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On default priors and approximate location models
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Abstract. A prior for statistical inference can be one of three basic
types: a mathematical prior originally proposed in Bayes (1763), a sub-
jective prior presenting an opinion, or a truly objective prior based on an
identified frequency reference. In this note we consider a method for de-
riving a mathematical prior based on approximate location models. This
produces a mathematical posterior, and any practical interpretation of
such a posterior is in terms of exact or approximate confidence under
the postulated model. We describe how a proposed prior can be sim-
ply checked for consistency with confidence methods, using expansions
about the maximum likelihood estimator.

1 Introduction

Priors have been used for more than two centuries (Bayes, 1763) to weight
an observed likelihood function, thus providing a prominent procedure for
statistical inference. As such it is arguably the oldest formalized methodol-
ogy in statistics, and long predates the formal introduction of the likelihood
function (Fisher, 1922). The procedure provides a rich methodology for ex-
amining a statistical model with observed data and has had profound effects
in liberalizing statistical analyses. It does give rise to statements presented
as probabilities, in contrast to the confidence procedure of Fisher (1930)
and Fraser (2003) that gives rise to statements labeled as confidence. Fraser
(2010a) showed that the two procedures lead to the same result for scalar
parameters only in location models; he then argued that this meant that
confidence was not entitled to be labeled as probability, although he could
equally have argued that his analysis showed that Bayesian inference was
not entitled to be labeled as confidence.

As an example of Lindley’s (1958) analysis, if we have an observed datum
y0 from a Normal (θ, 1) distribution, the confidence 95% lower bound is
y0 − 1.64, and the posterior 95% lower bound is y0 − 1.64 under the prior
π(θ)dθ ∝ dθ; this prior represents the translation invariance of the location
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model. Similarly, the observed p-value and the posterior survivor value are
the same for all θ and given by Φ(y0 − θ), where Φ is the standard normal
distribution function. Of course the prior is not proper and thus cannot
represent probabilities.

The probability lemma for calculating conditional probability takes two
probability inputs and produces one probability output. If one input how-
ever is absent and a convenient mathematical object is substituted, then the
conditions of the lemma are not fulfilled and the output is not a probabil-
ity on the basis of the lemma. It may have attractive properties by other
arguments; indeed it is our view that translation invariance as represented
in a prior does widely give confidence, of first or sometimes higher order
accuracy. These arguments are expanded on in Fraser (2010a,b,c). One con-
clusion is that the Bayes initiative was prescient, a very early and profound
initial step towards confidence (Fisher, 1930), leaving fine tuning over some
two hundred years to clarify the concept.

In Section 2 we describe the location invariance, which was in fact used
by Bayes (1763) in an augmented analogy, and then describe approximate
translation invariance based on model continuity (Fraser et al., 2010c). Priors
with this invariance were called default priors in Fraser et al. (2010c), and
lead to second order confidence for linear parameters. Section 3 discusses
necessary and sufficient conditions for a prior to have approximate default
properties. In Section 4 we show that even with default priors, confidence
statements for curved parameters will be accurate only to first order, and
describe some related work.

2 Location models and the location relationship

A location model f(y − θ), where we initially suppose the variable y and
parameter θ are scalar, has the property that a displacement a to y and a
parallel displacement a to θ leaves the statistical model unchanged. Con-
versely, if a transformation as just described produces a new variable and
new parameter with an unchanged probability distribution, then the model
is a location model. Let z = y − θ and let zβ be the β-quantile of the f(z)
distribution. Then the confidence inversion of the interval (−∞, zβ) pro-
duces the β-confidence lower bound y − zβ. And in a related way the prior
π(θ)dθ ∝ dθ having location invariance gives the posterior lower bound y−zβ
with a claimed valuation β; again these are equal. The two approaches are of
course familiar but the unifying theme perhaps less so; for further discussion,
see Fraser & Reid (2002).

A similar result holds for a p-dimensional variable y and p-dimensional
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parameter θ having a location model f(y − θ). If the parameter of interest
ψ is θ1, then as above the β-confidence lower bound is obtained by inverting
the pivot y1 − ψ giving the β-confidence lower bound y1 − zβ. And the
marginal posterior lower bound obtained by using the location invariant
prior π(θ)dθ ∝ dθ gives y01−zβ, and fully agrees with the β-confidence lower
bound. This property does not extend however to parameters of interest ψ
that are not linear in θ; an example is given in the §4.

More generally in transformation models, the default prior given by the
right invariant measure of the transformation group ensures that posterior
probability bounds are the same as confidence bounds for a wide range of
parameters, with the caveat, again, that if the parameter of interest is not
simply related to the transformation structure, that is, does not have a lin-
earity property, then posterior inference can again disagree with confidence.

Fraser et al. (2010c) described how continuity in a general statistical
model can lead to posterior inference that has valid confidence to O(n−1),
with n the size of an independent, identically distributed sample, or more
generally an amount of information. The distribution function for each com-
ponent of a vector response y can be used to give an approximate loca-
tion model, and thence to an analogue of the location invariant prior de-
scribed above; the distribution function provides a link between the pa-
rameter and the variable, in the following sense. In a location model for
a single variable y with scalar parameter θ, f(y; θ) = f(y − θ), we have
F (y + dθ; θ + dθ) = F (y; θ) by the location property, where F is the distri-
bution function. We can also write this as

dy

dθ
= −F;θ(y; θ)

Fy(y; θ)
= 1,

where F;θ is the derivative of the distribution function with respect to θ.
This shows that change in y is compensated by change in θ; the defining
feature of a location model. In a non-location model, we can derive a similar
result locally:

dy

dθ

∣∣∣∣
y0

= −F;θ(y
0; θ)

Fy(y0; θ)
,

where now y0 is a fixed point, usually the observed data point. Equivalently,
in terms of the quantile function F−1(u; θ) = y(u; θ),

dy

dθ

∣∣∣∣
y0

=
d

dθ
y(u; θ)

∣∣∣∣
u=F (y0;θ)

= yθ(u; θ)|u=F (y0;θ) .

For a sample of independent observations y1, . . . , yn from the same model we
can do this for each observation, giving y = y(u; θ) = {y1(u1; θ), . . . yn(un; θ)}′,
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and express its derivative with respect to θ as a vector of length n:

{V1(θ), . . . , Vn(θ)}′ = ∂y

∂θ

∣∣
y0

=
∂y(u; θ)

∂θ

∣∣
ui=F (y0i ;θ)

.

If θ is a vector of length p, then the same construction can be used, with
each Vi(θ) a row vector of length p:

dy

dθ′

∣∣∣∣
y0

=

 V1(θ)
...

Vn(θ)

 = V (θ), (2.1)

which is an n × p matrix that explicitly links change at the observed data
with parameter change at various θ values. Fraser et al. (2010c) refer to V (θ)
as the sensitivity matrix. In the location model f(yi− x′iβ), Vi(β) = x′i, and
V (β) is simply the design matrix and thus records sample space directions
indicated by possible changes in the regression parameter.

More generally the matrix V (θ) presents sample space directions intrin-
sic to an approximate location model at the observed data (Fraser et al.,
2010b), and then the default prior π(θ)dθ ∝ |V (θ)|dθ ensures that poste-
rior probabilities for linear components of θ are equivalent, to second order,
to the p-values computed from frequentist methods. It is sometimes more
convenient to re-express the relationship at (2.1) in the form,

dy = V (θ)dθ,

and then to derive the corresponding relationship between θ̂ and θ, where θ̂
is the maximum likelihood estimator. This is derived in Fraser et al. (2010c)
to be

dθ̂ = W (θ)dθ, (2.2)

at (y0, θ̂0), where W (θ) = j−1(θ̂0)H ′(θ̂0; y0)V (θ)dθ, j(θ) = −∂2`(θ; y)/∂θ∂θ′

is the observed Fisher information, and

H ′(θ̂0; y0) = `θ;y′(θ̂
0; y0) =

∂2

∂θ∂y′
`(θ; y)

∣∣∣∣∣
(y0;θ̂0)

.

This leads to the default prior

π(θ)dθ ∝ |W (θ)|dθ. (2.3)

Inference based on this default prior is typically accurate to O(n−1), for
linear parameters. In models having a right invariant prior it reproduces
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that prior; in particular in the regression model yi = x′iβ + σzi it gives the
π(θ) = dβdσ/σ, for any fixed distribution for z. Additional examples are
given in Fraser et al. (2010c).

The relationship between variable and parameter in (2.3) is rather power-
ful. It shows that locally there is a location model f(β̂−β) that agrees with
the given model to first derivative at the data value in the sample space, and
agrees with the given model in the parameter space, for parameter values
in the moderate deviation range, O(n−1/2) about the maximum likelihood
value. The default prior as defined by this local location model can be viewed
as ‘flat’ in the location parameter coordinates. This suggests that for an ar-
bitrary prior, we can examine its effect on the likelihood by seeing whether
or not it agrees with this flat prior, to some order of approximation. If it
does not, then the posterior survival probability will typically differ from
the p-value, and the posterior intervals will thus not have the claimed prob-
ability content under the model. We consider some aspects of this, following
Fraser & Reid (1995), Fraser & Sun (2010), Fraser et al. (2010a) and Fraser
(2010d). We restrict attention to the scalar parameter case, as the vector
parameter case raises some technical difficulties.

In the scalar case we have dθ̂ = w(θ)dθ where w(θ) is a scalar function of
θ. We can sometimes integrate the equation directly and obtain the location
parameter:

β =

∫ θ

θ0
w(θ)dθ. (2.4)

As a simple example consider a sample y = (y1, . . . , yn)′ of independent
observations from the scale family with density f(yi;σ) = (1/σ)f(yi/σ)
where the form of f is known. Since F (yi;σ) = F (yi/σ), we have

Vi(σ) = −F;σ(yi;σ)/Fy(yi;σ)|y0i = y0i /σ,

where y0 = (y01, . . . , y
0
n)′ is the observed sample. In quantile form the variable-

parameter relationship yi = σui gives the same result. Thus we have the
default prior π(σ) ∝ |V (σ)|, where

|V (σ)| = {V (σ)′V (σ)}1/2 =
1

σ
(
∑

y02i )1/2,

proportional to the usual prior for a scale parameter. Alternatively if we
work with W (σ) defined at (2.3), we obtain

|w(σ)| = σ̂0

σ
,
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where σ0 is the maximum likelihood estimate. The two forms of the prior
are equivalent, as constants of proportionality do not matter.

Now consider the direct integration route to obtain the location rela-
tionship. From (4.1) we obtain β = σ0(log σ − log σ0); this produces the
logarithmic reparameterization as one might expect.

To gain more insight into the equation dθ̂ = w(θ)dθ, we consider the
following expansion. Let w = w(θ0) and c = w′(θ0); a second order approx-
imation for the location parameter is given by

β =

∫ θ

θ0
{w + c(θ − θ0)}dθ = θ0 + w(θ − θ0) + c(θ − θ0)2/2. (2.5)

where often w = 1 which would simplify the final expression. This exact
or approximate location reparameterization gives an approximating second
order quantile presentation of the model as β̂ = β + z where z has the fixed
distribution describing the location residual β̂ − β.

3 Is a prior second-order default?

For the scalar case we now discuss a simple test criterion for whether a
proposed prior has the default properties found with the flat prior for the
location model context.

For this, the basic input is of course the log-likelihood function `0(θ) =
log f(y0; θ). To work easily with this likelihood we choose convenient coor-
dinates that are centered at the observed maximum likelihood value and
scaled with respect to observed information; specifically we take the new

parameter coordinate to be θ̃ = ̂
1/2
θθ (θ− θ̂0) where ̂θθ is the observed infor-

mation. In these new coordinates the likelihood function has the simplified
form

`(θ̃) = −θ̃2/2− α3θ̃
3/6n1/2 +O(n−1),

where α3/n
1/2 is the negative third derivative of likelihood at the maximum

with respect to the standardized coordinates and the dependence on sample
size has been made explicit.

Now expanding the log-prior in the standardized parameter gives

log π(θ̃) = a0 + a1θ̃/n
1/2 +O(n−1);

and then combining likelihood and prior gives the posterior

π(θ̃; data) = k exp{−(θ̃ − a1/n1/2)2/2− α3(θ̃ − a1/n1/2)3/6n1/2}
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to O(n−1), where terms of O(n−1) have been introduced to simplify the
resulting expression. This shows that the prior to this order causes a trans-
lation by the amount a1/n

1/2 on the likelihood in standardized coordinates.
Do we actually want a prior hopefully not informative to be displacing the
location likelihood information provided by the data?

If the initial parameterization θ is a linear and if we want the related
location model to have a flat prior with slope or log-slope equal to zero then
we would want a1/n

1/2 = 0 to the order O(n−1). And we see of course that
such a prior does not shift the likelihood information.

Alternatively however suppose that θ is not linear. Then, following §3,
we can calculate the curvature c from the relationship dθ̂ = w(θ)dθ. In
the standardized parameterization θ̃ we have w(θ̃) = w + cθ̃/n1/2 which
integrates to give the linear parameterization β = wθ̃ + cθ̃2/2n1/2.

To obtain the prior re-expressed in the linear parameterization β we first
calculate

dβ

dθ̃
= w + cθ̃/n1/2 = w exp{cθ̃/wn1/2}

to second order, and then use use its inverse to adjust the prior to be relative
to θ̃. This gives the reexpressed log-prior relative to the linear parameteri-
zation as

ã0 + a1θ̃/n
1/2 − (c/w)θ̃/n1/2,

and leads to the following posterior expressed in terms of the linear param-
eterization

k exp{−(θ̃ − a∗1/n1/2)2/2− α3(θ̃ − a∗1/n1/2)3/6n1/2},

where a∗1 = a1−c/w. Thus to have a prior that is flat relative to the location
parameterization, and therefore does not shift the likelihood, we need to have
a∗1 = 0, that is, a1 = c/w, which in turn means the prior must take account
of the first derivative of w(θ), or more generally the first derivative array of
the sensitivity matrix V (θ).

In the scalar parameter case Welch & Peers (1963) showed that posterior
quantiles had correct frequentist coverage to O(n−1) if the prior is propor-
tional to i1/2(θ), where i(θ) is the expected Fisher information function in
a single observation from the model, so in a sense the calculations above
might rarely be needed. However, the requirement that a1 = c/w is weaker,
as all arguments here are carried out locally near the maximum likelihood
point. They might also be relevant in a setting where nuisance parameters
were handled by combining a profile or adjusted profile likelihood with a
prior for the parameter of interest only, as in Fraser et al. (2003).
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4 Discussion

In the preceding section we considered local properties of a prior that is flat
in a locally defined location parameter. When θ is a vector, the location
parameter β(θ) is not available explicitly, as at (2.4), but is available im-
plicitly (Fraser & Yi, 2003). However, an expansion of β similar to (2.5) is
available, where W (θ) is a p × p matrix, and the analogues of w and c are
a p × p matrix and a p × p × p array, respectively. The structure of these
coefficients is described in Fraser et al. (2010a), and the use of this expansion
for constraining priors is investigated in Fraser (2010d).

The default prior, proportional to |W (θ)|, can be constructed, as in Fraser
et al. (2010c), but posterior marginal inference for component parameters
will only be well-calibrated, that is agree with the p-value, to O(n−1), if
the component parameter is linear in the underlying (approximate) location
parameter. To illustrate this in simple form, assume that (y1, y2) is a mean
of n observations from the location normal distribution on the plane, and
assume the parameter of interest is ψ(θ) = θ1 + kθ22/2n

1/2. A contour of
the parameter ψ crosses the θ1 axis at right angles and with positive k
bends to the left above and below this axis. At the observed data point
y0 = (0, 0)′, the constrained maximum likelihood estimate of θ1 is given
ψ is θ̂0ψ = (ψ, 0)′ neglecting terms in the likelihood equations of O(n−1).

Consider evaluating ψ with the statistic t(y) = y1+ky22/2n
1/2, which has the

same contours on the sample space as does ψ on the parameter space. This
function is asymptotically normally distribution with mean ψ and variance
1. The p-value based on the marginal distribution of t is the probability left
of the t(y) contour through y0, using the normal distribution with mean
ψ and variance 1. The posterior survivor function is the probability to the
right of the ψ(θ) contour, using the bivariate normal distribution with mean
y0 = (0, 0) and identity covariance. These are equal when the curvature
k = 0, but as k increases, the region of integration for the p-value decreases
and the region of integration for the s-value increases. Thus the Bayes s-
value will be mis-calibrated by a term that is O(n−1/2), in contrast to the
reproducibility inherent in the p-value. The example above is more general
than it may appear, as it captures first order deviations from limiting normal
distribution.

Some aspects of this discrepancy were discussed as part of the marginaliza-
tion paradox (Dawid, 1973), but identifying curvature as an intrinsic cause
is more recent (Fraser et al., 2010a; Fraser & Reid, 2002; Fraser & Sun,
2010).

Thus although Bayesian inference generally gives confidence statements
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to a first order of approximation, and with the default prior leads to confi-
dence statements to second order, as described above, more generally infer-
ence based on a prior comes with risks not often easily assessed. For some
discussion including examples of the curvature discussed in Section 3 see
Fraser (2010a,b,c). For some examples where Bayes and confidence methods
routinely give identical results see Bedard (2008). And for three enigmatic
examples where Bayesian inference has progressively greater difficulty in
achieving an analysis, see Fraser et al. (2009).
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