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Asymptotic analysis has always been very useful for deriving distribu-
tions in statistics in cases where the exact distribution is unavailable. More
importantly, asymptotic analysis can also provide insight into the inference
process itself, suggesting what information is available and how this infor-
mation may be extracted. The development of likelihood inference over the
past twenty-some years provides an illustration of the interplay between tech-
niques of approximation and statistical theory.

1. Introduction. The development of statistical theory has always relied on
extensive use of the mathematics of asymptotic analysis, and indeed asymptotic
arguments are an inevitable consequence of a frequency based theory of probabil-
ity. This is so even in a Bayesian context, as all but the most specialized applica-
tions rely on some notion of long run average performance. Asymptotic analysis
has also provided statistical methodology with approximations that have proved
in many instances to be relatively robust. Most importantly, asymptotic arguments
provide insight into statistical inference, by verifying that our procedures are mod-
erately sensible, providing a framework for comparing competing procedures, and
providing understanding of the structure of models.

One used to hear criticisms of asymptotic arguments on the grounds that in
practice all sample sizes are finite, and often small, but this criticism addresses
only the possibility that the approximations suggested by the analysis may turn
out to be inaccurate, something that can be checked in applications of particular
interest. The insights offered through asymptotics and the development of
improved approximations using asymptotic expansions have effectively answered
this criticism. Here are some simple examples.

A common technique in statistical consulting, often useful in helping the client
to formulate the problem, is the “infinite data” thought experiment—what would
the client expect to see with an arbitrarily large amount of data from the same
experiment?
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An early use of asymptotics for comparison of competing methodologies was
Fisher’s (1920) comparison of the variance of two competing estimators of scale,

s1 =
{

1

n − 1

∑
(xi − x̄)2

}1/2

and

s2 = c
1

n

∑ |xi − x̄|,
s2 being scaled to have the same asymptotic mean as s1. Fisher showed that
s1 has smaller asymptotic variance in independent, identically distributed sampling
from the normal distribution, thereby in his view clinching the argument for its
superiority. Interestingly, a further analysis of the model led Fisher to discover
sufficiency, surely one of the most important insights into the structure of inference
in the early development of theoretical statistics [Stigler (1973)].

A more recent example is the derivation of the minimax efficiency of local
linear or polynomial smoothing techniques of Stone (1980, 1982) and Fan (1993),
reviewed in Hastie and Loader (1993), which led to such methods generally being
preferred to competitors such as kernel estimates for problems of nonparametric
density estimation and regression.

An early example of asymptotic theory providing an important insight into
likelihood based inference was Neyman and Scott’s (1948) paper showing that
maximum likelihood estimators could be inconsistent or inefficient in problems
with increasing numbers of nuisance parameters. More recently Smith (1985,
1989) showed that asymptotic behavior of maximum likelihood estimators in
nonregular models can be very different from that in regular models.

In the following we consider the insight offered by asymptotic analysis
for inference based on the likelihood function. This is an area that has seen
considerable development in the past twenty years, largely based on asymptotic
expansions and improved approximation. Section 2 reviews the main asymptotic
results in likelihood inference and mentions a number of other applications of
asymptotics to areas of statistics of current interest. In Section 3 we provide
additional detail on a particular type of approximation, that of approximating
p-values in tests of significance. We emphasize here recent work of Barndorff-
Nielsen and colleagues and of Fraser and Reid and colleagues. In Section 4 we
discuss the gap between the theoretical development and applications with special
emphasis on reviewing recent work that is aimed at narrowing this gap, and
outlining work still needed.

2. Likelihood asymptotics.

2.1. First-order theory. The main asymptotic results of likelihood based
inference, presented in most graduate courses on statistical theory, can be
summarized as follows:
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(i) the maximum likelihood estimator is consistent, asymptotically normal and
asymptotically efficient;

(ii) the score statistic has mean zero and is asymptotically normally distributed;
(iii) the likelihood ratio statistic has an asymptotic chi-squared distribution;
(iv) the posterior distribution is asymptotically normal.

To make these statements slightly more precise, we introduce the following
notation. We assume that we have a parametric model with density function
f (y; θ), where θ takes values in a subset of R

k and y = (y1, . . . , yn) is an
observed vector of observations, each component taking values in the same space,
typically a subset of R or occasionally R

d . The likelihood function L(θ;y) =
c(y)f (y; θ) is proportional to the density and �(θ;y) = log L(θ) is the log-
likelihood. The maximum likelihood estimator θ̂ = θ̂ (y) is the value of θ at which
L(θ) or �(θ) reaches a maximum, the score function is U(θ) = ∂�(θ)/∂θ , the
observed Fisher information function is j (θ) = −∂2�(θ)/∂θ∂θT, and the expected
Fisher information is i(θ) = E{j (θ)}. The posterior distribution for θ based on a
prior π(θ) is π(θ |y) ∝ L(θ)π(θ). The asymptotic results summarized above can
then be expressed as

(θ̂ − θ)T {j (θ̂)}(θ̂ − θ) → χ2
k ,(2.1)

{U(θ)}T {j (θ̂)}−1U(θ) → χ2
k ,(2.2)

2{�(θ̂) − �(θ)} → χ2
k ,(2.3) ∫ bn

an

π(θ |y) dθ → �(b) − �(a),(2.4)

where in (2.4) we have assumed k = 1, an = θ̂ + a{j (θ̂)}−1/2, bn = θ̂ +
b{j (θ̂)}−1/2, and �(·) is the cumulative distribution function for a standard normal
random variable. The convergence is as n → ∞ and is in distribution in (2.1)–(2.3)
and in probability in (2.4). The vector version of (2.4) is given in Walker [(1969),
page 87].

Conditions are needed on the model f (y; θ) to ensure that these results are
true, and some set of conditions is given in most textbook treatments, such as
Lehmann and Casella [(1998), Chapter 6]. For example, if the components of y

are independent and identically distributed, then assuming that j (θ̂) is positive
definite, and the third derivative of �(θ) is bounded by an integrable function, will
be sufficient to apply a Taylor series expansion to the score equation U(θ̂) = 0.
As long as the solution to this equation does indeed identify the maximum point
of the likelihood function then a central limit theorem applied to U(θ) will lead to
convergence in distribution results for both θ̂ and the likelihood ratio statistic.

When the n components of y are independent and identically distributed, the
central limit theorem for the score statistic is usually easily established under
relatively weak conditions on the model. A central limit theorem applied to the
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score statistic is the usual starting point for generalizations to more complex
data structures. If the components are not identically distributed then the relevant
asymptotic limit is one in which i(θ) → ∞, where i(θ) is the expected Fisher
information in y = (y1, . . . , yn). In the proportional hazards model, asymptotic
normality of the partial likelihood estimator follows from a martingale central
limit theorem for the partial likelihood score function [Cox (1972)]. In a regression
model i(θ) will depend on XT X, and the condition that i(θ) → ∞ is ensured if
the smallest eigenvalue of this matrix increases without bound as n → ∞. Some
types of dependence among the components of y can also be accommodated, as
for example in the AR(1) model with ρ < 1; again the crucial assumption is that
a central limit theorem holds for the score vector. That conventional asymptotic
theory can be quite misleading in the case of long range dependence is amply
illustrated in Beran (1994).

There are many models where results (2.1)–(2.4) will not hold, and studying
these often provides further insight. If the maximum likelihood estimator is not a
root of the score equation then establishing (2.1) will typically require a specially
tailored analysis.

One class of nonregular models, those with endpoint parameters, exhibits
particularly interesting asymptotics. Suppose θ = (ψ,λ,φ) and f (y; θ) = (y −
ψ)λ−1g(y − ψ,φ), y > ψ for a smooth function g. Smith (1985, 1989) shows
that the behavior of the maximum likelihood estimator of θ depends crucially
on λ, very different asymptotic behavior resulting as λ > 2, λ = 2, 1 < λ < 2
and 0 < λ < 1.

Another class of nonregular problems is given by Neyman–Scott problems,
in which cross-classified or stratified observations have a common parameter of
interest:

f (yij ;ψ,λj ), j = 1, . . . , J, i = 1, . . . , I.

Neyman and Scott (1948) showed by example that as J → ∞ for fixed I the
maximum likelihood estimator of ψ may be consistent but not efficient, or may
be inconsistent. Recent work in two-index asymptotics, allowing I → ∞ at a rate
related to J , investigates this phenomenon in more detail [Portnoy (1984, 1985),
Barndorff-Nielsen (1996) and Sartori (2003)].

A very general discussion of asymptotics in nonregular models is given in
Ibragimov and Has’minskii (1981).

The scaling in (2.1) and (2.2) is by observed Fisher information, evaluated at θ̂ .
The asymptotic statement would be true, under the same regularity conditions, if
j (θ̂) were replaced by expected Fisher information i(θ) or by i(θ̂ ). Asymptotic
theory has established the superiority of j (θ̂) on several grounds. Efron and
Hinkley (1978) establish that j (θ̂ ) more nearly approximates the variance of θ̂

conditional on an ancillary statistic; this result turns out to be closely related
to the p∗ approximation discussed below. Numerical work has indicated that
approximations using j (θ̂) are typically more accurate than those based on
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i(θ̂ ) or i(θ); this again is predicted by the p∗ approximation. In models that
incorporate strong dependence among the components of y such as often arise
in stochastic processes, it is typically the case that j (θ̂)/i(θ̂ ) does not converge in
probability to 1 and scaling by j (θ̂) is required in order that (2.1) and (2.2) hold
[Barndorff-Nielsen and Cox (1994), Chapter 9].

Although (2.1) and (2.2) also hold if j (θ̂) is replaced by j (θ), this is not
a natural substitution to make. In the language of the differential geometry of
statistical models both i(θ) and j (θ̂) are Riemannian metrics for the statistical
manifold defined by the model f (y; θ) and thus in a geometric sense provide the
“right” scaling; j (θ) does not [Barndorff-Nielsen, Cox and Reid (1986)].

Another interesting way in which the simplest first-order asymptotic theory can
fail is in models for which the score function is identically zero: in this case an
asymptotic theory needs to be developed for the second derivative, and this can
have quite different behavior. The general case is discussed in Rotnitzky, Cox,
Bottai and Robins (2000).

Analogues to results (2.1) and (2.2) are often used in more general contexts. The
theory of estimating functions replaces the score function by a general function
g(θ;Y ) required to have mean zero under the model. The estimator defined by
equating g(θ;Y ) to zero will typically converge to θ , and have asymptotic variance
larger than that of θ̂ . The advantage is that g(θ;Y ) may be defined to have
certain robustness properties, or to capture first-order properties of an incompletely
specified model. In other cases the estimating function may be a score function
obtained from a “likelihood-like” function, such as the partial likelihood function
from the proportional hazards model discussed above, or one of many so-called
adjusted profile likelihoods, �(θ̂ψ ) + B(ψ), where θ̂ψ is the maximum likelihood
estimate of θ under the restriction that ψ = ψ(θ) is fixed, and B(ψ) is an
adjustment motivated usually by higher-order asymptotic arguments.

Murphy and van der Vaart (2000) establish a first-order asymptotic theory
for general classes of semiparametric models. Their arguments rely on the
construction of a least-favorable family, and the application of the usual asymptotic
results to that parametric family.

Result (2.3), that the log-likelihood ratio statistic is asymptotically chi-squared,
follows (again in regular models) by a simple Taylor series expansion establishing
that to first-order

2{�(θ̂) − �(θ)} � UT (θ){j (θ̂ )}−1U(θ)

� (θ̂ − θ)T {j (θ̂)}(θ̂ − θ),

so will not be true in any of the cases discussed above where a central limit theorem
is not available for U(θ), or where the maximum likelihood estimator is not a root
of the score equation. Result (2.4) relies on similar regularity conditions on the
models, and on the assumption that the prior is of O(1) in an asymptotic theory.
Walker (1969) establishes the result for bounded (proper) priors, and Fraser and
McDunnough (1984) extend it to improper priors. Freedman (1999) shows that the
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result cannot be true for nonparametric settings, and Wasserman (2000) provides
insight into why this is the case.

In models for which (2.1)–(2.4) are valid, the following results are immediately
available. First, the three likelihood-based test statistics are asymptotically
equivalent, so any choice among them must be made on grounds other than their
limiting distribution. Second, the influence of the prior vanishes in the limit, as is
expected by requiring the prior to supply an amount of information equivalent to
that contained in one observation. Using the normal approximation suggested by
the limiting distributions will lead to the same p-values and confidence bounds in
either a frequentist or Bayesian approach.

The classical approach to distinguishing among these test statistics is to
investigate their power under alternatives to the model. This has not led very
far, because there is typically no uniform domination under alternative models,
although it can be shown for example that the score statistic (2.2) is locally most
powerful, that is, most powerful under alternatives of the form f (y; θ0 + δn−1/2).
Amari (1985) shows that the asymptotic power of the likelihood ratio test is
largest over a wide range of alternatives. Properties in addition to power, such as
invariance or unbiasedness, have come to seem increasingly arbitrary. Of course in
much applied work the choice is made on the basis of convenience, and in some
quite complex models a version of the score statistic (2.2) using i(θ) for scaling
is easiest to compute, as it does not involve computation of the full maximum
likelihood estimate.

An approach closer to that of the work surveyed here is to consider how good
an approximation is provided by the limiting distribution. There are no definitive
results available, but in problems with a scalar parameter of interest the signed
square root of w(θ), which preserves information on the direction of departure
from the assumed model value θ , has in a large number of numerical studies given
the most accurate p-values. Higher-order asymptotic criteria also favor the signed
square root of w(θ), as outlined in the next section. It is difficult to make direct
comparisons of (2.4) with (2.1)–(2.3) in a nonasymptotic context because of the
presence of the arbitrary prior π(θ) in (2.4). However, higher-order asymptotic
analysis has led to some direct comparisons of confidence limits, as outlined below
in connection with matching priors.

2.2. Higher-order asymptotics for likelihood. The main higher-order asymp-
totic results for likelihood based inference are:

(i) the p∗ approximation to the density of the maximum likelihood estimator;
(ii) the r∗ approximation to the distribution function of the signed square root

of the log-likelihood ratio statistic;
(iii) adjustments to profile likelihood to accommodate nuisance parameters;
(iv) Laplace expansions for posterior distributions and matching priors.
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We briefly discuss each of these in turn.
Barndorff-Nielsen (1980, 1983) emphasized the central importance of the

following approximation to the density of the maximum likelihood estimator:

f (θ̂; θ |a)
.= p∗(θ̂ ; θ |a) = c

(2π)k/2 |j (θ̂)|1/2 exp{�(θ) − �(θ̂)},(2.5)

where c = c(θ, a) is a renormalizing constant, j (θ̂) is the observed Fisher
information and 2{�(θ̂)−�(θ)} is the log-likelihood ratio statistic. In the right-hand
side of (2.5), �(θ) = �(θ; θ̂ , a) and j (θ̂) = j (θ̂; θ̂ , a), where (θ̂ , a) is a one-to-one
transformation of y, or equivalently the minimal sufficient statistic based on y.
Note that the normal approximation obtained from (2.5) by Taylor expansion of
the exponent has variance j (θ̂).

It is necessary for the validity of (2.5) that a be exactly or approximately
ancillary, that is, distribution constant. However, if it is not then its marginal
distribution will carry information for θ and (2.5) will not be very useful for
inference. The right-hand side of (2.5) can be obtained from L(θ)/

∫
L(θ) dθ by

a Laplace approximation to the integral in the denominator, and thus generalizes
Fisher’s (1934) exact result in location models. Approximation (2.5) can also be
derived in canonical exponential families from a saddlepoint approximation to the
distribution of the minimal sufficient statistic.

The ancillary statistic a is best regarded as providing a dimension reduction (by
conditioning) from the full dimension, n, of the data, to the dimension k of the
parameter. What the approximation suggests is that conditioning on an ancillary
statistic is an essential component of frequentist inference.

Approximation (2.5) is usually referred to as the p∗ approximation, or
Barndorff-Nielsen’s p∗ approximation. The connection to location models and
exponential families was discussed in Reid (1988). Skovgaard (1990) outlined
the main elements of the proof that (2.5) provides an approximation to the exact
conditional density with relative error O(n−3/2), although a completely general
and rigorous proof is still lacking. Skovgaard’s (1990) derivation explicates the
role of the approximate ancillarity of a; see also Severini [(2000), Chapter 6]. One
difficulty in obtaining a completely general proof is that it is not clear in a very
general setting what the transformation from y to (θ̂ , a) is. The easiest route is
to embed the model in a full exponential family in which θ is a restriction of the
parameter to a curve. If the full model has a parameter with fixed dimension (free
of n) then an approximately ancillary statistic is readily constructed. This is the
approach outlined in Barndorff-Nielsen and Cox [(1994), Chapter 7]. Skovgaard
(2001) refers to (2.5) as a Laplace-type approximation, and notes the similarity to
Wiener germs, defined by Dinges (1986).

In the special case that θ is a scalar parameter, (2.5) can be reexpressed as an
approximation to the density of the likelihood root r(θ), defined by

�(θ) − �(θ̂) = −1
2r2(θ)(2.6)
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and this is the basis for the approximation of the cumulative distribution function
of r by

F(r; θ |a)
.= �(r∗)(2.7)

.= �(r) +
(

1

r
− 1

q

)
φ(r),(2.8)

where

r∗ = r + 1

r
log

q

r
,(2.9)

q = {
�;θ̂ (θ) − �;θ̂ (θ̂ )

}{j (θ̂)}−1/2,(2.10)

�;θ̂ (θ; θ̂ , a) = ∂�(θ; θ̂ , a)/∂θ̂ .(2.11)

This was derived in Barndorff-Nielsen (1986, 1990, 1991) by integrating the
p∗ approximation. A more direct version that avoids the transformation from y

to (θ̂ , a) was outlined in Fraser (1990, 1991).
The insights provided by (2.7) and (2.8) are several, and arguably of more

importance for inference then the p∗ approximation, since in most cases we need
the distribution function in order to compute p-values and confidence limits. In
going from (2.5) to (2.7) or (2.8), the transformation to r is key, which suggests that
the likelihood root, r , is the intrinsic statistic with which to measure the departure
of θ̂ from θ . Approximation (2.7), with (2.9), shows that r is nearly normally
distributed, and a small adjustment makes it much closer to normally distributed.
The “smallness” of the adjustment can be quantified by Taylor series expansion
of (2.10) to show that

r = q + A√
n
q2 + B

n
q3 + O(n−3/2)(2.12)

where A and B are free of n. The appearance of ∂�/∂θ̂ in q is an inevitable
consequence of the change of variable from θ̂ to r : in other words it is essential
to consider how the likelihood function changes with small changes to the data.
These changes are in only certain directions, namely those in which the ancillary
statistic a is held fixed.

Note that if we were interpreting the p∗ approximation as an approximate
posterior density with a flat prior, then the corresponding posterior distribution
function would involve the change of variable ∂r/∂θ , instead of ∂r/∂θ̂ , and as a
result the corresponding q would be a standardized score statistic.

The dependence of p∗ on an exact or approximate ancillary statistic a has
somewhat hampered its usefulness, as in general models it is not usually clear
how to construct such a statistic, and an explicit expression is rarely available.
However, in (2.7) and (2.8) the only dependence on a is through the first derivative
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of �; Fraser (1988, 1990) exploited this fact to derive an alternative expression
for q:

q = {�;V (θ;y) − �;V (θ̂;y)}{j (θ̂)}1/2|�θ ;V (θ̂)|−1(2.13)

where V = V (y) is an n × 1 vector tangent to the ancillary statistic, and �;V (θ)

is the directional derivative d
dt

�(θ;y0 + tV ) computed at a fixed data value y0.
A fuller description of q and V is given in Section 3.

To describe results in models with vector parameters some additional notation
is needed. We assume that the parameter θ = (ψ,λ) is partitioned into a vector
of parameters of interest, ψ , and nuisance parameters λ. The more general case,
where the parameter of interest is expressed as a restriction on θ by ψ = ψ(θ),
and the nuisance parameterization is not given explicitly, is discussed briefly in
Section 3. We denote the restricted maximum likelihood estimator of λ by λ̂ψ , and
write θ̂ψ = (ψ, λ̂ψ). We assume λ̂ψ is defined by ∂�(ψ, λ̂ψ)/∂λ = 0. The observed
information function j (θ) is partitioned as

j (θ) =
[
jψψ(θ) jψλ(θ)

jλψ(θ) jλλ(θ)

]
with a similar partitioning of its inverse

j−1(θ) =
[
jψψ(θ) jψλ(θ)

jλψ(θ) jλλ(θ)

]
.

The profile log-likelihood function is �p(ψ) = �(ψ, λ̂ψ), and the profile observed
information is jp(ψ) = −∂2�p(ψ)/∂ψ ∂ψT . The result

|jp(ψ)| = |j (ψ, λ̂ψ)|/|jλλ(ψ, λ̂ψ)|(2.14)

follows from the definition of λ̂ψ and the formula for the determinant of a
partitioned information matrix.

In problems with nuisance parameters, a central role is played by the adjusted
profile log-likelihood function

�a(ψ) = �p(ψ) − 1
2 log |jλλ(ψ, λ̂ψ)|.(2.15)

The easiest way to see why is to consider Laplace approximation of the posterior
marginal density for ψ :

πm(ψ|y) =
∫

π(ψ,λ|y) dλ

=
∫

exp{�(ψ,λ)}π(ψ,λ) dλ∫∫
exp{�(ψ,λ)}π(ψ,λ) dψ dλ

.= exp{�(ψ, λ̂ψ)}|jλλ(ψ, λ̂ψ)|−1/2π(ψ, λ̂ψ)

exp{�(ψ̂, λ̂)}|j (ψ̂, λ̂)|−1/2π(ψ̂, λ̂)

1√
(2π)

.= 1√
(2π)

exp{�a(ψ) − �a(ψ̂)}|ja(ψ̂)|1/2 π(θ̂ψ)

π(θ̂)
(2.16)
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where the first approximation results from the leading term of a Laplace
expansion of the integrals, and the second by using (2.14) and the results that
|ja(ψ̂)| = |jp(ψ̂)|{1+Op(n−1)} and ψ̂a −ψ̂ = Op(n−1), where ψ̂a is the solution
of �′

a(ψ) = 0.
The structure of (2.16) is very similar to that of the p∗ approximation (2.5),

with an additional factor due to the prior, and with the log-likelihood function
replaced by the adjusted log-likelihood function. As a result, when ψ is a scalar
this approximation can be integrated to give an r∗-type approximation to the
marginal cumulative distribution function.

The approximation of the marginal posterior density can also be expressed in
terms of the profile log-likelihood function. To the same order of approximation as
in (2.16), that is, O(n−3/2), we have

πm(ψ|y)

.= 1√
(2π)

exp{�p(ψ) − �p(ψ̂)}|jp(ψ̂)|1/2
{ |jλλ(θ̂)|

|jλλ(θ̂ψ)|
}1/2 π(θ̂ψ)

π(θ̂)

(2.17)

which leads to a tail area approximation involving the signed root of the profile
log-likelihood, as outlined in Section 3.

In a frequentist approach to inference it is more difficult to find a general pre-
scription for eliminating the nuisance parameters. But in two classes of models,
exponential families and transformation families, elimination of nuisance parame-
ters can be achieved by conditioning (in exponential families) or marginalizing (in
transformation families), as long as the parameter of interest ψ is a component of
the canonical parameter for the model. In these cases r∗-type approximations are
derived from p∗-type approximations to the appropriate conditional or marginal
density and these densities can be expressed in terms of the adjusted likelihood
function (2.15) in much the same way as approximation (2.16). The frequentist
versions involve sample space derivatives, as in the one-dimensional case, and are
reviewed in Reid (1996).

What is striking about these approximations from a theoretical point of view
is that to this order of approximation nuisance parameters are accommodated by
a relatively simple adjustment based on the nuisance parameter information, and
except for this adjustment the calculations are essentially the same as in the case of
no nuisance parameters. A p∗-type density approximation is needed as a starting
point for computing significance probabilities, which suggests in the general case
that conditioning on an approximate ancillary is needed to reduce the dimension
from n to k. As will be discussed in more detail in Section 3, the dimension
reduction from that of θ to that of ψ is achieved by marginalizing.

The adjusted profile log-likelihood function �a(ψ) can also be used for infer-
ence, using the first-order approximations described in Section 2.1, and might be
expected to have better finite sample properties than inference based on the pro-
file log-likelihood because an adjustment for nuisance parameters is incorporated.
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Higher-order asymptotic theory, and especially the p∗ approximation, leads nat-
urally to a refinement of this, the modified profile log-likelihood introduced in
Barndorff-Nielsen (1983):

�MP(ψ) = �a(ψ) − |∂λ̂ψ/∂λ̂|
= �p(ψ) + 1

2 log |jλλ(ψ, λ̂ψ)| − log |�
λ;λ̂(ψ, λ̂ψ )|,(2.18)

where in (2.18) we assume we can write �(ψ,λ;y) = �(ψ,λ; ψ̂, λ̂, a). Many
approximations to �MP have been suggested to avoid this latter step, the simplest
of which is �a(ψ). However, �a(ψ) is not invariant to reparameterizations which
preserve ψ as the parameter of interest. Cox and Reid (1987) suggested computing
�a(ψ) using an orthogonal nuisance parameterization λ. However, orthogonal
parameters are only determined up to one-to-one functions of λ. Accessible
discussions of modifications to profile likelihood are given in Barndorff-Nielsen
and Cox [(1994), Chapter 3] and Severini [(2000), Chapter 9].

The higher-order expansion (2.16) for the posterior marginal density using
Laplace approximation is due to Tierney and Kadane (1986). They also showed
that the relative error in (2.16) is O(n−3/2). A different approximation based on
Edgeworth expansions was derived in Johnson (1970) and by Welch and Peers
(1963) and Peers (1965). These latter two papers were particularly concerned with
answering a question posed by Lindley: Does a prior exist for which posterior
probability limits have a frequentist interpretation as confidence limits? In location
models it follows from Fisher (1934) that p(θ̂ |a; θ) = π(θ |y) under the flat prior
π(θ) ∝ 1, and this was generalized to transformation models in Fraser (1968) and
Barndorff-Nielsen (1980): the flat prior is replaced by the right Haar measure.

Welch and Peers showed that when θ is a scalar, Jeffreys’ prior

π(θ) ∝ {i(θ)}1/2(2.19)

ensures the matching condition

PrY |θ
{
θ ≤ θ(1−α)(π,Y )

} = 1 − α + O(n−1)(2.20)

where θ(1−α)(π, y) is the (1 − α) posterior limit:

Prθ |Y
{
θ ≤ θ(1−α)(π, y)|y} = 1 − α.(2.21)

In the case that θ is a vector parameter there is no simple condition for matching
posterior and sampling probabilities [Peers (1965)]. If θ = (ψ,λ), and ψ is
orthogonal to λ, matching priors for inference on ψ are defined by

π(θ) ∝ {iψψ(θ)}1/2g(λ)(2.22)

where g(λ) is an arbitrary function [Tibshirani (1989) and Nicolaou (1993)]. The
lack of a general solution has led to a large literature on finding matching priors
using more restrictive matching conditions; see Ghosh and Mukerjee (1998) for a
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review. An alternative approach to matching based on r∗-type approximations is
discussed briefly in Section 3.

A Bayesian approach can be used to derive frequentist asymptotic expansions
by an elegant shrinkage argument due to J. K. Ghosh and to Dawid (1991). An
expository account is given in Mukerjee and Reid (2000). The main point is that
expansions can be carried out in the parameter space, rather than the sample space,
which as we have seen in the derivation of r∗ is typically much easier.

2.3. Other applications. There are a number of related areas where asymp-
totic arguments have been crucial for the advancement of the theory of statistics:
in fact it is difficult to find an area in the theory where asymptotic arguments do
not play a central role. In this section we mention briefly particular areas that seem
most closely related to statistical theory based on likelihood.

The most important of these is the asymptotic analysis of the bootstrap. As a
methodological tool, the bootstrap is indispensable, but in terms of understanding
when and how it is useful, its asymptotic properties are paramount and in this
connection the result that the bootstrap provides second-order correct confidence
limits was key [Bickel and Freedman (1981) and Singh (1981)]. In this sense
bootstrap methods are also higher-order asymptotic methods, and there are several
close points of contact between results of Section 2.1 and the parametric bootstrap.
Although the connections are not yet completely clear, much progress is made in
DiCiccio and Efron (1992) and Davison and Hinkley (1997).

Another development in higher-order asymptotics is the development of
Edgeworth expansions for U statistics; see Bentkus, Götze and van Zwet (1997)
and Bloznelis and Götze (2000). This enables the development of asymptotic
theory that accommodates certain types of dependence, which is important in
several applications. From the point of view of establishing proofs, Edgeworth
expansions are key, because the saddlepoint-type expansions used in likelihood
asymptotics are essentially specialized Edgeworth expansions. Detailed derivation
and discussion of Edgeworth expansions for the bootstrap are given in Hall (1992).

Edgeworth expansions for martingales have been developed by Mykland (1995)
and these provide the possibility of a type of higher-order asymptotic analysis
in settings like the proportional hazards model. A key component of this is
the verification that the likelihoods derived from martingales obey the Bartlett
identities [Mykland (2000)].

As mentioned in Section 2.1, a different approach to higher-order inference
from that discussed here is to investigate the power properties of the standard test
statistics. An excellent overview is Skovgaard (1989); Edgeworth expansions for
power functions are derived in Amari (1985) and Pfanzagl (1985).

Empirical likelihood [Owen (1988, 2001)] has many properties of parametric
likelihood, and second-order properties have been investigated by, for example,
DiCiccio, Hall and Romano (1991).
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3. On p-values for a scalar parameter.

3.1. Introduction. In this section we develop the approximation discussed
briefly in Section 2 in more detail. In particular, we describe the construction of q

used to compute p-values when testing a scalar parameter of interest, ψ = ψ(θ)

in the presence of nuisance parameters. When computed as a function of ψ ,
p(ψ), say, this provides approximate confidence bounds at any desired level of
confidence, so the testing problem is not essentially different from the problem of
interval estimation. This function p(ψ) is called the significance function in Fraser
(1991) and the confidence distribution function in Efron (1993). It provides a direct
comparison to Bayesian inference, as the significance function is analogous to the
marginal posterior cumulative distribution function.

The approximation to the p-value function is the same as that given by (2.7)
and (2.8):

p(ψ)
.= �(r) + φ(r)

(
1

r
− 1

q

)
(3.1)

.= �

(
r + 1

r
log

1

q

)
≡ �(r∗)(3.2)

where �(·) and φ(·) are the standard normal distribution function and density
function. Here r = r(ψ) is the log-likelihood root based on the profile log-
likelihood

r(ψ) = sign(ψ̂ − ψ)
[
2{�p(ψ̂) − �p(ψ)}]1/2

= sign(ψ̂ − ψ)
[
2{�p(ψ̂, λ̂) − �(ψ, λ̂ψ)}]1/2

,
(3.3)

and q = q(ψ) is a type of maximum likelihood or score statistic to be described
below. As in the scalar parameter case q involves a sample space derivative of �

for a fixed ancillary statistic.
Other asymptotically equivalent approximations to (3.1) and (3.2) use as the

starting point the likelihood root obtained from an adjusted profile log-likelihood.
Numerical work in relatively simple models seems to indicate that approximations
based on adjusted likelihood roots are better [Butler, Huzurbazar and Booth
(1992b), Pierce and Peters (1992) and Sartori (2003)] so the use of �p(ψ) in (3.3)
may be a drawback of the approach developed here. An advantage though of this
approach is the derivation of an expression for q that can be used in general models.
Versions of the p-value approximation that use adjusted likelihood roots are
currently available only for inference on a canonical parameter in full exponential
models or a linear parameter in transformation models.

Approximations of the form (3.1) and (3.2), but accurate to O(n−1) instead
of O(n−3/2) can be constructed without specification of an approximate ancillary
statistic. Several such approximations have been suggested in the literature; see,
for example, Barndorff-Nielsen and Chamberlin (1991, 1994) and DiCiccio and
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Martin (1993). The version due to Skovgaard (1996) seems most useful for both
theoretical and applied work. Severini (1999) gives an alternative expression for
Skovgaard’s statistic and an alternative derivation of his result.

The steps in the derivation of (3.1) or (3.2) are the following:

(1) Find a density or approximate density supported on R
k rather than R

n, for
example, by using a p∗ approximation for the conditional density given an
approximate ancillary statistic.

(2) Transform this density to that of a one-dimensional pivotal statistic for ψ and
a complementary statistic of dimension k − 1 and find the marginal density of
the pivotal.

(3) Integrate this marginal density up to (or beyond) the observed data point.

Note that Steps 1 and 3 are also needed for problems without nuisance
parameters, so follow the pattern outlined in Section 2. As we will see, Step 2
can be obtained using the same argument as in Step 1. We now discuss Steps 1–3
in more detail.

3.2. Reduction from n to k. This reduction can be achieved using the
p∗ approximation to the density of the maximum likelihood estimator by
conditioning on an approximate ancillary statistic. That is, we find a statistic
a = a(y) of dimension n − k so that the transformation from y to (θ̂ , a) is one-
to-one. In some models it may be convenient to first replace y by the minimal
sufficient statistic for θ , if such exists, but the end result is the same.

We transform the joint density for y into that for (θ̂ , a), and express the result
as

p(θ̂ |a; θ)p(a),(3.4)

where the requirement that a be ancillary ensures that all the information about θ

is contained in the conditional density. As described in Section 2, p(θ̂ |a; θ) can be
approximated with relative error O(n−3/2) by the p∗ approximation (2.5) and to
this order of approximation it is sufficient that a be ancillary only to O(n−1), that
is, that p(a; θ0 + δn−1/2) = p(a; θ0){1 + O(n−1)}.

The derivation of (3.4) is outlined most clearly in Skovgaard (1990) and from
there the derivation of the p∗ approximation proceeds by finding a suitable
approximate ancillary statistic. This last step can be done explicitly if f (y; θ) can
be embedded in a model with a (k + d)-dimensional minimal sufficient statistic
and a (k + d)-dimensional parameter; that is, in a k + d full exponential family,
thus making f (y; θ) a (k + d, k) curved exponential family. Skovgaard’s (1990)
derivation assumes this to be the case, as do most papers by Barndorff-Nielsen
and colleagues [see, e.g., Barndorff-Nielsen and Wood (1998)]. In this case the
approximate ancillary statistic can be constructed by a sequence of r∗ statistics,
defined as in (3.2), but treating each component of the nuisance parameter
successively as a parameter of interest. An explicit construction along these lines
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is given in Barndorff-Nielsen and Wood (1998); see also Jensen (1992) and
Skovgaard (1996).

However, since the end goal is to integrate the density approximation to
obtain p-values, a simpler approach is possible that does not involve the explicit
specification of θ̂ and a. As in the case with no nuisance parameters, the full
dependence of the log-likelihood function on (θ̂ , a) is not needed. All that is
needed is information on how the log-likelihood changes with changes in θ̂ that
keep a fixed, and even this information is needed only to first derivative at the
observed data point: to first derivative because the integration of the density
approximation involves a Jacobian for a change of variable, and at the observed
data point because we are approximating a p-value.

This leads to a simplification of the p∗ approximation, called in Fraser and Reid
(1993, 1995) a tangent exponential model, and given by

pTEM(s|a; θ)

= c|j (ϕ̂)|−1/2 exp
[
�(θ;y0) − �(θ̂0;y0) + {ϕ(θ) − ϕ(θ̂0)}T s

]
,

(3.5)

where y0 is the observed data point, θ̂0 = θ̂ (y0) is the observed maximum
likelihood estimate of θ ,

ϕT (θ) = ϕT (θ;y0) = ∂�(θ;y)

∂V (y)

∣∣∣∣
y=y0

(3.6)

is a local reparameterization of the model, V (y) is an n× k matrix whose columns
are vectors tangent to the approximate ancillary statistic a and

j (ϕ) = −∂2�{ϕ(θ);y0}
∂ϕ ∂ϕT

(3.7)

is the observed information in the new parameterization ϕ. In the left-hand side
of (3.5), (s, a) is a one-to-one transformation of y that is assumed to exist, but the
precise form of the transformation is not needed. The variable s plays the role of
a score variable, replacing θ̂ in the p∗ approximation, and a is the approximate
ancillary statistic. The existence of a is established in Fraser and Reid (1995) by
using an local location model approximation to f (y; θ).

The right-hand side of (3.5) has the structure of a full exponential model,
with ϕ = ϕ(θ) the canonical parameter, s = s(y) the minimal sufficient statistic,
and �(θ) = �{ϕ(θ)} playing the role of the cumulant generating function. In its
dependence on the log-likelihood function, we need only �(θ;y0) and �;V (θ;y0),
not �(θ;y) as is needed for p∗. The information determinant |j (ϕ̂)|−1/2 is the
volume element for the score variable s. The approximate ancillary a appears only
through the matrix V used to define the canonical parameters. The k columns of V

are vectors in R
n that are tangent to the subspace of R

n defined by holding a fixed.
As in the scalar parameter case, these tangent vectors will determine the Jacobian
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for the change of variable to the likelihood root r which is needed to compute the
p-value approximation.

It is shown in Fraser and Reid (1995) that the vectors V can be constructed
using a vector of pivotal statistics z = {z1(y1, θ), . . . , zn(yn, θ)}, where each
component zi(yi, θ) has a fixed distribution under the model. This assumes that
the components of y are independent. Such a vector always exists in the form of
the probability integral transformation F(yi; θ), although simpler alternatives may
be available. The vectors v1, . . . , vk are defined by

V = −
{(

∂z

∂y

)−1(
∂z

∂θ

)}∣∣∣∣
(y0,θ̂0)

(3.8)

and it can be shown that these are tangent to the surface in the sample space on
which a second-order ancillary statistic is held constant.

EXAMPLE (Tilted logistic). We will illustrate the detailed calculations for a
sample of size 2 from the model

f (y; θ) = e(y−θ)

{1 + e(y−θ)}2 exp[γ (θ)(y − θ) − c{γ (θ)}], −1 ≤ θ ≤ 1,(3.9)

where γ (θ) = 0.5 tanh(θ) and c(θ) = log{(πθ)/ sin(πθ)}. The joint density of
(y1, y2) for fixed θ is shown in Figure 1.

FIG. 1. The joint density when θ = 1, for the model given in (3.9).
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To compute the p∗ approximation to the joint density of θ̂ given a, we need
to find coordinates (θ̂ , a) as a function of (y1, y2) for which �′(θ̂ ) = 0 and
f (a; θ) is free of θ exactly or approximately. Fixing a will define a curve on the
two-dimensional surface expressed in θ̂ coordinates with its associated measure
|j (θ̂)|1/2.

To compute the tangent exponential model we start at the data point y0 =
(y0

1 , y0
2), and trace a curve in R

2 by finding at the ith step,

v
(i)
1 = −Fθ(y1, θ)

f (y1, θ)

∣∣∣∣
y

(i−1)
1 ,θ̂ (i−1)

, v
(i)
2 = −Fθ(y2, θ)

f (y2, θ)

∣∣∣∣
y

(i−1)
2 ,θ̂ (i−1)

,(3.10)

where we are using the probability integral transformation to define the pivotals
(z1, z2). The curve is then

y0, y(1) = y0 + δv(1), . . . , y(i) = y(i−1) + δv(i), . . . ,

illustrated in Figure 2.
The tangent exponential model (3.5) gives the density function at each point

along this curve, with relative error O(n−3/2), in terms of a score variable s = s(y)

with associated measure |j (ϕ̂)|−1/2.

FIG. 2. The second-order ancillary, with tangent vectors given by V , is constant along the solid
curve in the (y1, y2) plane.
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3.3. Reduction from k to 1. We now work within the model conditional on an
approximate ancillary statistic; using either p∗(θ̂ |a) or pTEM(s|a). The dimension
reduction from k to 1 for inference about the scalar parameter ψ is achieved by
finding a one-dimensional pivotal statistic, that is, a function of θ̂ and ψ or s and ψ

that has a distribution free of the nuisance parameter λ: in other words a statistic
that is ancillary for λ when ψ is fixed. Thus an application of Step 1 to p∗ or pTEM
with ψ fixed will provide an ancillary statistic. This statistic, aψ say, will be only
approximately ancillary, but as long as it is ancillary to O(n−1) or better it will
suffice to produce tail area approximations to O(n−3/2).

In Barndorff-Nielsen’s approach, starting with p∗(θ̂ |a), the pivotal is taken to
be

r∗
ψ = rψ + 1

rψ
log

uψ

rψ
.(3.11)

The joint density of θ̂ is transformed to the joint density of (r∗
ψ, λ̂ψ). An

application of the p∗ approximation (Step 1) to the conditional density of λ̂ψ

given r∗
ψ then gives the marginal density of r∗

ψ as N(0,1) to O(n−3/2). This
marginal density is used to compute the p-value. This argument was first presented
in Barndorff-Nielsen (1986), where a rather complicated expression for uψ is
given. Subsequent work simplified the expression for uψ to that given in (3.15)
below.

Nearly the same argument is used in Fraser and Reid (1995), starting from the
tangent exponential model (3.5). As in Step 1, but now in the model for s given
a with ψ fixed, there exist an ancillary statistic aψ for λ, and a score variable sψ
with an approximating tangent exponential model, that is,

pTEM(s|a; θ) = p1(sψ ; θ |aψ)p2(aψ)

where p1 also has exponential family form. The ratio of pTEM to p1 gives the
marginal density of aψ as

p2(aψ) = pTEM(s|a;ψ,λ)

p1(sψ |aψ ;ψ,λ)
.

Since we know the result is free of both λ and sψ , we can evaluate the right-hand
side at convenient values of λ and sψ , which we take to be λ̂ψ and 0. The resulting
approximation has the form of a tangent exponential model with an adjustment
factor involving the information matrix for the nuisance parameter.

3.4. Approximate tail areas. In either approach the resulting marginal density
is readily integrated to compute tail area approximations. In Barndorff-Nielsen’s
approach this is a trivial by product of the result in Step 2 that r∗

ψ has a standard
normal distribution. In Fraser and Reid’s approach the marginal density of the
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pivotal statistic lends itself to a Lugannani and Rice (1980) type approximation,
as described in Cheah, Fraser and Reid (1995) and illustrated below at (3.23).
Skovgaard (2001) refers to these approximations as being “Laplace type.”

The result is that the p-value is approximated by

�(r∗
ψ) = �

(
rψ + 1

rψ
log

uψ

rψ

)
= �(rψ) + φ(rψ)

(
1

rψ
− 1

uψ

)
(3.12)

or

�(r∗
ψ) = �

(
rψ + 1

rψ
log

qψ

rψ

)
= �(rψ) + φ(rψ)

(
1

rψ
− 1

qψ

)
(3.13)

where

rψ = sign(ψ̂ − ψ)
[
2{�(θ̂) − �(θ̂ψ)}]1/2

,(3.14)

uψ = |�;θ̂ (θ̂ ) − �;θ̂ (θ̂ψ ) �
λ;θ̂ (θ̂ψ)|

|�
θ ;θ̂ (θ̂ )|

|jθθ (θ̂ )|1/2

|jλλ(θ̂ψ)|1/2
,(3.15)

qψ = |�;V (θ̂ ) − �;V (θ̂ψ ) �λ;V (θ̂ψ)|
|�θ ;V (θ̂)|

|jθθ (θ̂)|1/2

|jλλ(θ̂ψ )|1/2
,(3.16)

= {ν(θ̂ ) − ν(θ̂ψ )}/σ̂ν.(3.17)

Another way of describing uψ is as a dual score statistic [Barndorff-Nielsen
and Cox (1994), Section 6.6]. In contrast qψ is a type of dual maximum likelihood
statistic, as indicated at (3.17), for a derived scalar parameter ν. In (3.17) we have

ν(θ) = eT
ψϕ(θ),(3.18)

eψ = ψϕ′(θ̂ψ)/|ψϕ′(θ̂ψ )|,
σ̂ 2

ν = |j(λλ)(θ̂ψ )|/|j(θθ)(θ̂ )|,(3.19)

|j(θθ)(θ̂ )| = |jθθ (θ̂)||ϕθ ′(θ̂ )|−2,(3.20)

|j(λλ)(θ̂ψ )| = |jλλ(θ̂ψ)||ϕλ′(θ̂ψ)|−2.(3.21)

Although the expression for qψ is relatively complicated, it is not difficult to
implement algorithmically, starting from �(θ;y) and a specification for V . This
is described in Fraser, Reid and Wu (1999) and implemented there in Maple. The
most difficult aspect of making the algorithm robust is the computation of the
restricted maximum likelihood estimator λ̂ψ .

It will sometimes be more convenient to have a version of q that is suitable when
the nuisance parameter is available only implicitly. This can be obtained using a
Lagrange multiplier argument; the details are given in Fraser, Reid and Wu (1999).
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3.5. Bayesian asymptotics. Bayesian implementation of approximate infer-
ence for a scalar parameter is much simpler. First, the inferential basis is pre-
scribed; one simply computes the marginal posterior for ψ . Second, the asymp-
totic expansions are all computed in the parameter space for fixed data, with the
result that the expansions are easier and the change of variable for integration is
also easier. The resulting approximation is very similar to the frequentist version,
and the precise nature of the difference helps to shed some light on the role of the
prior.

Laplace approximation to the marginal posterior density was described in
Section 2.2:

πm(ψ|y)
.= 1√

(2π)
exp{�p(ψ) − �p(ψ̂)}|jp(ψ̂)|1/2

× |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)
(3.22)

= 1√
(2π)

exp{�a(ψ) − �a(ψ̂a)}|ja(ψ̂)|1/2 π(ψ, λ̂ψ)

π(ψ̂, λ̂)
.(3.23)

Expression (3.23) has the same structure as the p∗ approximation and the
tangent exponential model approximation; that is, it is a density of “Laplace
type” which is readily integrated to give approximate posterior probabilities. It
is integrated as follows:∫ ∞

ψ
πm(ψ|y) dψ

=
∫ ∞
ψ

1√
(2π)

exp{�a(ψ) − �a(ψ̂a)}{ja(ψ̂)}1/2 π(ψ, λ̂ψ)

π(ψ̂, λ̂)
dψ

=
∫ ∞
rψ

1√
(2π)

exp
(
−1

2
r2

)
r

−�′
a(ψ){ja(ψ̂)}−1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)
dr

=
∫ ∞
rψ

1√
(2π)

exp
(
−1

2
r2

)(
r

qB
+ 1 − 1

)
dr

.= �(r) +
∫

rφ(r)

(
1

qB
− 1

r

)
dr

.= �(r) +
(

1

qB
− 1

r

)
φ(r)

(3.24)

where

r = sign(qB)
[
2{�a(ψ̂) − �a(ψ)}]1/2
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and

qB = −�′
a(ψ){ja(ψ̂)}−1/2 π(ψ̂, λ̂)

π(ψ, λ̂ψ)
;

compare (3.13), (3.14) and (3.17). The relative error in approximation (3.24)
is O(n−3/2), which is verified by obtaining the asymptotic expansion of r in
terms of q in the form r = q + (a/

√
n)q2 + (b/n)q3 + O(n−3), and noting that

d(1/r − 1/q) = O(n−1).
The result obtained starting from (3.21) has r and qB replaced by

r = sign(qB)
[
2{�p(ψ̂) − �p(ψ)}]1/2

,

qB = −�′
p(ψ){jp(ψ̂)}−1/2 π(ψ̂, λ̂)

π(ψ, λ̂ψ)

|jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
.

The derivation of the tail area approximation sketched above is of exactly
the same form as the derivation of the tail area approximations discussed in
Section 3.4. The details in Section 3.4 are more difficult, because it is more difficult
to get workable expressions for the remainder term. The integration of Section 3.4
is in the sample space, so the change of variable to r in the first step of the
integration involves a Jacobian on the sample space and this is where the ancillary
directions are needed. It is much easier to work backwards from the Bayesian
derivation to arrive at the non-Bayesian version. A version of (3.24) was derived
in DiCiccio, Field and Fraser (1990), and in full generality in DiCiccio and Martin
(1993). Series expansions for r in terms of q are given in Cakmak et al. (1998). The
structure of the Bayesian significance function is examined in Sweeting (1995).

One conclusion available from comparing (3.23) and (3.13) is that the
approximate tail areas will be identical if qB = qψ . Since qB involves the prior,
this may be considered a definition of a “matching prior,” that is, a prior for
which frequentist and Bayesian inference agree to some order of approximation.
Such a prior necessarily depends on the data, as is evident from inspection of the
expression for q given at (3.16). Such priors are called strong matching priors in
Fraser and Reid (2002) where it is shown that in most cases a usable solution does
not emerge unless we consider matching only to O(n−1). In this case the strong
matching prior is a version of the observed Fisher information.

Data dependent priors are somewhat unusual objects from a Bayesian point of
view, but they do arise in other contexts as well. Box and Cox (1964) proposed
a data dependent prior for the transformed regression model as the only way
to sensibly take account of the scale of the observations. Wasserman (2000)
shows in a mixture model that matching priors must be data dependent at least
in a weak sense. Pierce and Peters (1994) discuss the asymptotic frequentist-
Bayesian connection from a slightly different point of view and come to the same
conclusion: in going from O(n−1) to O(n−3/2) there is an essential dependence on
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the sample space in the frequentist version that has no counterpart in a Bayesian
analysis with fixed prior. This dependence is seen in the derivation of (3.13) or
more simply (2.8) as required by the integration of p∗ or pTEM in the sample space.
Sweeting (2001) extends this discussion and considers matching priors based on
prediction.

A more conventional approach to matching priors involves Edgeworth expan-
sions for the posterior density. As described at the end of Section 2, Welch and
Peers (1963) showed that in models with a single parameter of interest the Jeffreys’
prior, π(θ) ∝ {i(θ)}1/2, is the unique prior for which the (1 −α) posterior quantile
has the property under the sampling model of giving a one-sided confidence bound
with confidence coefficient 1−α+O(n−1). Unfortunately, subsequent attempts to
generalize this result to higher-order and to models with nuisance parameters have
generally not been successful. The higher-order asymptotic results discussed here
make clear in retrospect that this was inevitable. An overview of work on matching
priors is given in Reid, Mukerjee and Fraser (2003).

4. Applications and implementation. Implementation of higher-order ap-
proximations has lagged behind the theoretical development, in part because of the
complexity of expressions like (3.16), in part because the inferential basis is not
well understood and in part because the improvement offered by refined approxi-
mation is in many applications overshadowed by the sample size, the complexity
of the sampling frames, the provisional nature of the model, and so on.

By far the most numerous applications of the asymptotic theory discussed in
Section 3 available in the literature are illustrative examples, typically involving
highly simplified models and extensive simulation. These are meant to highlight
the accuracy of the approximations and the sometimes dramatic improvement in
going from a first-order approximation to a second or third-order approximation.
A fairly comprehensive list of published examples is given in Reid (1996). An
amusing but highly artificial example is a sample of size 1 from a Cauchy location
model [Fraser (1990) and Barndorff-Nielsen (1991)]. In this case the first-order
approximations to the distributions of the Wald, score and likelihood root statistic
differ by hundreds of orders of magnitude, whereas the third-order approximation
is very nearly exact.

The theory outlined in Section 3 assumes that y has an absolutely continuous
distribution. In Fraser and Reid’s approach this is essential for computing the
vectors used for the tangent exponential model. In Barndorff-Nielsen’s approach
it is implicitly assumed in the derivation. A discussion of the p∗ approximation
when y has a lattice distribution is given in Severini (2000). However, the
approximations appear to work quite well in at least some discrete data settings
such as logistic and Poisson regression. Several illustrations are given in Pierce and
Peters (1992), where the role of continuity correction is discussed. Case studies in
logistic regression are presented in Brazzale [(2000), Chapter 5]. The examples
below however all concern continuous distributions.
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TABLE 1
Comparison of exact and approximate p-values for selected values of θ in

the model N(θ, θ2). Data vector is y = (0.69,1.56,3.69,2.09,1.10)

θ

Method 0.6 0.8 1.6 1.8 2.0

Exact 0.9976 0.8863 0.0794 0.0416 0.0228
r∗ using q or u (3.13) 0.9976 0.8855 0.0787 0.0412 0.0225
r∗ using Skovgaard 0.9975 0.8837 0.0768 0.0400 0.0217
Normal approximation 0.9960 0.8465 0.0513 0.0249 0.0128

Our focus in the following continues to be accurate approximation of p-values
for testing H :ψ = ψ0. These may be computed for a fixed data value and a range
of values for ψ0, leading to confidence limits or more generally a confidence
distribution function or significance function [Fraser (1991) and Efron (1993)].

EXAMPLE 4.1 (Normal coefficient of variation). Table 1 gives selected points
of the significance function for the one parameter model N(θ, θ2) and a sample of
size 5 generated randomly from the N(1,1) distribution. The exact distribution is
compared to the usual normal approximation for r , the third-order approximation
described in Section 3.3 and a second-order version due to Skovgaard (1996). In
this example, discussed in more detail in Fraser, Reid and Wu (1999), q and u

are identical, as there is a unique ancillary. Further examples of inference for the
coefficient of variation are given in Wong and Wu (2002).

EXAMPLE 4.2 (Log-normal distribution). We have extracted for illustration
the five observations on Volkswagen cars from the car crash test data from the
Data and Story Library. The response Y is a measure of head injury and appears to
be approximately lognormally distributed. In the full data set there are a number
of covariates relating to properties of the various cars which we ignore here. We
use the model logY ∼ N(µ,σ 2) and define the parameter of interest to be the
mean of Y . Figure 3 illustrates the significance function for the log of the mean:
ψ = µ+σ 2/2. The significance function using the usual normal approximation to
r is compared to the third-order approximations (3.12) and (3.13); the latter two
cannot be distinguished on the graph.

EXAMPLE 4.3 (Bivariate normal). Our next example provides detailed
calculation for the general formula in the case of no nuisance parameters. The
emphasis is on the calculation of the approximate ancillary using a pivotal statistic.
The model is

f (y1, y2; θ) = 1

2π(1 − θ2)1/2
exp

{
− 1

2(1 − θ2)
(y2

1 + y2
2 − θy1y2)

}
,(4.1)
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FIG. 3. The significance function for ψ = µ + σ 2/2, based on the Volkswagen crash test data:
y = (1801,1114,787,1182,1320), and a log-normal model. The solid line is the third-order
approximation using (3.12) and the dashed line is the standard normal approximation to the
distribution of the likelihood root r . The Lugannani and Rice approximation is indistinguishable
from the r∗ approximation.

a (2,1) curved exponential family. The minimal sufficient statistic based on a
sample of size n is (S,T ), where

S = ∑
Y1iY2i/n, T = ∑

(Y 2
1i + Y 2

2i)/(2n).(4.2)

Working in the sample space defined by (S,T ) we have the pivotal statistics

Z1 = T + S

1 + θ
=

∑
(Y1i + Y2i)

2

2n(1 + θ)
,

Z2 = T − S

1 − θ
=

∑
(Y1i − Y2i)

2

2n(1 − θ)
,

which are independently distributed as χ2
n/n. Using these in (3.8) to define the

vector V gives

V = 1

1 − θ̂2

(
t − θ̂ s

s − θ̂ t

)
(4.3)

where θ̂ is the real root of the cubic equation

θ̂3 − sθ̂2 + (2t − 1)θ̂ − s = 0.
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FIG. 4. The curve defined by the tangent directions to the second-order ancillary (solid line),
and the curve defined by a fixed value of Wang’s ancillary statistic (dashed line). The line Y = X

corresponds to θ̂ = 0, where X = T − S and Y = T + S. The dotted lines show the local ancillary
defined by integrating the vector V at a fixed value of θ .

The ancillary curve defined by the components of V is plotted in Figure 4,
where the axes are rotated from the S,T plane to the T − S,T + S plane.
Also shown in Figure 4 is the curve where the approximately ancillary statistic

A = (T − 1)/
√

(S2 + 1) is constant. This statistic was used by Wang (1993),
following a suggestion in Cox and Hinkley [(1974), Chapter 2]. Note that A has
mean zero and variance 1, although its higher cumulants depend on θ .

From (4.1), the likelihood function is

�(θ; s, t) = −n

2
log(1 − θ2) − n

1 − θ2 (t − θs)(4.4)
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giving

�;V (θ; s, t) = ∂�

∂s
V1 + ∂�

∂t
V2 = nθ

1 − θ2

t − θ̂ s

1 − θ̂2
− n

1 − θ2

s − θ̂ t

1 − θ̂2

and

�θ ;V (θ̂ ) = n(θ̂s + t)/(1 − θ̂2)2.

This, combined with j (θ̂) in (2.13), gives an explicit expression for q , and hence
the approximate significance function for θ .

Note that no calculation of an explicit approximate ancillary is involved. In
this case it is possible to find an approximate ancillary, by embedding the model
in a two-parameter exponential family, for example, by treating α1Z1 and α2Z2 as
independent chi-squared random variables, where α1 = α/(1−θ), α2 = α/(1+θ),
thus recovering (4.4) when α = 1. It is possible to calculate the components of
the r∗-type statistic for testing α = 1 in this full model, thus giving an explicit
expression for an approximate ancillary, although the detailed expressions are in
this case unenlightening.

EXAMPLE 4.4 (Gamma hyperbola). Another (2,1) exponential family where
the computation of the ancillary statistic is particularly straightforward is the
model

f (y; θ) = exp
(
−e−θ

θ
y1 − θy2

)
, θ > 0, y1 > 0, y2 > 1.(4.5)

This example is considered in this context in Barndorff-Nielsen and Chamberlin
(1994) and DiCiccio, Field and Fraser (1990). An explicit expression for an
approximate ancillary statistic is derived in Barndorff-Nielsen and Wood (1998).
Because a simple scale model underlies (4.5), pivotal statistics are readily available
as

z1 = 1

θ
e−θy1, z2 = θ(y2 − 1)

from which we have

V = −
(

1 + 1

θ̂

)
y1, −1

θ̂
(y2 − 1),

ϕ(θ) = �;V (θ) = −e−θ

θ

(
1 + 1

θ̂

)
y1 + θ

θ̂
(y2 − 1)

and

q =
{(

e−θ/θ

e−θ̂ /θ̂
− θ

θ̂

)
y2 + θ

θ̂

}(
y2 + 2y2

θ̂
− 1

θ̂

)−1{
y2(2/θ̂ + 2 + θ̂ )

1 + θ̂

}1/2
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where y1, y2 and θ̂ are related via the likelihood equation �′(θ̂) = 0 as

e−θ̂

θ̂

(
1 + 1

θ̂

)
y1 = y2.

Numerical comparisons of (2.7) using q or u from Barndorff-Nielsen and
Chamberlin (1991) are given in Fraser, Reid and Wu (1999).

EXAMPLE 4.1 [Continued (log-normal)]. We now illustrate the step-by-step
calculations for the third-order approximation in the case of nuisance parameters,
using the log-normal model of Figure 3. We assume a sample y1, . . . , yn from
a N(µ,σ 2) distribution, and that the parameter of interest is ψ = µ + (1/2)σ 2,
the log of the mean of the associated log-normal distribution. Using the pivotal
zi = (yi − µ)/σ , the ith row of the n × 2 matrix V is (1, (yi − µ̂)/σ̂ ). From
this we have ϕT (θ) = �;V (θ) = ∑n

i=1(∂�/∂yi) · vi = (n(µ̂ − µ)/σ 2,−nσ̂ /σ 2).
Note that ϕ is an affine transformation of the canonical parameter, as it must
be, by construction. We now extract from ϕ the component corresponding to our
parameter of interest ψ , using (3.17) and (3.18)–(3.20). It is simpler to work with
ϕT = (µ/σ 2,−1/2σ 2), from which we can express ψ in terms of ϕ1 and ϕ2 as
ψ = −(2ϕ1 + 1)/2ϕ2, and

ψ ′
ϕ(θ) =

(
1√

(1 + ψ2)
,

ψ√
(1 + ψ2)

)

which in this case does not depend on µ or σ 2 except through ψ . The resulting
expression for ν(θ̂ ) − ν(θ̂ψ ) is

(ȳ − ψ)/σ̂ 2 + (1/2)√
(1 + ψ2)

which is then standardized by the ratio of information functions, using (3.19)
and (3.20). Inference for the ratio of two log-normal means using this method
is described in Wu, Jiang, Wong and Sun (2002).

EXAMPLE 4.5 (Exponential family). In special classes of models the expres-
sions for u and q given in Section 3.3 simplify substantially. First, in the scalar
parameter case discussed in Section 2.2, where q is given by (2.13), suppose we
have an exponential family model f (y; θ) = exp{θy − c(θ) − d(y)}. In indepen-
dent, identically distributed sampling from this model the sample sum

∑
yi is min-

imal sufficient and a one-to-one function of θ̂ . Thus �;V is replaced by �;y = θ , and
the expression for q simplifies to

q = (θ̂ − θ){j (θ̂)}1/2,



1722 N. REID

the standardized maximum likelihood estimate. Similarly, if the model is
f (y;ψ,λ) = exp{ψy1 + λT y2 − c(ψ,λ) − d(y)} then expression (3.16) simpli-
fies to

q = (ψ̂ − ψ){jp(ψ̂)}1/2{ρ(ψ̂,ψ)}−1

where

ρ(ψ̂,ψ) = |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
(4.6)

is an adjustment to allow for estimation of the nuisance parameters.
The asymptotically equivalent approximation using the adjusted likelihood

can be obtained by saddlepoint approximation to the exact conditional density
f (y1|y2), which is of exponential family form and free of λ.

EXAMPLE 4.6 (Location models). In the one parameter location model f (y −
θ), the exact ancillary from n independent samples is (a1, . . . , an) where ai =
yi − θ̂ . The exact conditional density of θ̂ given a is obtained by renormalizing the
likelihood function, and the approximation (2.10) or (2.13) gives

q = �′(θ){j (θ̂)}−1/2,

the standardized score statistic.

In the location regression setting where yi = µ+ψx1i +λT x2i + ei , say, where
ei ∼ f (e), the general expression for q in (3.16) reduces to

q = −�′
p(ψ){jp(ψ̂)}−1/2ρ(ψ̂,ψ).

To see this note that using the pivotal zi = yi − ψx1i − λT x2i gives the ith row
of V as (1, x1i,x2i), and hence

ϕT (θ) = �;V =
(∑

g(ei),
∑

x1ig(ei),
∑

xT
2ig(ei)

)
where g(e) = d log f (e)/de and ei = ei(θ) = yi − µ − ψx1i − λT x2i . The
components of ϕ are simply the score functions (∂�/∂µ, ∂�/∂ψ, ∂�/∂λT ).
Similarly �θ ;V (θ̂) = jθθ (θ̂) and �λ;V (θ̂ψ ) = jλλ(θ̂ψ ), leading to

q = −�ψ(θ̂ψ )
|jλλ(θ̂ψ )|
|j (θ̂ )|

1/2

= −�ψ(θ̂ψ )|jp(θ̂ψ )|−1/2ρ(ψ̂,ψ),

using (2.14) and (4.6). Explicit though notationally more cumbersome expressions
for location-scale and regression-scale models are readily obtained. Wong and Wu
(2000) give examples of inference in location-scale models with type 2 censoring.
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The improvements achieved by relatively simple adjustments in a number of
examples suggest that if the approximations could be made simple from the point
of view of the user, they would be well worth incorporating in routine analyses.
In some cases the approximations could reduce or avoid the need for lengthy
simulations, for example. In this connection applications that might be described as
case studies are very useful. These involve moderately realistic models, although
the data sets are often fairly stylized examples from the statistical literature. The
focus is typically on illustrating the use of higher-order methods in models of
potential interest for applications, and on comparing first-order and third-order
methods. Usually simulations are too cumbersome to enable comparison of the
approximations to the “exact” answer to be computed.

A substantial number of such case studies have been carried out by Butler and
co-authors; see Reid (1996) for a description of this work and Butler, Huzurbazar
and Booth (1992a, b, 1993). Several of their applications involve the use of
constructed exponential families in which testing a particular value of a canonical
parameter simplifies to the test statistics of interest. Wong and Wu (2001) illustrate
the approximation in a relatively simple exponential family model where the
parameter of interest is not a component of the canonical parameter.

Fraser, Wong and Wu (1999) study a class of regression models of the form
y = x(β) + σe, where x(β) is a known and possibly nonlinear function of x and
unknown parameter β , and e is either a normal or t distribution. In this class
of models the pivotal statistic z = {y − x(β)}/σ leads to an explicit expression
for ϕ which generalizes in a natural way the location model version given above.
Expressions for ϕ, ν and q are given in (35), (38) and (41) of their paper. The
formulae are illustrated on four simulation studies and four sample datasets from
the statistical literature on nonlinear regression. S-PLUS functions for nonlinear
regression and generalized linear models are given in Yi, Wu and Liu (2002).

Bellio [(1999), Chapter 1] gives an overview of r∗-type approximations with
particular emphasis on the version proposed by Skovgaard (1996). In Chapter 2 he
gives a systematic account of higher-order likelihood inference for linear models
of the form

yij = µ(xi, β) + eij(4.7)

where eij ∼ N(0, g2(xi, β,ρ)), and the forms of µ(·) and g2(·) are assumed
known. His work thus illustrates the use of higher-order likelihood based methods
in models of practical importance. Of particular interest is the use of enhanced
profile plots to compare the usual normal approximation to the higher-order
version. Bellio, Jensen and Seiden (2000) consider a nonlinear regression model
and Bellio (2003) illustrates the use of Skovgaard’s approximation in inverse
regression problems. An important contribution of Bellio’s work is to consider
as well inference for vector parameters of interest, based on an r∗-type extension
developed in Skovgaard (2001). Several aspects of higher-order approximations
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that can be applied to the study of mixed linear models are described in Bellio
[(1999), Chapter 4]. Lyons and Peters (2000) use Skovgaard’s approximation in
linear models with fixed and random effects, and this work is extended in Guolo
(2002).

Skovgaard’s (1996) approximation involves covariances of likelihood-based
quantities, and empirical versions of these which may be simpler to implement in
applications are described in Severini (1999); see also Severini [(2000), Chapter 6].

The potentially most useful category of applications is what might be called
“nearly automatic” software. An attempt at this was made in Fraser, Reid and
Wu (1999) using Maple. The user provides the model function and the pivotal
statistic, and the software computes the necessary sample space derivatives. The
computations of the profile log-likelihood and its curvature needs a fair bit of input
from the user.

The most important advances in nearly automatic software are provided by
Brazzale (1999, 2000). S-PLUS libraries, available at statlib, require from the
user only a specification of the model function and the parameter of interest. Three
classes of models are currently incorporated into the software:

1. Conditional inference for logistic regression and log linear models.
2. Marginal inference for linear regression with nonnormal errors.
3. Nonlinear regression with heteroscedastic errors (4.7).

Again the most difficult aspect of the computation is the evaluation of the
profile log-likelihood and its curvature. Another, more minor, difficulty arises in
computing the entire significance function: at the sample point θ̂ = θ , both r and q

are zero and the r∗- and Lugannani and Rice-type approximations are no longer
valid. A simple expedient incorporated in Brazzale’s software is to fit a spline curve
through the middle of the significance function. However, automatic selection
of the “middle” is not straightforward, as the range of numerical instability is
generally problem-specific. Some details on the implementation of Brazzale’s
approach are described in Bellio and Brazzale (2003).

There is limited experience with much more general models. Butler (2000,
2001) has investigated saddlepoint approximations for first passage time distri-
butions in very complex reliability trees, Huzurbazar (2000) has applied similar
ideas for models of cellular telephone networks, and Yau and Huzurbazar (2002)
have applied similar ideas in multi-stage survival models. This work is not as yet
very closely related to likelihood inference, but rather closer to numerical approx-
imation theory. Kolassa and Tanner (1994) combined third-order approximations
to conditional densities in exponential families with Markov chain Monte Carlo
methods. Limited experience with higher-order approximations for empirical like-
lihood indicates that theoretically accurate formulae do not have good finite simple
behavior [Corcoran, Davison and Spady (1999)], indicating that continued devel-
opment of case studies is needed.
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Although implementation of Bayesian approximations is quite straightforward,
the approximations do not appear to be much used in the literature on applications
of Bayesian methods, preference being given to Markov chain Monte Carlo
computation of “exact” posteriors. Notable exceptions are Hsu (1995) and Tierney
(1990). This seems somewhat surprising, as the approximations are very easily
computed and the inferential basis is straightforward. Using approximations to
compare the effect of different priors and as a check on the accuracy of MCMC
methods was suggested in Kass, Tierney and Kadane (1988).

In addition to the need for both more widely available automatic software and
a larger library of case studies, there are several other aspects of application and
implementation to be investigated. By far the most important is robustness: what
happens to the approximations if the model is incorrect, and does the compari-
son of first-order and higher-order approximations provide any information on the
adequacy of the model? The work by Bellio is an important first step in the use
of the higher-order approximations for improved diagnostics in regression. In the
extension to more complex models, some of which may have a nonparametric
component, comparison to bootstrap inference is necessary. Some theoretical dis-
cussion is given in DiCiccio and Efron (1996) but the main practical comparisons
are due to Bellio (1999).

Establishing connections, if possible, between the type of likelihood inference
described here and the inference obtained by Markov chain Monte Carlo (MCMC)
methods, typically applied in complex hierarchical models, seems a very valuable
next step. The influence of the prior on the results obtained from MCMC methods
seems very unclear in most applications, and it would be very useful if the
asymptotic theory for likelihood inference could shed some light on this. In a
related development, Brazzale [(2000), Chapter 7] describes the use of MCMC
methods for conditional inference in regression models, thus implementing higher-
order asymptotic solutions by a different route.

Whether or not higher-order approximations are used in “real” applications
should depend to a considerable extent on the context of the problem. In a large
prospective study of a relatively common disease, aspects of study design and
sampling bias will be much more important than the type of inference made,
which in any case is likely to involve little more than simple summary statistics. In
contrast, a comparison of brain activation rates by functional magnetic resonance
imaging may well involve a very small number of subjects, even though a large
database may be created for each subject. In this setting modeling and precise
inference may be expected to be relatively more important.

There are also a number of theoretical areas for potential further development.
Higher-order asymptotic results for dependent data may potentially be useful in
time series and spatial data models. It is not clear if a higher-order theory may be
available for heavy-tailed distributions. The current interest in several application
areas in models with more variables than observations suggests that it is important
to understand how best to deal with large numbers of nuisance parameters. It also
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seems likely that a higher-order asymptotic theory can be developed for some types
of semiparametric models.

Higher-order asymptotics has a very large literature, and it has not been possible
to survey all the results here. The most useful general references for the particular
emphasis here on tail area approximation and likelihood methods are Skovgaard
(1990, 1996, 2001), Barndorff-Nielsen and Cox [(1994), Chapter 6], Severini
[(2000), Chapters 6 and 7], Barndorff-Nielsen and Wood (1998), Fraser, Reid and
Wu (1999) and Reid (1996). A web site on higher-order asymptotics is maintained
at the University of Padua (www.stat.unipd.it/LIKASY).
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