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Abstract

Gelman and Loken (2014) draw attention to a “statistical crisis in science”

and describe how risks with multiple p-values can be present even in the analysis

of a single data set. There is indeed a crisis, as p-values are everywhere, in science,

engineering, medicine, social science, health care, and the media; and conflict-

ing results are misrepresenting the importance of p-values, and indeed of many

disciplines themselves. We argue that risks of misinterpretation are widespread,

but that the crisis is really in the discipline of statistics, and starts with mixed

messages about the meaning and usage of p-values. These mixed messages then

have downstream effects that seriously misinform scientific endeavours. What

are these mixed messages concerning p-values? And should statistics continue

with such messages that compromise the discipline? We discuss this and offer

recommendations.
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1 Introduction

This article is a response to Gelman and Loken (2014), who drew attention to a

“statistical crisis in science” and showed how multiple p-values can arise, in good faith,

in the analysis of a single data set. At about the same time, the Journal of Basic and

Applied Social Psychology made headlines in Nature (Woolston, 2015) by deciding to

no longer publish papers containing p-values. This debate continues, and there were

several media reviews of news in December 2015 from CERN’s Large Hadron Collider

about a possible discovery of a new particle, and the associated “5-sigma” criterion

commonly applied in high-energy physics (Castelvecchi, 2015; Spiegelhalter, 2015).

There is a crisis as p-values are everywhere, in science, engineering, medicine, social

science, health care, and in the standard media phrase “19 times out of 20” commonly

appearing in the reporting of polls. Our view is that while the risks of misinterpre-

tation of p-values are widespread, the crisis is really in the discipline of statistics, in

providing mixed messages about the meaning of a p-value. These mixed messages have

downstream effects that can seriously affect all applications. We discuss this and offer

recommendations.

2 Multiple meanings

2.1 The p-value function

Suppose we observe a variable, say y, that measures an unknown θ of interest; thus y is

accessible through measurement, but θ is only indirectly accessible, through inference

from y. If we had unlimited time and resources we could collect a great many values of

the variable y and obtain the probability distribution of the variable y. This density

indicates the stochastic behaviour of the variable, and if we assume that the form of

the density is known, but its location (for example) is not, by identifying this via an

unknown parameter θ we can view learning where the distribution is located as learning

the value of θ. This could be, and often is, formalized by having a hypothesis, called a

null hypothesis and designated H0, that the unknown true value θ is θ0; an example is
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indicated in Figure 1.

Figure 1: An accumulation of observations of y when the null hypothesis H0 : θ = θ0 holds.

Given a single observed measurement y0, an investigator could then construct Figure

2, which shows that a proportion 6.1% of the distribution θ = θ0 falls to the left of

the observed measurement y0, and 93.9% falls to the right. The observed p-value

associated with H0 would then be p0 = 6.1% and is thus presenting just the percentile

or statistical position of the data y0 under H0, or recording just a pure statement

of factual information. As a definition this aligns with Fisher’s 1920 proposal, later

clarified in Fisher (1956).

This example is simplified to an extreme, but asymptotic arguments developed in

Fraser (1990), Fraser and Reid (1993) and Brazzale et al. (2007, Ch. 8) show in wide

generality that there is in fact such an approximating location model relevant to a

single parameter of interest and that it can can be calculated quite routinely with

more complex and realistic models.

Common statistical custom and usage don’t usually stop with this percentile posi-

tion, but proceed from the statistical position to scientific statements with potentially

huge impact. For example, in high-energy physics, θ0 could represent the mean value

under background radiation, and then larger values θ > θ0 could indicate a new parti-

cle, such as the Higgs boson. In what sense does the p-value provide support for this

new particle?
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Figure 2: An observed data point y0 and proportions left and right of the data under the

hypothesis H0.

More informative than a single p-value, the p-value function p(θ), records the sta-

tistical position of the observed data y0 for a range of values of θ: see Figure 3. This

function presents the “statistical position” of the observation. It does not single out

particular alternatives to θ0, but leaves this choice to appropriate judgement in an

application context (Fraser, 2014).

The p-value function presents in one plot all possible confidence bounds: we could

for example solve 0.95 = p(θ; y0), the solution of which, θ̂L say, is a lower confidence

bound at the conventional 95% limit. Under repeated observation of y from the model,

the interval (θ̂L,∞) will include the true value of θ 19 times out of 20, on average. The

p-value function has also been called the confidence distribution function, e.g. in Cox

(1958), Efron (1993), Xie and Singh (2013), Hjort and Schweder (2016). The p-value

function or confidence distribution function has the added benefit that the direction of

departure is recorded, as well as the magnitude.

2.2 Decision theory

Calculating observed proportions such as 0.061 and 0.939 as above was historically

often challenging, and reference values corresponding to one or several standard values

such as 5%, 10%, 90%, and 95% were derived and recorded in tables. Then in an
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Figure 3: The observed p-value function from data y0 as in Figure 3; height at θ0 is 6.1%.

investigation a statement such as “significant at the 10%” level, or “not significant at

the 5% level”, would be offered for the data point y0 in Figure 2.

With the development of the theory of hypothesis testing by Neyman and Pearson

(1933), this practice acquired a formal theoretical status. In due course the original

concept of a p-value or observed level of significance as the position of the data with

respect to the model changed its presentation into a decision for or against the hy-

pothesis H0, at some chosen fixed chosen level of significance. The observed value y0

then became a decision for, or against, some null value. Taking such decisions at face

value is a substantial change from the notion of statistical position, and has had the

profound and unfortunate consequence of setting an arbitrary standard for determining

the adequacy, or even publishibility, of the results from an experiment.

When p-values are used only to make a decision, and a larger sample size is viewed as

a route to getting to the decision point faster, the results can be even more misleading.

Gelman and Loken express this concern for treating p-values from a decision the-

oretic viewpoint: “By convention, a p-value below 0.05 is considered a meaningful

refutation of the null hypothesis: however, such conclusions are less solid than they

appear”. They do not, however, dwell further on this point. Many contemporary

presentations of introductory statistics also overlook such concerns.

5



The point was emphasized famously in Ioannidis (2005), but there is a much ear-

lier literature warning about this. Sterling (1959) wrote of “publication decisions and

their possible effects on inferences drawn from tests of significance”; in particular “...

(where) a borderline between acceptance and rejection is taken (at a) fixed point (say)

0.05 ... is interesting by itself ...(and when) used as a critical criterion for selecting

reports for (publication) in professional journals (might result in) unanticipated re-

sults.” Rozeboom (1960) wrote of “The fallacy of the null-hypothesis significance test”

and quoted a famous philosophical epigram that the “accept-reject” paradigm is the

“glory of science and the scandal of philosophy”, meaning the glory of statistics and

the scandal of logic and application.

2.3 Bayesian view of p-value

To this point we have assumed that the model for Figure 1 provides the full background

information for θ. Another approach is available if we have a function π(θ) allegedly

describing a probability density for potential values of θ. If the joint model is then

accepted as valid, the application of the basic rules of conditional probability enable

calculation of a probability distribution for θ, given the observed measurement y0, as

f(θ | y0) = cπ(θ)f(y; θ). We can then compute, for example, the probability that θ is

larger than θ0, having observed y0.

But where does such a probability density function π(θ) come from? Efron (2013)

cites two possibilities: there may indeed be a case in some applications where random-

ness for the source of the true θ can be identified with a distribution π(θ): he calls this

a genuine prior. If θ represents the rate of defectives in a manufacturing process, there

may be enough data from previous manufacturing runs to identify such a distribution.

An alternative construction of a distribution π(θ) is by describing symmetries

among various θ values: Efron (2013) calls these Laplace priors, as they received special

support from Laplace (1812). In that case the construction of f(θ | y0) can be regarded

as a completely formal exercise, not embodying any probability interpretation. In this

setting the best we could argue is that these probabilities have a meaning in as much

as they lead to identical conclusions as the p-value function. Then the probability

interpretation of the result is vacuous, but not misleading.
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This is the case, for example, in a simple location model with a uniform prior

for θ. The frequency calculation and the Bayes posterior probability calculation are

computational reflections of each other; thus s0(θ0) =
∫
θ0
f(θ | y0)dθ attaches the same

value, 6.1%, to the statement that θ is larger than θ0 as the argument above attaches

to the probability under the model f(y; θ0) that y is less than y0: the Bayes posterior

bound is in fact exactly a confidence bound: see Figure 4.

In our view the two ingredients π(θ) and f(y; θ), even if π(θ) is a genuine prior,

should be left separate, rather than being combined into a joint model π(θ)f(y; θ)

describing the pair (y, θ). This makes available the full background information, and

leaves to the concerned user the option to combine them if desired. This point is

discussed from a slightly different point of view in Cox (2006, Ch. 5) and Cox and Reid

(2015), where it is argued that “personalistic” priors have a different logical status from

probability density functions.

Figure 4: The Bayes calculation with the Laplace noninformative prior can with location

symmetry duplicate the frequency calculation, thus giving a confidence result.
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3 Responsibility and Risks

We have discussed three different interpretations for “p-value” or “level of significance”:

(i) The frequency view: The statistical position of the observed data with respect to a

θ0 value being tested; (ii) The decision theory view: The conventional level at which

the data is just significant with respect to a θ0 value being tested; and (iii) The Bayes

view: The Bayes survivor calculation at a θ0 value using some prior distribution for θ.

It is our view that the discipline of statistics should acknowledge responsibility for

the consequences of the confusion, in many areas of application, caused by these multi-

ple meanings. Fraser (2014) highlights three historically prominent cases where respon-

sibility for statistical steps seems overwhelming, even in legal senses. The launch of the

space-shuttle Challenger failed on January 28, 1986, causing seven deaths: statistical

data available before the flight indicated a concern with the effect of low temperatures

on critical O-rings, but the statistical warnings were by-passed (Dalal et al., 1989).

The pain relief drug Vioxx was approved by the US Food and Drug Administration

in 1999, but withdrawn by the pharmaceutical company in 2004 after evidence for an

elevated risk of heart attacks became overwhelming, although statistical assessments

as early as 2000 had indicated heightened risk of such serious events (Abraham, 2005).

An estimated 40,000 people died and a five billion dollar settlement with the pharma-

ceutical company was obtained for those injured or the survivors (O’Neil, 2012). Before

the L’Aquila earthquake on April 5, 2009 an official committee with statistical exper-

tise underemphasized in public statements the risk of an imminent major earthquake;

some 300 died in that earthquake, and seven committee members were convicted of

manslaughter (Marshall, 2012; Prats, 2012), a conviction that was overturned on appeal

for six of the members (Abbott and Nosengo, 2014).

These examples emphasize that a misleading use of statistics can have serious con-

sequences in lives lost and in billions of dollars in costs. These consequences can start

with conflicting messages from statistics, and in particular the message that “statistical

significance” is treated as an absolute, a decision, and that the goal of the statistical

analysis of an observed set of data is to reach that elusive bar: a theme very common

to applied work, especially among those new to the research process.

Gelman and Loken (2014) focus their discussion on the decision theoretic inter-
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pretation and address the consequences from this approach, emphasizing in particular

the problem that for a given scientific or social scientific problem, the translation of

“interesting science” to “statistical hypothesis” can, and often does, involve several

hypotheses, and hence the calculation of several p-values, with a particular data set.

They write “It would take a highly unscrupulous researcher to perform test after test

in a search for statistical significance ... at the 0.05 level ... The difficult challenge lies

elsewhere”. They further note “it is reasonable for scientists to refine their hypotheses

in light of the data”. Their assessment of the risks emphasizes that the formulation

of an hypothesis in science or social science is not as straightforward as identifying a

single θ0, and as a result multiple testing is implicit in a great many analyses, and more

subtle than carrying out several tests in search of “p < 0.05”.

We agree with them that the risks of using arbitrary p-values to define ‘significance’,

and using these as decisions is very serious when multiple formulations of hypotheses

lead explicitly or implicitly to large numbers of p-values. Among their recommended

strategies of pre-registration, authentic replication, and analysis of “all data”, they

include a claim “that p-values should not necessarily be taken at face value”. This last

we disagree with! It is the conventional but unwarranted attribution of decision, and

the use of p-values for journal management, that are at the heart of the problem.

The p-value and p-value function is simply recording the statistical position of data

relative to an hypothesis; it is elemental and provides an appropriate starting point

for inference conclusions. It can guide the judgments about scientific conclusions,

but cannot replace them. The consensus judgment in high-energy physics is that a

‘discovery’ is claimed when the p-value is less than 1 in 3.5 million: it is called “5-

sigma” as this is the probability that a normal variable is greater than five standard

deviations from the mean, the normal here being an approximation to the Poisson

count of number of observed particles. Another physics example that received wide

publicity in the popular media of the time was Eddington’s verification of Einstein’s

theory of general relativity. The orbit of Mercury had been known in the 18-hundreds to

precess at a rate different from that predicted by Newtonian mechanics, and Einstein’s

general relativity provided an adequate explanation. But further corroboration seemed

appropriate to the physics community. General relativity also predicts the bending of
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light rays as they pass near a large mass; this provided, then, an appropriate variable

to measure, and in May 1919 Eddington was able to carefully measure the apparent

position of stars in the sky as indicted by light from the stars after it had passed

adjacent to the sun during a solar eclipse.

Suppose, as viewed, the star light was passing on the right side of the hidden sun

where general relativity would indicate that its apparent position in the sky was dis-

placed to the right. Then if a 5-sigma event had been observed, the statistical position

of the observed data would have been p = 0.999, 999, 7, indicating the large departure

to the right; this value is the complement of 0.000, 000, 3, in turn the reciprocal of 1 in

3.5 million. This p value records that data value was large, near 1; it is in the right tail

of the null distribution under the standard theory of the time. The statistical position

version of the p-value is appropriate and indicates the magnitude of the departure as

well as the type of departure.

We believe the discussion is more urgent now, in the era of Big Data. As a reviewer

has emphasized, the use of false discovery rates has been developed as a method of

protecting against multiple hypothesis tests. In applications of many similar tests to

a single set of data, for example in genome-wide association studies, this has provided

some protection against claims of discoveries that could not subsequently be validated.

Indeed the conventional, if somewhat arbitrary, 5-sigma rule of high energy physics is

an ad hoc correction for multiple testing to protect exactly against false discoveries.

This seems not to solve the issue, but rather to move the decision boundary.

An approach more directly aligned with the presentation of the p-value function is a

method to correctly combine many such functions into a single summary p-value func-

tion. Methods of combination motivated by developments in the theory of composite

likelihood are in development (Fraser and Reid, 2016).

For a great many settings where Big Data is available for analyses, the calculation

of the dimensionality for possible hypotheses may be difficult or impossible, and the

potential for making incorrect decisions is enormous. Attributing significance or de-

cision to a comparison selected from among millions of potential hypotheses suggests

serious rethinking of the exploration process, the evaluation process, and the decision

process. The risks for misleading decisions seem large; we could have mega p-values,
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mega decisions and mega wrong ‘answers’. Scientists and social scientists are making

serious efforts to address these issues; see for example the Science editorial McNutt

(2014), and Gelman and Loken (2014)’s suggestions around pre-registration. Perhaps

Statistics should stand up for its responsibilities before a Big Data Disaster.
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