)
can be improved by Bartlett correction (Bartlett 1937); it can be
shown that

w(¥) = w(y)/[Ee{w(¥)}/d] (23)

follows a Xj distribution with relative error O (n~2). Skovgaard
(2001) noted that the accuracy of the x 5 approximation to (23)
can be lost when the expected value is approximated using its
asymptotic expansion, rather than computed analytically. Even
the approximate version can be cumbersome to compute, as it
involves arrays of third- and fourth-order cumulants (Lawley
1956; McCullagh and Cox 1986). The comparison of normal
variances in Section 5.1 is exceptional in that an analytical ex-
pression for the Bartlett correction is available, although in that
case the likelihood that is corrected is the marginal likelihood
for the variances, which already has an adjustment to the de-
grees of freedom. The directional test implements this degrees
of freedom adjustment automatically, via the saddlepoint ap-
proximation. The Bartlett test, like the likelihood ratio test, is an
“omnibus” test, looking in all directions of the parameter space
for alternatives. In the scalar parameter setting, this means that
error may be larger than the nominal in one tail of the distribu-
tion, and smaller than nominal in the other. The directional test,
on the other hand, looks in the direction determined by the data.

In all the examples treated here, the directional p-value can be
computed in R (R Development Core Team 2012) by first fitting
a full and a constrained generalized linear model using glm, and
then computing the one-dimensional integral with integrate.
The only nonstandard aspect is the determination of #,,x in (10).
For contingency tables, as discussed in Section 4.1, f,x can be
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obtained explicitly if the hypothesis is nested in the saturated
model. If the hypothesis is nested in an unsaturated model, as
in the last example in Section 4.1, then #,,x is reached when
margins of certain subtables are zero; a general treatment is
given in Fienberg and Rinaldo (2012). Our implementation for
cases where #,,x is not available explicitly simply fits the model
for increasing values of ¢ until the maximum likelihood estimate
reaches the boundary of the parameter space.

For some of the contingency table examples in Section 4,
algorithms are available to compute the exact p-value, condi-
tional on the table margins. The commercial package StatXact
(Mehta 1991) uses a network algorithm for this computation,
but for larger sample sizes some type of sampling is usually
needed. The R package exactLoglinTest (Caffo 2006) uses
either importance sampling or Markov chain sampling; both are
built on a normal approximation to the Poisson distribution. This
package can be used to test independence, although we found
in applying it to the data of Table 2 that careful tuning of the al-
gorithm was needed. Other Metropolis—Hastings algorithms for
conditional simulation can also be implemented (Forster, Mc-
Donald, and Smith 1996; Smith, Forster, and McDonald 1996;
Diaconis and Sturmfels 1998; Forster, McDonald, and Smith
2003), but ensuring irreducibility of the resulting chain is again
not straightforward in general, and so far as we know no general
code is available for this. Caffo and Booth (2003) gave a helpful
overview of Monte Carlo methods for log-linear models.

Naive bootstrap simulation from the fitted model would be
expected to give lower theoretical accuracy than the approach
described above, as it is unconditional, rather than conditioned
on the sufficient statistics. Although precision can be improved
by nested simulation (Davison and Hinkley 1997, sec. 4.5), the
computational burden would then greatly increase. A more accu-
rate unconditional approach due to DiCiccio and Young (2008)
seems to be available only for scalar parameters of interest.

The balance between mathematical elegance and computa-
tional brute force is a matter of taste, but even practical consider-
ations suggest that the demonstrated accuracy of the directional
approach makes it worthy of consideration. Unlike the compu-
tational methods mentioned above, it has the added advantage
that the same paradigm holds for both discrete and continuous
models.

[Received March 2013. Revised August 2013 ]
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