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Abstract: We consider the use of estimating functions that are not unbiased. Typ-

ically, to result in consistent estimators, unbiasedness of estimating functions is a

pre-requisite. However, it is sometimes easier to find a useful estimating function

that is biased, especially in the presence of missing data or misclassified observa-

tions. We show that the root of the estimating function can be modified to give a

consistent and asymptotically normal estimator, and illustrate this on several ex-

amples with binary data. We compare this to the alternative approach of adjusting

the estimating function, and show that it can be more efficient.

Key words and phrases: Binary data, bridge function, Godambe information, miss-

ing at random, misclassified.

1. Introduction

We consider estimation of a vector parameter θ, based on a sample y1, . . . ,yn

of independent and identically distributed random vectors Y1, . . . ,Yn defined on
Y ⊂ IRd, drawn from the family of densities {f(y; θ) : θ ∈ Θ}, where Θ is a subset
of IRp, and d and p are the dimensions of Yi and θ, respectively. We distinguish
random variables from their realizations by using upper case and lower case
letters, respectively, and use the notation Y for a random variable with the same
distribution as any Yi. As an alternative to maximum likelihood estimation,
we assume we have a p × 1 vector of estimating functions g(y; θ), and define an
estimator θ̃n as the root of the set of p equations

Gn(θ̃n) = n−1
n∑

i=1

g(Yi; θ̃n) = 0.

Under regularity conditions on the model, and the condition that the estimating
function is unbiased, Eθ{g(Yi; θ)} = 0, the resulting estimator is consistent and
asymptotically normal, with asymptotic covariance matrix given by the inverse of
the Godambe information J−1(g) = {Eθ(∂g/∂θT )}−1Eθ(ggT ){Eθ(∂gT /∂θ)}−1

(Godambe (1960)). Yanagimoto and Yamamoto (1991) give a number of exam-
ples illustrating the role of unbiasedness of estimating equations, and relate it to
conditional likelihood inference in the context of exponential families.
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In some practical contexts, however, there is a natural choice of working
estimating function that is not unbiased. We use the notation h(y; θ) for the
vector of biased estimating functions, i.e., we assume Eθ{h(Yi; θ)} 6= 0. The
most direct approach to correcting a biased estimating function h(y; θ) is to
compute Eθ{h(Y; θ)} and construct a modified estimating function

H̃n(θ) = n−1
n∑

i=1

h(yi; θ) − Eθ{h(Yi; θ)}; (1.1)

if Eθ{h(Yi; θ)} cannot be computed exactly then a suitable approximation might
be available. For example, McCullagh and Tibshirani (1990) use a bootstrap
estimate of the mean to correct the bias of score functions derived from the
profile log-likelihood; Yanagimoto and Yamamoto (1991) illustrate the correction
of estimating functions derived from the method of moments.

In this paper we consider a different, but related, approach to deriving a
consistent estimate of θ from a set of biased estimating functions. Assume that
the equation

Hn(θ) = n−1
n∑

i=1

h(yi; θ) = 0 (1.2)

has a root θ̂∗n ∈ Θ for any given random sample y1, . . . ,yn, and that for any
θ ∈ Θ, there exists a θ∗ ∈ Θ for which

Eθ{h(Y; θ∗)} = 0. (1.3)

Equation (1.3) defines θ∗ as a function of θ, say, θ∗ = k̃(θ) for some p-vector of
functions k̃(·). Assuming the inverse functions

θ = k(θ∗) (1.4)

exist, then we use this to define a new estimator of θ as

θ̂n = k(θ̂∗n). (1.5)

As an illustration we consider a binary data problem with a simple missing data
structure.

Example 1: binary pairs with missing data
Let Yi = (Yi1, Yi2)T be a random sample of bivariate binary vectors, i =

1, . . . , n. Assume that E(Yij) = µ, j = 1, 2, and corr(Yi1, Yi2) = ρ for i = 1, . . . , n.
Let θ = (µ, ρ)T denote the parameter of interest. Let Rij = 1 if Yij is observed,
and 0 otherwise, and set λij = Pr(Rij = 1|Yi1, Yi2), and λi12 = Pr(Ri1 = 1, Ri2 =
1|Yi1, Yi2). Assume

logit λij = α0 + α1Yij , logit λi12 = γ0 + γ1(Yi1 + Yi2).
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Let uµ(Yi; θ)=Yi1+Yi2−2µ and uρ(Yi; θ)=Yi1Yi2−ρµ(1−µ)−µ2 be constructed
based on the method of moments, with u(Yi; θ) = {uµ(Yi; θ), uρ(Yi; θ)}T . If
there are no missing data,

∑n
i=1 u(Yi; θ) is unbiased for θ, yielding a consistent

estimator for θ:

µ̂n =
∑n

i=1(Yi1 + Yi2)
2n

, ρ̂n =
∑n

i=1 Yi1Yi2 − nµ̂2
n

nµ̂n(1 − µ̂n)
. (1.6)

Now if we naively apply these estimating functions to the observed data, we
have

hµ(Yi; θ) = Ri1Yi1 + Ri2Yi2 − (Ri1 + Ri2)µ,

hρ(Yi; θ) = Ri1Ri2{Yi1Yi2 − ρµ(1 − µ) − µ2},
h(Yi; θ) = {hµ(Yi; θ), hρ(Yi; θ)}T .

Setting
∑n

i=1 h(Yi; θ) = 0 leads to

µ̂∗
n =

∑n
i=1(Ri1Yi1 + Ri2Yi2)∑n

i=1(Ri1 + Ri2)
, (1.7)

ρ̂∗n =
∑n

i=1 Ri1Ri2Yi1Yi2 − µ̂∗
n

∑n
i=1 Ri1Ri2

µ̂∗
n(1 − µ̂∗

n)
∑n

i=1 Ri1Ri2
. (1.8)

To find θ∗ we use (1.3) to compute

Eθ

{
hµ(Yi; θ∗)

hρ(Yi; θ∗)

}
=

[
Eθ(Ri1Yi1 + Ri2Yi2) − µ∗Eθ(Ri1 + Ri2)

Eθ(Ri1Ri2Yi1Yi2) − {ρ∗µ∗(1 − µ∗) + µ∗2}Eθ(Ri1Ri2)

]
= 0.

(1.9)
Note that

Eθ(RijYij) = EY ER|Y (RijYij) = EY (Yijλij) =
exp(α0 + α1)

1 + exp(α0 + α1)
µ.

Similarly,

Eθ(Rij) =
exp(α0 + α1)

1 + exp(α0 + α1)
µ +

exp(α0)
1 + exp(α0)

(1 − µ),

Eθ(Ri1Ri2Yi1Yi2) =
eγ0+2γ1

1 + eγ0+2γ1
{ρµ(1 − µ) + µ2}, and

Eθ(Ri1Ri2) =
exp(γ0 + 2γ1)

1 + exp(γ0 + 2γ1)
{ρµ(1 − µ) + µ2}

+
2 exp(γ0 + γ1)

1 + exp(γ0 + γ1)
{µ − ρµ(1 − µ) − µ2}

+
exp(γ0)

1 + exp(γ0)
(1 − 2µ + ρµ(1 − µ) + µ2).
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Therefore, the first equation of (1.9) gives

µ =
µ∗eα0/(1 + eα0)

(1 − µ∗) · e(α0+α1)/{1 + e(α0+α1)} + µ∗eα0/(1 + eα0)
,

with the same relationship between µ̂n and µ̂∗
n. It is easily shown that µ is equal

to, less than, or greater than µ∗ as α1 = 0, α1 > 0, and α1 < 0. If the data
are missing completely at random, then α1 = 0 and the estimator based on the
observed data is consistent, as has been noted in the literature; see, for example,
Fitzmaurice, Molenberghs and Lipsitz (1995). However, if the missing data are
not missing completely at random, then the moment estimator based only on
the observed data either inflates or attenuates the true parameter, depending
on how the response affects missingness. This result provides an interesting and
transparent characterization of the asymptotic bias induced by ignoring missing
values. Applying the second equation of (1.9), we obtain the relationship between
ρ and ρ∗. If γ1 = 0, α1 = 0, then ρ = ρ∗, showing that using the available data can
still produce a consistent estimator of the correlation under missing completely
at random mechanisms.

In this example we get the same estimators for µ and ρ by using (1.9) to
compute Eθ{h(Y; θ)} and constructing H̃n(θ), as at (1.1). In Appendix A we
show that this is the case whenever the estimating equation h(y; θ) has a struc-
ture that is linear in functions of y and θ, and we give a simple example where
this does not hold.

In Section 2 we give results on asymptotic consistency and normality for the
estimator θ̂∗n, and hence for θ̂n. The results generalize the discussion in White
(1982), that studies model misspecification under the likelihood formulation. It is
closely related to the results of Jiang, Turnbull and Clark (1999), who used meth-
ods very similar to those in this paper in the context of semiparametric Poisson
models. Their biased estimating equations are the score equations from a likeli-
hood function obtained from a working model that is subject to misspecification,
and their “bridge” function, s0(·) from their Proposition 1, is our k̃(·).

In Section 3 we illustrate the approach with a series of examples of biased
estimating equations for binary data models, where the bias is caused by missing
data or misclassified data. In Section 4 we outline a comparison for the estimators
obtained from (1.1) and (1.5), and Section 5 provides a brief discussion.

2. Asymptotic Results

Theorem 1. Suppose h(y; θ) = {h1(y; θ), . . . , hp(y; θ)}T is a vector of functions
defined on Y × Θ such that hj(y; θ) is a continuous function of θ for each y
and a measurable function of y for each θ, j = 1, . . . , p. Assume that Θ is a
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convex compact set and the true distribution of Y is F = F (y; θ0), with density
f(y; θ0) for some θ0 ∈ Θ. Assume |hj(y; θ)| ≤ mj(y) for all y and θ where
mj(·) is integrable with respect to F , j = 1, . . . , p. Let H(θ) = Eθ0{h(Y; θ)}, and
Hn(θ) = n−1

∑n
i=1 h(yi; θ). If H(θ) = 0 has a unique solution θ∗0 and Hn(θ) = 0

has a solution θ̂∗n, then
θ̂∗n →p θ∗0 as n → ∞

for almost every sequence Y1,Y2, . . . which is a random sample from F .

Proof. For any y ∈ Y, since hj(y; θ) is continuous for θ ∈ Θ and Θ is compact,
by the Heine-Cantor Theorem hj(y; θ) is uniformly continuous in θ. It then
follows that ||H(θ)|| is continuous, where || · || is Euclidean norm.

Let d(x,y) = ||x−y|| be the Euclidean distance between x and y. Since the
set {θ : d(θ, θ∗0) ≥ η} = Θ − {θ : d(θ, θ∗0) < η} is a compact subset of Θ for any
η > 0 there exists θ1 ∈ {θ : d(θ, θ∗0) ≥ η} such that

infθ:d(θ,θ∗0)≥η||H(θ)|| = ||H(θ1)||.

As θ∗0 is the unique solution of H(θ) = 0, and θ1 6= θ∗0, we have ||H(θ1)|| > 0,
i.e., infθ:d(θ,θ∗0)≥η||H(θ)|| > 0. Furthermore, Hn(θ̂∗n) = 0 gives

infθ:d(θ,θ∗0)≥η||H(θ)|| > 0 = ||Hn(θ̂∗n)||. (2.1)

Given j, by Theorem 2 of Jennrich (1969), we have, for almost every sequence
{Yn}, as n → ∞,

n−1
n∑

i=1

hj(Yi; θ) →
∫

hj(y; θ)dF (y; θ0)

uniformly for all θ ∈ Θ, thus,

sup
θ∈Θ

d{Hn(θ),H(θ)} →p 0, (2.2)

By (2.2) and (2.1), we conclude, applying Theorem 5.9 of van der Vaart (1998,
p.46), θ̂∗n →p θ∗0 as n → ∞.

This theorem characterizes the convergence of the estimator θ̂∗n obtained from
estimating functions that are not necessarily unbiased. The difference θ∗0 − θ0

is the asymptotic bias of using estimating functions that are not unbiased to
perform estimation of θ. In particular, if h(Y; θ) is unbiased, then θ∗0 = θ0 and
θ̂∗n is consistent for θ. If k(·) is continuous, then k(θ̂∗n) converges to k(θ∗) in
probability and the adjusted estimator θ̂n is consistent for θ.
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Next we establish the asymptotic normality of the estimator θ̂∗n and hence
of θ̂n. Let

An(θ) = n−1
n∑

i=1

(∂/∂θ){h(Yi; θ)}T , A(θ) = Eθ0{An(θ)},

Bn(θ) = n−1
n∑

i=1

h(Yi; θ){h(Yi; θ)}T , B(θ) = Eθ0{Bn(θ)},

Cn(θ) = A−1
n (θ)Bn(θ)A−T

n (θ), and C(θ) = A−1(θ)B(θ)A−T (θ).

Theorem 2. Suppose the conditions in Theorem 1 are satisfied, and hj(y; θ) is
a continuously differentiable function of θ for each y, j = 1, . . . , p. Assume that
A(θ∗0) is nonsingular, then under some regularity conditions on hj and the model
F , we have: as n → ∞,

(i)
√

n(θ̂∗n − θ∗0) →d N{0,C(θ∗0)};
(ii) Cn(θ̂∗n) →p C(θ∗0), and assuming k(·) defined at (1.4) exists and is differen-

tiable,

√
n(θ̂n − θ0) →d N

{
0,

(
∂kT (θ∗0)

∂θ

)
C(θ∗0)

(
∂k(θ∗0)
∂θT

)}
. (2.3)

Proof. For each j = 1, . . . , p, applying Lemma 3 of Jennrich (1969) to
∑n

i=1

hj(yi; θ̂∗n), we obtain

n∑
i=1

hj(yi; θ̂∗n) =
n∑

i=1

hj(yi; θ∗0) +
∂

∂θT

{
n∑

i=1

hj(yi; θ̄jn)

}
(θ̂∗n − θ∗0),

where θ̄jn lies on the “segment” joining θ̂∗n and θ∗0. Stacking these p expansions,
we obtain, in matrix form,

A∗
n(θ̄1n, θ̄2n, . . . , θ̄pn)

√
n(θ̂∗n − θ∗0) = −n−1/2

n∑
i=1

h(Yi; θ∗0) + n−1/2
n∑

i=1

h(Yi; θ̂∗n),

where A∗
n(θ̄1n, θ̄2n, . . . , θ̄pn) = n−1{

∑n
i=1∂h1(Yi; θ̄1n)/∂θ, . . . ,

∑n
i=1 ∂hp(Yi; θ̄pn)

/∂θ}.
By Hn(θ̂∗n) = 0, we obtain

A∗
n(θ̄1n, θ̄2n, . . . , θ̄pn)

√
n(θ̂∗n − θ∗0) = −n−1/2

n∑
i=1

h(Yi; θ∗0). (2.4)
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As Eθ0{h(Yi; θ∗0)}=H(θ∗0)=0, and covθ0{h(Yi; θ∗0)}=Eθ0 [h(Yi; θ∗0){h(Yi; θ∗0)}T]
= B(θ∗0), by the Central Limit Theorem, we conclude

n−1/2
n∑

i=1

h(Yi; θ∗0) →d N{0,B(θ∗0)}. (2.5)

Note that for each j = 1, . . . , p, θ̄jn →p θ∗0 as n → ∞. Therefore,

n−1
n∑

i=1

∂hj(Yi; θ̄jn)
∂θ

→p Eθ0

{
∂hj(Yi; θ∗0)

∂θ

}
, (2.6)

and hence

A∗
n(θ̄1n, θ̄2n, . . . , θ̄pn) →p A(θ∗0) as n → ∞. (2.7)

Assuming that A(θ∗0) is nonsingular, we have that A∗
n(θ̄1n, θ̄2n, . . . , θ̄pn) is non-

singular for sufficiently large n (in probability). Therefore, (2.4) leads to

√
n(θ̂∗n − θ∗0) = −{A∗

n(θ̄1n, θ̄2n, . . . , θ̄pn)}−1n−1/2
n∑

i=1

h(Yi; θ∗0).

By (2.5) and (2.7),
√

n(θ̂∗n − θ∗0) →d N [0,A−1(θ∗0)B(θ∗0)A
−T (θ∗0)],

which is conclusion (i). Conclusion (ii) is straightforward as Bn(θ̂∗n) →p B(θ∗0)

and {A∗
n(θ̂∗n)}−1 →p A−1(θ∗0). The asymptotic normality of θ̂n follows from an

application of the delta method.
Result (2.3) provides means to conduct inference on θ, such as constructing

confidence intervals or testing hypotheses. In doing so, one may replace the rele-
vant quantities with their empirical counterparts to obtain a consistent estimate
for the asymptotic covariance matrix. The regularity conditions for Theorems 1
and 2 are similar to those outlined in Ch. 5 of Van der Waart (1998); see in par-
ticular the discussion following his Theorems 5.9 and 5.21. These conditions are
sufficient to ensure the convergence in Theorems 1 and 2, but they are not neces-
sarily the weakest conditions. The compactness assumption on Θ may be relaxed
to conditions similar to those discussed in Walker (1969) or Huber (1967). For
asymptotic normality, assumptions on the existence of first and second moments
of h and ∂h/∂θT are needed, as well as an assumption on the model and the es-
timating equation that ensures differentiation with respect to θ and expectation
can be exchanged.
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3. Applications to Inference from Binary Data

In this section we look at several examples related to binary data, where
biased estimating equations arise from ignoring various complexities of the data.
We show that the method of adjusting the estimator based on (1.5) can be simpler
than correcting the bias of the estimating function, and can also lead to insight
about the effect of ignoring the complexities.

We illustrate the method with a somewhat artificial example related to Ex-
ample 1.

Example 2: complete binary data. Suppose as in Example 1 that Yi =
(Yi1, Yi2)T is a random sample of bivariate binary vectors, i = 1, . . . , n, with
E(Yij) = µ, j = 1, 2, corr(Yi1, Yi2) = ρ for i = 1, . . . , n, and θ = (µ, ρ)T .

As shown in Example 1 at (1.6), consistent estimators are available for µ

and ρ from a simple method of moments approach. If we deliberately misspec-
ify estimating functions by switching the meaning of moments, considering for
example

hµ(Yi; θ) = Yi1Yi2 − µ, hρ(Yi; θ) = Yi1 + Yi2 − ρ,

the resulting estimator is

µ̂∗
n =

1
n

n∑
i=1

Yi1Yi2, ρ̂∗n =
1
n

n∑
i=1

(Yi1 + Yi2). (3.1)

Obviously, θ̂ = (µ̂∗, ρ̂∗)T is not a consistent estimator for θ. Applying the adjust-
ment function (1.3) to h(yi; θ):(

Eθ(Yi1Yi2) − µ∗

Eθ(Yi1 + Yi2) − ρ∗

)
=

(
ρµ(1 − µ) + µ2 − µ∗

2µ − ρ∗

)
= 0,

we obtain

µ =
1
2
ρ∗, ρ =

4µ∗ − ρ∗2

ρ∗(2 − ρ∗)
, (3.2)

which gives the adjusted estimator

µ̂n =
1
2n

n∑
i=1

(Yi1 + Yi2), ρ̂n =
4n

∑n
i=1 Yi1Yi2 − {

∑n
i=1(Yi1 + Yi2)}2∑n

i=1(Yi1 + Yi2){2n −
∑n

i=1(Yi1 + Yi2)}
(3.3)

that is identical to (1.6).
We consider another set of misspecified functions

hµ(Yi; θ) = Yi1 − µ, hρ(Yi; θ) = Yi1Yi2 − ρ, (3.4)
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which produces

µ̂∗
n =

1
n

n∑
i=1

Yi1, ρ̂∗n =
1
n

n∑
i=1

Yi1Yi2. (3.5)

Note here that µ̂∗
n is a consistent estimator for µ, but ρ̂∗n is not consistent for ρ.

We now apply the adjustment function (1.3) to h(yi; θ∗):(
Eθ(Yi1) − µ∗

Eθ(Yi1Yi2) − ρ∗

)
=

(
µ − µ∗

ρµ(1 − µ) + µ2 − ρ∗

)
= 0,

yielding

µ = µ∗, ρ =
ρ∗ − µ∗2

µ∗(1 − µ∗)
. (3.6)

Applying (3.6) to (3.5), we obtain an adjusted estimator

µ̂n =
1
n

n∑
i=1

Yi1, ρ̂n =
n

∑n
i=1 Yi1Yi2 − (

∑n
i=1 Yi1)2

(
∑n

i=1 Yi1)(n −
∑n

i=1 Yi1)

that is consistent for θ, although clearly less efficient than (3.3).
As in Example 1, suppose now that there are missing data, and Rij records

whether or not Yij is missing, for j = 1, 2 and i = 1, . . . , n. Using misspecified
estimating equations (3.4) for the observed data gives

hµ(Yi; θ) = Ri1Yi1 − µ, hρ(Yi; θ) = Ri1Ri2Yi1Yi2 − ρ.

Then the resulting estimator is

µ̂∗
n =

1
n

n∑
i=1

Ri1Yi1, ρ̂∗n =
1
n

n∑
i=1

Ri1Ri2Yi1Yi2. (3.7)

Adjusting it as before gives Eθ(Ri1Yi1) = µ∗, Eθ(Ri1Ri2Yi1Yi2) = ρ∗, which
leads to

µ = {1 + exp(−α0 − α1)}µ∗,

ρ =
{1 + exp(−γ0 − 2γ1)}ρ∗ − {1 + exp(−α0 − α1)}2µ∗2

{1 + exp(−α0 − α1)}µ∗[1 − {1 + exp(−α0 − α1)}µ∗]
. (3.8)

Combining (3.8) with (3.7) gives a consistent estimator for θ.

We now consider an extension to a regression setting, assuming Yij is a binary
response for subject i at time point j, j = 1, . . . ,m, with an associated covariate
vector xij , and model the mean vector as a logistic regression:

logit µij = θTxij , (3.9)
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where µij = E(Yij |xi) with xi = (xT
i1, . . . ,x

T
im)T . The score equations for θ,

assuming independence of the observations in both i and j, are

n∑
i=1

Ui(θ) =
n∑

i=1

m∑
j=1

xij

{
yij −

exp(θTxij)
1 + exp(θTxij)

}
; (3.10)

these are also the generalized estimating equations (GEE) (Liang and Zeger
(1986)), under a working model of independence. Denote by θ̂U the estimator
based on (3.10).

For computing k(θ∗) in settings with missing or misclassified data, discussed
below, we use an alternative estimating equation

n∑
i=1

g(yi; θ) =
n∑

i=1

m∑
j=1

xij [Yij{1 + exp(θTxij)} − exp(θTxij)], (3.11)

and denote by θ̂g the estimator based on (3.11). In the special case that a single
covariate xij = 0 or 1, both θ̂U and θ̂g are given by

exp(θ̂U ) = exp(θ̂g) =

∑n
i=1

∑m
j=1 xijYij∑n

i=1

∑m
j=1 xij(1 − Yij)

,

although if xij = ±1 with equal frequencies, then

exp(θ̂U ) =

∑n
i=1

∑m
j=1(1 + xij)Yij +

∑n
i=1

∑m
j=1(1 − xij)(1 − Yij)∑n

i=1

∑m
j=1(1 + xij)(1 − Yij) +

∑n
i=1

∑m
j=1(1 − xij)Yij

,

whereas

exp(θ̂g) =

∑n
i=1

∑m
j=1(1 − xij)(1 − Yij)∑n

i=1

∑m
j=1(1 + xij)(1 − Yij)

.

Example 3: binary data with response misclassification. Suppose now
that we have some misclassification of the binary responses, so that the observed
responses are sij , where the model governing the random variables Sij is

Pr(Sij = 1 | Yij = 0) = p1,

Pr(Sij = 0 | Yij = 1) = p0.

Suppose we ignore the misclassification error, and use the estimating function
(3.11) based on sij :

n∑
i=1

h(si; θ) =
n∑

i=1

m∑
j=1

xij [sij{1 + exp(θTxij)} − exp(θTxij)]. (3.12)
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The linear structure of (3.12) simplifies the calculation of Eθ{h(Si; θ∗)}:

Eθ{h(Si; θ∗)} =
m∑

j=1

xij [(1 − p0){1 + exp(θ∗Txij)}
exp(θTxij)

1 + exp(θTxij)

+p1{1 + exp(θ∗Txij)}
1

1 + exp(θTxij)
− exp(θ∗Txij)], (3.13)

where we have assumed that Pr(Sij = s | Yij = y,xi) = Pr(Sij = s | Yij = y).
The solution of θ as a function of θ∗ obtained by setting (3.13) to zero defines θ̂n

as a function of θ̂∗n, the root of (3.12).
For the special case that xij = 0, 1, we get the estimators

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 xijSij∑n

i=1

∑m
j=1 xij(1 − Sij)

,

exp(θ̂n) =
(1 − p1) exp(θ̂∗n) − p1

1 − p0 − p0 exp(θ̂∗n)
,

which are different from exp(θ̂∗n) unless p0 = p1 = 0.
Because in this case h(si; θ) has a simple linear structure, we can also con-

struct an unbiased estimating equation from (3.12) using (3.13):

H̃n(θ) = n−1
n∑

i=1

h(si; θ) − Eθ{h(Si; θ)}

= n−1
n∑

i=1

m∑
j=1

xij [{1 + exp(θTxij)}sij − (1 − p0) exp(θTxij) − p1],

which leads in the special case that xij = 0, 1 to the estimator

exp(θ̃n) =

∑n
i=1

∑m
j=1 xij(p1 − Sij)∑n

i=1

∑m
j=1 xij(p0 − 1 + Sij)

,

which is identical to exp(θ̂n).

Example 4: missing responses. We now assume that there are some missing
observations, and λij = Pr(Rij = 1 | yi,xi) where logit λij = α0+α1yij . Suppose
we use the estimating equations (3.11), which are unbiased for complete data,
for the observed data:

h(yi; θ) =
m∑

j=1

rijxij [{1 + exp(θTxij)}yij − exp(θTxij)], (3.14)
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where rij is a realization of the missing data indicator Rij .
∑n

i=1 h(yi; θ̂∗n) = 0
defines the estimator θ̂∗n. Using calculations similar to those in Example 1 we
obtain

Eθ{h(Yi; θ∗)} =
m∑

j=1

xij

{
exp(α0 + α1)

1 + exp(α0 + α1)
exp(θTxij)

1 + exp(θTxij)

− exp(α0)
1 + exp(α0)

exp(θ∗Txij)
1 + exp(θTxij)

}
. (3.15)

The naive estimator has the explicit expression, in the special case that xij = 0, 1,

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 xijRijYij∑n

i=1

∑m
j=1 xijRij(1 − Yij)

,

and the adjusted version leads to

exp(θ̂n) =
1 + exp(α0 + α1)

exp(α1) + exp(α0 + α1)
exp(θ̂∗n),

indicating, as in Example 1, attenuation or enhancement of the true effect as α1

is greater than or less than 0.
Another way to obtain an unbiased estimating equation is to introduce λij

as a weight in (3.14), leading to the inverse probability weighted generalized
estimating equations of Robins, Rotnizky and Zhao (1995) and Fitzmaurice,
Molenberghs and Lipsitz (1995). These are

g(yi; θ) =
m∑

j=1

rijxij

λij
{(1 + eθT xij )yij − eθT xij}

and, in the case of binary x’s, have as the solution the estimator

exp(θ̃g) =

∑n
i=1

∑m
j=1 xijrijYij{1 + exp(−α0 − α1Yij)}∑n

i=1

∑m
j=1 xijrij(1 − Yij){1 + exp(−α0 − α1Yij)}

which may be compared with the adjusted version

exp(θ̂n) =
1 + exp(α0 + α1)

exp(α1) + exp(α0 + α1)

∑n
i=1

∑m
j=1 xijrijYij∑n

i=1

∑m
j=1 xijrij(1 − Yij)

.

If we try to obtain an unbiased estimating equation from h(yi; θ) using (1.1),
the resulting expression involves a quadratic function of exp(θ̃n) which is quite
cumbersome.
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Example 5: covariate misclassification. Now suppose that we have a single
binary covariate xij , but misclassified, so that we observe wij with

Pr(Wij = 1|xij = 0) = p1 and Pr(Wij = 0|xij = 1) = p0,

where p0 and p1 have a different meaning than in Example 3. We further assume
xij = 1 with probability π and 0 with probability 1−π. The estimating function
based on (3.11) is easier to work with than the GEE version (3.10), so we start
with a naive estimating function replacing xij by wij

h(yi; θ) =
m∑

j=1

wij [{1 + exp(θwij)}yij − exp(θwij)].

We then have

Eθ{h(Yi; θ∗)} = m

{
(1 − p0)π

exp(θ) − exp(θ∗)
1 + exp(θ)

+ p1(1 − π)
1 − exp(θ∗)

2

}
which, by (1.3) leads to

exp(θ∗) =
{2(1 − p0)π + p1(1 − π)} exp(θ) + p1(1 − π)
{2(1 − p0)π + p1(1 − π)} + p1(1 − π) exp(θ)

. (3.16)

This relationship reveals that, in special situations such as p0 6= 1 but p1 = 0 or
π = 1, we have θ∗ = θ. In general situations with 0 < p1 ≤ 1 and 0 ≤ π < 1, we
have θ∗ ≥ θ if and only if θ ≤ 0.

The naive estimator is, from solving
∑n

i=1 h(yi; θ) = 0, given by

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 WijYij∑n

i=1

∑m
j=1 Wij(1 − Yij)

.

Therefore, the adjusted estimator is

exp(θ̂n) =
2{(1 − p0)π + p1(1 − π)}

∑
ij WijYij − p1(1 − π)

∑m
ij Wij

2{(1 − p0)π + p1(1 − π)}
∑m

ij Wij(1 − Yij) − p1(1 − π)
∑m

ij Wij
.

We compare this approach to that of correcting h(·) for its bias, which leads to
the estimating equation

n−1
n∑

i=1

m∑
j=1

wij [{1 + exp(θwij)}yij − exp(θwij)]− (
m

2
)[p1(1−π){1− exp(θ)}] = 0

and gives the consistent estimator

exp(θ̃n) =
2

∑n
i=1

∑m
j=1 WijYij − mnp1(1 − π)

2
∑n

i=1

∑m
j=1 Wij(1 − Yij) − mnp1(1 − π)

.
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Figure 1. Asymptotic relative efficiency of θ̂n relative to θ̃n, based on the
expressions given in Theorem 2, presented as a function of θ for three choices
of misclassification probabilities: (i) p0 = 0.30, p1 = 0.05 (solid), (ii) p0 =
0.05, p1 = 0.30 (dashed), (iii) p0 = p1 = 0.45 (dashed-dotted). The xijs are
equal to 0 or 1 with probability 1/2.

Figure 1 shows the asymptotic relative efficiency of θ̂n and θ̃n for three different
choices of the probabilities of misclassification.

4. Comparison of Estimators

In this section we compare the estimators obtained from the two approaches
described in Section 1: modifying a biased estimating equation by subtracting
its expectation, or modifying the point estimator using the relationship between
θ∗ and θ. As shown in Appendix A, in special cases these two methods lead to
the same estimators though in general, the two do not.

For ease of notation we consider the case that θ is a scalar. Assume subse-
quent quantities, such as inverses and derivatives, all exist. As before, θ̂∗n is the
estimator obtained from (1.2). Now let θ̃n denote the estimator obtained from
(1.1). Applying Taylor series expansions to Hn(θ̂∗n) and H̃n(θ̃n) around θ∗ and
θ, respectively, and using (1.5) gives

θ̂n = θ − k′(θ∗)
Hn(θ∗)
H ′

n(θ∗)
+ Op(

1
n

), and θ̃n = θ − H̃n(θ)

H̃ ′
n(θ)

+ Op(
1
n

).

Now we examine approximations to the denominators H ′
n(θ∗) and H̃ ′

n(θ) . Let
u(θ) be the score function (∂/∂θ) log f(y; θ) and ∂θh(Y ; θ) denote the derivative
of h(Y ; θ) with respect to θ. Then we find

H ′
n(θ∗) = Eθ{H ′

n(θ∗)} + Op(
1√
n

) = Eθ{∂θ∗h(Y ; θ∗)} + Op(
1√
n

),
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H̃ ′
n(θ) = Eθ{H̃ ′

n(θ)} + Op(
1√
n

)

= Eθ{∂θh̃(Y ; θ)} + Op(
1√
n

)

= −Eθ{u(θ)h̃(Y ; θ)} + Op(
1√
n

) by unbiasedness of h̃(Y ; θ)

= −Eθ{u(θ)h(Y ; θ)} − Eθ{u(θ)}Eθ{h(Y ; θ)} + Op(
1√
n

)

= −Eθ{u(θ)h(Y ; θ)} + Op(
1√
n

) by unbiasedness of u(θ),

leading to

θ̂n − θ̃n = −k′(θ∗)
Hn(θ∗)

Eθ{∂θ∗h(Y ; θ∗)}
+

H̃n(θ)
Eθ{u(θ)h(Y ; θ)}

+ Op(
1√
n

). (4.1)

By the definition of θ∗, we have∫
h(y; θ∗)f(y; k(θ∗))dy = 0. (4.2)

Differentiating (4.2) with respect to θ∗, we obtain∫
∂θ∗h(y; θ∗)f(y; θ)dy +

∫
h(y; θ∗)∂θf(y; θ)k′(θ∗)dy = 0,

and hence,

k′(θ∗) = − Eθ{∂θ∗h(Y ; θ∗)}
Eθ{u(θ)h(Y ; θ∗)}

. (4.3)

Expanding h(y; θ∗) in (4.2) around θ, we obtain∫
{h(y; θ) + (θ∗ − θ)∂θh(y; θ) + o(θ∗ − θ)}f(y; θ)dy = 0, (4.4)

leading to
H(θ) = −(θ∗ − θ)Eθ{∂θh(Y ; θ)} + o(θ∗ − θ). (4.5)

Here o(θ∗ − θ) denotes the remainder in the Taylor’s expansion in (4.4), which
can be expressed as a polynomial in θ∗ − θ. Substituting (4.3) and (4.5) into
(4.1) yields

θ̂n − θ̃n =
Hn(θ∗)

Eθ{u(θ)h(Y ; θ∗)}
− Hn(θ) − H(θ)

Eθ{u(θ)h(Y ; θ)}
+ Op(

1√
n

)

=
Hn(θ∗)

Eθ{u(θ)h(Y ; θ∗)}
− Hn(θ) + (θ∗ − θ)Eθ{∂θh(Y ; θ)} + o(θ∗ − θ)

Eθ{u(θ)h(Y ; θ)}

+Op(
1√
n

)
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=

[
Hn(θ∗)

Eθ{u(θ)h(Y ; θ∗)}
− Hn(θ)

Eθ{u(θ)h(Y ; θ)}

]
− (θ∗ − θ)

Eθ{∂θh(Y ; θ)}
Eθ{u(θ)h(Y ; θ)}

+o(θ∗ − θ) + Op(
1√
n

).

Further examining the terms in square brackets by Taylor expansion, we have

Hn(θ∗) = Hn(θ) + (θ∗ − θ)H ′
n(θ) + o(θ∗ − θ),

Eθ{u(θ)h(Y ; θ∗)} =
∫

u(θ)h(y; θ∗)f(y; θ)dy

=
∫

u(θ)h(y; θ)f(y; θ)dy

+
∫

u(θ){∂θ∗h(y; θ∗)|θ∗=θ}f(y; θ)dy(θ∗ − θ) + o(θ∗ − θ)

= Eθ{u(θ)h(Y ; θ)} + (θ∗ − θ)Eθ{u(θ)∂θh(Y ; θ)} + o(θ∗ − θ).

Therefore,

Hn(θ∗)
Eθ{u(θ)h(Y ; θ∗)}

=
Hn(θ)

Eθ{u(θ)h(Y ; θ)}

{
1 + (θ∗ − θ)

H ′
n(θ)

Hn(θ)
+ o(θ∗ − θ)

}

·

[
1 − (θ∗ − θ)

Eθ{u(θ)∂θh(Y ; θ)}
Eθ{u(θ)h(Y ; θ)}

+ o(θ∗ − θ)

]

=
Hn(θ)

Eθ{u(θ)h(Y ; θ)}

(
1 + (θ∗ − θ)

[
H ′

n(θ)
Hn(θ)

− Eθ{u(θ)∂θh(Y ; θ)}
Eθ{u(θ)h(Y ; θ)}

]

+o(θ∗ − θ)

)
.

As a result, we obtain

θ̂n − θ̃n = (θ∗ − θ)

(
H ′

n(θ)
Eθ{u(θ)h(Y ; θ)}

− Hn(θ)Eθ{u(θ)∂θh(Y ; θ)}
[Eθ{u(θ)h(Y ; θ)}]2

− Eθ{∂θh(Y ; θ)}
Eθ{u(θ)h(Y ; θ)}

)
+ o(θ∗ − θ) + Op

( 1√
n

)
. (4.6)

Equation (4.6) as a formal expansion shows that the difference between estimators
θ̂n and θ̃n depends on the estimating function h(Y ; θ) and its derivative, the
correlations of these two functions with the score function, and the asymptotic
bias θ∗ − θ. The term o(θ∗ − θ) is only useful if there is some measure by which
the asymptotic bias is small. In problems with missing or misclassified data, as
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in our examples, this bias will be determined by the missing or misclassification
mechanism.

The theory of estimating functions summarized in the introduction gives
the result that under regularity conditions,

√
n(θ̃n − θ) is asymptotically nor-

mal with mean zero and r co/matrix Γ−1(θ)Σ(θ){Γ−1(θ)}T , where Γ(θ) =
Eθ{∂h̃(Y; θ)/∂θT }, Σ(θ) = Eθ{h̃(Y; θ)h̃T (Y; θ)}, and h̃(Y; θ) = h(Y; θ) −
Eθ{h(Y; θ)}. Consequently, the asymptotic relative efficiency between estima-
tors θ̃n and θ̂n can be obtained using Theorem 2. In general, neither estimator
will outperform the other uniformly. In Appendix B, we give an example to
illustrate this point.

5. Discussion

In this paper we investigate issues concerning misspecification of estimating
functions and establish some asymptotic properties. This gives a means for de-
veloping consistent estimators by modifying estimators obtained from convenient
estimating functions that may not be unbiased. This may be particularly useful
in understanding the bias induced by missing or mismeasured data. Starting
from a manageable estimating function, we can apply Theorem 1 to obtain a
consistent estimator, and Theorem 2 to choose among alternatives.

For incomplete longitudinal data, Rotnitzky and Wypij (1994) provide an
algorithm for determining k(θ∗) when the responses and covariates follow a dis-
crete distribution, and illustrate this under an assumed model for missing data.
This could be used to check if k(θ∗) is monotone, which is needed for the appli-
cation of the delta method in Theorem 2. Their Figure 1 is consistent with the
results of our Examples 1 and 5, showing positive or negative asymptotic bias
in the naive estimator. As they note, their method does not give a means for
constructing a bias adjustment.

As pointed out by a reviewer, in our examples the parameters governing the
response are all assumed to be of interest. If some components of the parameter
θ in the estimating equation are considered to be nuisance parameters, then
the extension of the results here using constrained estimators for the nuisance
parameters should be relatively straightforward.

The parameters governing the missing data or misclassification processes, on
the other hand, are indeed nuisance parameters in this setting, and have been
treated as known. This allows us to focus the discussion on the parameters of
primary interest, and is useful for certain situations, especially for sensitivity
analyses to assess the impact of different degrees of missingness or misclassifica-
tion on estimation of the parameters of interest. If the values of these nuisance
parameters are not known, they must be estimated, either from additional data
sources or from a specification of a model for the missing data. For instance,
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estimation of the misclassification parameters can be directly undertaken if there
is a validation subsample, treated for example in Carroll et al. (2006). Another
widely used approach to estimation of the missing data parameters is to fit a
logistic regression to the missing data, which is appropriate under missing at
random or missing completely at random mechanisms; see, e.g., Diggle and Ken-
ward (1994). With data missing not at random, the issue of nonidentifiability
may arise and sensitivity analyses can be a useful alternative to provide insight
into the possible effects on estimation of the parameters of interest (Fitzmaurice,
Molenberghs and Lipsitz (1995)). It would be interesting to incorporate a gen-
eral theory of nuisance parameter estimation into the biased estimating equation
framework but this is beyond the scope of this paper.

The current development could also be used as a convenient tool for indirect
likelihood inference, reviewed in Jiang and Turnbull (2004). The formulation of
an indirect likelihood requires an intermediate statistic that has an asymptot-
ically normal distribution, and our results provide a theoretical basis for this.
Another extension of this work concerns partial misspecification of models. It
may be possible to develop a hybrid inference method by combining the devel-
opment here with the pairwise likelihood techniques discussed in Cox and Reid
(2004). More convenient and efficient inference procedures may be generated to
preserve robustness of estimating functions and efficiency of likelihood-related
formulation.
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Appendix A

Suppose we start with a biased estimating function
∑n

i=1 h(yi; θ) and create
an unbiased estimating function as at (1.1):

H̃n(θ) = n−1
n∑

i=1

h̃(yi; θ) = n−1
n∑

i=1

h(yi; θ) − Eθ{h(Y; θ)}.

Denote by θ̃n the root of H̃n(θ) = 0. We know, under regularity conditons on h̃
and the underlying family of distributions, that θ̃n is consistent for θ as n → ∞.

If h(y; θ) = h1(θ)h2(y) + h3(θ), where h1(θ) is a p× p non-singular matrix,
and h2(y) and h3(θ) are p × 1 vectors, then θ̃n is identical to the adjusted
estimator outlined at (1.4) and (1.5), as

Eθ{h(Y; θ∗)} = h1(θ∗)Eθ{h2(Y)} + h3(θ∗),
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showing that Eθ{h2(Y)} = −{h1(θ∗)}−1h3(θ∗). Since 0 = (1/n)
∑n

i=1 h(yi; θ̂∗n) =
h1(θ̂∗n)

∑n
i=1 h2(yi)+h3(θ̂∗n), K(θ̂n) = −{h1(θ̂∗n)}−1h3(θ̂∗n), where K(θ) = Eθ{h2(Y)}.

On the other hand, n−1
∑n

i=1[h2(yi) − Eθ{h2(Yi)}] = 0 is solved by θ̃n, show-
ing that the two estimators are identical, provided K(·) is a vector of monotone
functions.

As an example to show that the methods lead to different estimators in
nonlinear situations, suppose Yi = (Yi1, Yi2) is a binary vector with independent
components and E(Yij) = µ. Let

h(yi; µ) =
µ + yi2

1 + yi1
− 1;

we have Eµ{h(Yi; µ)} = 2µ − µ2 − 1, and hence

H̃n(µ) =
1
n

n∑
i=1

µ + yi2

1 + yi1
− (2µ − µ2) = 0

has the solutions

µ̃n = 1 − 1
2n

n∑
i=1

1
1 + yi1

±

√√√√(1 − 1
2n

n∑
i=1

1
1 + yi1

)2 − 1
n

n∑
i=1

yi2

1 + yi1
.

Detailed examination indicates that for consistency we need to take the positive
square root if µ ≥ 2/3 and otherwise the negative square root. Using the biased
estimating equation we get the preliminary root

µ̂∗
n =

n −
∑n

i=1 yi2/(1 + yi1)∑n
i=1 1/(1 + yi1)

,

and, combining this with Eµ{h(Yi; µ∗)} = (µ∗ + µ)(1 − µ/2) − 1, gives µ̂n =
(1/2){2− µ̂∗

n±
√

µ̂∗2
n + 4µ̂∗

n − 4}. For example if the four pairs (1, 1), (1, 0), (0, 1)
and (0, 0) have equal frequencies n/4 in the sample, then µ̂n is 2/3 or 1/2, whereas
µ̃n is 3/4 or 1/2.

Appendix B

This example illustrates the discussion of relative efficiency at the end of
Section 4. We consider a simple case with independent binary variables Yi1 and
Yi2, i = 1, . . . , n. Let µ = E(Yi1) = E(Yi2) be the parameter of interest. Consider
an artificial case in which the function h(yi; µ) is specified as h(yi; µ) = yi1g1(µ)+
yi2g2(µ) + g3(c) for some functions gk(·)(k = 1, 2, 3) and a constant c. This
function is not unbiased in general, as Eµ{h(Y; µ)} = µ{g1(µ) + g2(µ)} + g3(c).
Thus µ∗ is the point satisfying

µ{g1(µ∗) + g2(µ∗)} + g3(c) = 0. (B.1)
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It is easily seen that (1.4) is given by

µ = k(µ∗) = − g3(c)
g1(µ∗) + g2(µ∗)

. (B.2)

To obtain the estimator µ̃n, let

h̃(yi; µ) = h(yi; µ) − µ{g1(µ) + g2(µ)} − g3(c) and H̃n(µ) = n−1
n∑

i=1

h̃(yi;µ).

Direct calculations lead to

Γ(µ) = Eµ{
∂h̃(Yi; µ)

∂µ
} = −{g1(µ) + g2(µ)},

Σ(µ) = Eµ{h̃2(Yi; µ)} = µ(1 − µ){g2
1(µ) + g2

2(µ)}.

Therefore, avar(µ̃n) = Γ−2(µ)Σ(µ).
Regarding the estimator µ̂n, direct calculations lead to

A(µ) = Eµ{
∂h(Yi; µ)

∂µ
} = µ{g′1(µ) + g′2(µ)},

B(µ) = Eµ{h2(Yi; µ)}
= µ{g2

1(µ) + g2
2(µ)} + g2

3(c) + 2µ2g1(µ)g2(µ) + 2µ{g1(µ) + g2(µ)}g3(c).

Therefore the asymptotic variance of µ̂n is

avar(µ̂n) =
{

∂k(µ∗)
∂µ∗

}2

A−2(µ∗)B(µ∗).

It is readily seen that by choice of the functions gk(·) and constant c, we
can make this smaller or larger than the asymptotic variance of µ̃n. For exam-
ple, with g1(t) = t and g2(t) = 0, then avar(µ̃n) = µ(1 − µ) and avar(µ̂n) =
−(µ3/g2

3(c))[2g3(c)µ + µ3 − g3(c)]in combination with (B.2). Given a value of µ,
choosing a function g3(·) and a constant c satisfying g3(c)(2µ − 1) + µ3 > 0 and
g2
3(c)(1−µ)+ g3(c)(1− 2µ)µ2 −µ5 ≥ 0 results in avar(µ̂n) ≤ avar(µ̃n). In partic-

ular, choosing g3(c) = −1 leads to a more efficient estimator µ̂n asymptotically
if µ < (

√
5 − 1)/2.
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