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Models and likelihood

» Model for the probability distribution of y given x
» Density f(y | x)  with respect to, e.g., Lebesgue measure
» Parameters for the density f(y| x;0), 0=(01,...,0q)
» Datay = (y1,...,¥n) often independent

» Likelihood function L(6;y) o f(y;6) V1,---3Yn)
» log-likelihood function ¢(0; y) = log L(0; y)

» often 0 = (¢, \)
» 6 could have very large dimension, d > n

» @ could have infinite dimension in principle
E(y|x)=46(x) ‘smooth’

Approximate Likelihopods ~ Texas A& M, 2014



Why likelihood?

v

makes probability modelling central

emphasizes the inverse problem of reasoning
from yto 6 or 7(-)

suggested by Fisher as a measure of plausibility

Royall, 1997
L(B)/L(0) € (1,3) very plausible;
L(0)/L(9) € (3,10) implausible;
L(0)/L() € (10,00) very implausible

converts a ‘prior’ probability 7(¢) to a posterior 7(6 | y) via
Bayes’ Theorem

provides a conventional set of summary quantities:
maximum likelihood estimator, score function, ...
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... why likelihood?
» likelihood function depends on data
only through sufficient statistics
» “likelihood map is sufficient” Fraser & Naderi, 2007

» gives exact inference in transformation models
» “likelihood function as pivotal” Hinkley, 1980

» provides summary statistics with known limiting distribution

» leading to approximate pivotal functions, based on
normal distribution

» likelihood function 4+ sample space derivative gives better
approximate inference

» basis for comparison of models, using AIC or BIC
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Complicated likelihoods

generalized linear mixed models

GLM: Vi | ui ~ exp{y;m; — b(ny) + c(¥i)}
linear predictor: njj = XTB + zTu, j=1,..n;; i=1,.m
random effects: uj ~ Nk(0,X)

log-likelihood:

m

(5) = 3 (vixi - zloals
i=1

1
+ Iog/ exp{y,Zu,—1Tb(Xﬁ+Zu,)—§ ,-TZ‘1u,-}du,-)

Ormerod & Wand 2012
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. complicated likelihoods
Poisson f(y: | at; 0) = exp(y:log pe — ut)/yi!

log put = B8+ ot
autoregression
ar=oar1+e, e~N00%), |8 <1, 0=(8,¢,0°
likelihood

LO:iy1,... yn) = /(Hf(}’t|04t 9)) f(c; 0)dax

Lapprox(0; y) via Laplace with some refinements
Davis & Yau, 2011
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... complicated likelihoods

M/G/1 queue: exponential arrival times, general service times,
single server

observations y;: times between departures from the queue
unobserved variables V;: arrival time of customer J

model:
> Vi ~ Exp(6s)
> Vi | Viig ~ Vit + Exp(6s)
> Yi| Xi—1, Vi ~ Uniform{6y + max(0, V; — Xi_1),
02+max(0,Vi—Xi—1)}  Xi=>, Y G= U0 02)

Likelihood

n

L(9;}’)=/"'/f(V1 |O) [T F(vi | vies, 0) [T F(vi | i, X1, 0)dvs - - av,
i=1

i=1

Shestopaloff & Neal, 2013
Fearnhead & Prangle, 2012
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... complicated likelihoods
multivariate extremes: example, wind speed at d locations
vector observations: (Xij,..., Xg), i=1,...,n
component-wise maxima: Zi,. .., Zqy; Z; = max(Xj1, ..., Xjp)
Z; are transformed (centered and scaled)

joint distribution function:

PH(Zi < 21,.... 24 < 2g) = exp{~V(z1,..., Zq)}
V() can be parameterized via Gaussian process models

likelihood : need the joint derivatives of V(:)

combinatorial explosion Davison et al., 2012
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... complicated likelihoods
Ising model:

1
fy:0) = exp( D Oyivi) 75
(j,k)eE

observations: y; = +1; binary property of a node i
in a graph with K nodes

parameter: 6 measures strength of interaction between
nodes j and j

E is the set of edges between nodes

partition function: Z(0) = >_, exp(>_; ke OjiYjVk)

Davison 2000 §6.2
Ravikumar et al. (2010)
Xue et al. (2012)
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What’s a poor statistician to do?

» simplify the likelihood
» composite likelihood
» variational approximation
» Laplace approximation to integrals

» change the mode of inference

» quasi-likelihood
» indirect inference

» simulate

» approximate Bayesian computation
» MCMC
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Composite likelihood

» also called pseudo-likelihood
» reduce high-dimensional dependencies by ignoring them

» for example, replace f(y;1, ..., yi: 6) by

pairwise marginal H bL(yj, Yy 0), or
i<y

conditional H fe(Yii | Yniipy: 0)
J

» Composite likelihood function

cL(0;y) o< [T T1 Wi vir: 0)

i=1j<f’
» Composite ML estimates are consistent, asymptotically
normal, not fully efficient Besag, 1975; Lindsay, 1988
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Example: AR Poisson Davis & Yau, 2011
» Likelihood

n

LO: Y, Vi) = / (H (v | at;e)) (v 0)dax

t=1

» Composite likelihood

n—1
CL®O: y1,-- - y) =1 //f(y, | ot; O)f(Verr | arsn; 0)F(aur, cuegr; ) dardon g
t=1

» consecutive pairs
» Time-series asymptotic regime one vector y of increasing length

» Composite ML estimator still consistent, asymptotically
normal, estimable asymptotic variance

» Efficient, relative to a Laplace-type approximation
» Surprises: AR(1), fully efficient; MA(1), poor; ARFIMA(0,d,0), ok
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Example: spatial extremes  pavison et al, 2012; & Huser, 2015
Pr(Z1 S 217"‘7Zd S Zd) = exp{_v(z'lv"‘ 7Zd;0)}

» pairwise composite likelihood used to compare the fits of
several competing models

» model choice using “CLIC”, an analogue of AIC
—21og(CL) + tr(J~"K)

» Davison et al. 2012 applied this to annual maximum rainfall
at several stations near Zurich

» “fitting max-stable processes to spatial or spatio-temporal
block maxima is awkward ... the use of composite
likelihoods ... has become widely used” Davison & Huser
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Davison et al, 2012

MODELING OF SPATIAL EXTREMES 175

4542

[ 2..-

Fic. 3. Maps of the (predictive) pointwise 25-year for rainfall from and max-stable
models. The iop and botiom rows show the lower and upper bounds of the 95% poinbwise credible/confidence inlervals. The middle row
shws the predictive pointwise posteriar mean and pointwise estimates. The left column: corresponds 1o the latent variable model assum-
ing Gamma(5,3) prior on .. The middle column assumes the less informative priors Ay ~ Camma(l, 100), A; ~ Gamma(1, 10) and
2 ~ Gamma(l, 10). The right column corresponds to the exiremal 1 copula model.
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Example: Ising model
Ising model:
1
f(y;0) =exp( ejkyj}’k)m
(J,k)eE
neighbourhood contributions

exp(2y; Zk;&j Ok V)

f(y | Y—jyi ) =

penalized CL estimation based on sample y(!), ..., y("

maX{ZE (0; y) ZZP,\ 10jk]) }

i=1

Xue et al., 2012
Ravikumar et al., 2010
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Variational methods Ormerod & Wand, 2010

>

in a Bayesian context, want f(5 | y)
use an approximation g(p)
dependence of g on y suppressed

choose g(/3) to be
» simple to calculate
» close to posterior

simple to calculate
> q(8) = 119(5)

» simple parametric family

close to posterior: miminize Kullback-Leibler divergence

KL(G | foost) = / q(8)loglq(8)/1(5 | y)}dp
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... variational methods Titterington, 2006

» close to posterior:

min [ a(3)1og{a(9)/f(3 | y)}d = min KL(@ | foos)

» equivalent to best LB for marginal f(y)

max / q(8)0g{(y. 8)/q(8)} A5

» in a likelihood context log f(y; 0) = Iog/f(y | B;0)f(5)dpS

— [ a(6)10g{(y. 5:6)/a()}d5 + KL | o)

log £(y: 0) > / a(8)log{(y. 5:0)/q(5)}dp

here  represent random effects u, or b, or ...
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Example: GLMM Ormerod & Wand, 2012
log-likelihood:

up,x) =

+

. 1
> (y,Xﬁ— 5 log x|

i=1

Iog/ exp{y; Zu; — 17b(Xi + Zu;) — %u,-TZ“u,-}du,-)
Rk

m

]
> (y,-TX,ﬂ — 5 log x|

i=1

Iog/ exp{y; Zu; — 17b(Xi + Zu;) — %ufi"u;}%du;)

variational approx:

m

0B,%) > Z(y,X/ﬂ floglil)

i=1

m
+Z EuroN(u; 0 (y,-TZ,-u 17b(XiB + Ziu) — u 'S u —log{¢n, (U — /L/)})

LB, X, 1, \) simplifies to k one-dim. integrals
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... variational approximations Ormerod & Wand, 2012

>
0B, E) > 6B, %, 11, \)
variational estimate:

v

é(ﬁ’ iv [/:, 7\) =arg maX,B,Z,y,,/\e(Ba iv /7 A)

inference for 3,%? consistency? asymptotic normality?
Hall, Ormerod, Wand, 2011; Hall et al. 2011
emphasis on algorithms and model selection
e.g. Tan & Nott, 2013, 2014

v

v

v

VL: approx L(0; y) by a simpler function of 0, e.g. [] q;(¢)

v

CL: approx f(y; 0) by a simpler function of y, e.g. [] f(y;; 0)
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Some Links between Variational Approximation and
Composite Likelihoods?

S. Robin

UMR 518 AgroParisTech / INRA Applied Math & Comput. Sc.

NoroParisTech SéB'”

ST

MSTGA, Paris, November 22-23, 2012
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Laplace approximation
00, y) = Iog/f(y | b;0)g(b)db = Iog/exp{C)(b, y,0)}db, say
- 1 .
gLap(e;Y) = Q(b7y7 0) - E Iog |Q//(b)y7 0)’ +cC
using Taylor series expansion of Q(-, y, 0) about b

simplification of the Laplace approximation leads to PQL.:

tpau(6.b;y) = log f(y | b:0) — 26" 'h
Breslow & Clayton, 1993

to be jointly maximized over b and 6 and parameters in ¥

PQL can be viewed as linearizing E(y) and then using results
for linear mixed models Molenberghs & Verbeke, 2006
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Figure 2. Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA, and PQL
for the Epilepsy data random intercept model. The vertical dotted lines correspond to the AGHQ values.

implemented in 1me4 as glmer, in MASS as g1lmmPQL
Ormerod & Wand, 2012



Extensions of Laplace approximations
» expansions valid with p = o(n'/3) Shun & McCullagh, 1995

» expansions for mixed linear models to higher order
Raudenbush et al., 2000

» use REML for variance parameters Nelder & Lee, 1996
» integrated nested Laplace approximation Rue et al., 2009
» model f(y; | 0;); prior =(6 | 9) parameters and hyper-par

» posterior (6,9 | y) < w(6 | N7(F) [T f(yi | 67)
» marginal posterior

w019) = [ 701 9.9) 500 | )0

Laplace Laplace

Approximate Likelihopods ~ Texas A& M, 2014
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Quasi-

>

>

likelihood

simplify the model

E(yi:0) = wi(0);  Var(yi; 0) = ¢v(0)
consistent with generalized linear models
example: over-dispersed Poisson responses

PQL uses this construction, but with random effects
Molenberghs & Verbeke, Ch. 14

why does it work?

score equations are the same as for a ‘real’ likelihood
hence unbiased

derivative of score function equal to variance function
special to GLMs
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Indirect inference

» composite likelihood estimators are consistent
under conditions ...

» because log CL(6;y) = Y1, > log (v, yjri 0)
» derivative w.r.t. # has expected value 0

» what happens if an estimating equation g(y; ) is biased?
> g(y1,...,y,,;§,,):0; én—>9* Eg(Y;0*) =0

» 0* = k(6); invertible? 6 = k(6*) k' =k

» new estimator 0, = k(f,)

» k(-) is a bridge function, connecting wrong value of ¢
to the right one Yi & R, 2010; Jiang & Turnbull, 2004
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... indirect inference Smith, 2008

» model of interest
Vi = Gi(yi_1, %, €e1,0), 6 cRY

» likelihood is not-computable, but can simulate from the
model

» simple (wrong) model
Ye~ f(ye | Ye-1,x607), 0" € RP

» find the MLE in the simple model, #* = 8*(y1,...,yn), say

» use simulated samples from model of interest
to find the ‘best’ 8

» ‘best’ 0 gives data that reproduces §* Shalizi, 2013
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... indirect inference Smith, 2008

» simulate samples y/", m=1,..., M at some value ¢

compute #*(6) from the simulated data

0"(0) =argmaxd | > log f(y" | y{"y. xt: 0")
m t

v

v

choose 0 so that #*(6) is as close as possible to §*

v

if p = d simply invert the ‘bridge function’
usually p > d
» 0y = argming{0*(0) — O} W{d*(9) — A}
> B = argming (3, log f(yt | yi—1, X, 67(0)) — - log f(yt |
Yi—1,Xt,0))
estimates of 6 are consistent, asymptotically normal, but
not efficient

v

v
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Approximate Bayesian Computation  wmarin etal., 2010

» simulate ¢’ from 7(6)

» simulate data z from f(-; ¢’)

» if z= y then ¢’ is an observation from posterior (- | y)
» actually s(z) = s(y) for some set of statistics

» actually p{s(z),s(y)} < e for some distance function p(-)

Fearnhead & Prangle, 2011

» many variations, using different MCMC methods to select
candidate values ¢’

Approximate Likelihopods ~ Texas A& M, 2014
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... approximate Bayesian computation

M/G/1 queue: exponential arrival times, general service times,
single server

observations y;: times between departures from the queue

unobserved variables V;: arrival time of customer j

model:
> Vi ~ Exp(63)
> Vil Vimq ~ Vi_q + Exp(63)

> Y| Xi_1, Vi ~ Uniform{6; + max(0, V; — X;_1),
b2+ max(0,V; — X;i_1)}  Xi=3j 4V

P service time ~ U(01, 02)

ABC: use quantiles of departure times as summary statistics

Indirect Inference: use y, y(1), 0, from steady-state model

Approximate Likelihopods ~ Texas A& M, 2014 30



Table 7. Mean quadratic losses for various analyses of
50 M/G/1 data setst

Method 01 6> 03

Comparison 1.1 2.2 0.0013
Comparison + regression 0.020 1.1 0.0013
Semi-automatic ABC 0.022 1.0 0.0013
Semi-automatic predictors 0.024 1.2 0.0017
Indirect inference 0.18 0.42 0.0033

tLosses within 10% of the smallest values for that parameter
are italicized.

Fearnhead & Prangle, 2011



ABC and Indirect Inference Cox & Kartsonaki, 2012

>

both methods need a set of parameter values from which
to simulate: 6’ or 0

both methods need a set of auxiliary functions of the data
s(y) or 6*(y)

in indirect inference, 0* is the ‘bridge’ to the parameters of
real interest, 6

C & K use orthogonal designs based on Hadamard
matrices to chose ¢’

and calculate summary statistics focussed on individual
components of §

MCMC estimation of log-likelihood function
Geyer & Thompson, 1992
cond. comp. likelihood poor for Ising model  Okabayashi et al., 2011
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