
ASSESSING A VECTOR PARAMETER

By D.A.S. Fraser and N. Reid
Department of Statistics, University of Toronto

100 St. George Street, Toronto, Canada M5S 3G3
dfraser@utstat.toronto.edu

SUMMARY

Some key words. Ancillary; Conditional likelihood; Composite hypothesis; Conditioning;
Conical test; Directional test; Vector interest parameter; Likelihood; Marginal likelihood;
Profile likelihood; p-value.

1 Introduction

The assessment of a vector parameter is central to statistical theory. The analysis of variance

with tests and confidence regions for treatment effects is well established and the related

distribution theory is conveniently quite straightforward, particularly in the normal error

case. In more general contexts such as generalized linear models, the assessment is usually

based on the likelihood ratio or maximum likelihood departure measures and the related

distribution theory is first order. As such, and confirmed by experience, both the type of

departure and the distributional accuracy can be strongly misleading.

Some improvements in the departure measure and the distributional accuracy have

been obtained with directional tests (Fraser & Massam, 1985; Skovgaard, 1988; Cheah et al,

1994) but these typically require an exponential model.

For greater generality we now examine a continuous statistical model with parameter

θ of dimension p and interest parameter ψ(θ) of dimension d. We examine an observed data

point y0 recorded on a score variable space which has suitable linearity, and we consider

the directed departure of the data point from expectation under a hypothesized value ψ

for ψ(θ). The directed p-value is obtained as the observed conditional distribution function

for the distance of the score variable from its expected value, given the direction of the

departure. We view this as arguably the appropriate statistical assessment of the data point

with respect to the parameter value ψ; for some background see Fraser & Massam (1985).

This distribution function value can be approximated by

p(ψ) = Gd(χ
0) + bd{Gd+1(χ

0) −Gd(χ
0)}δ(χ0) (1.1)
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where Gd(χ) is the ordinary chi distribution function

Gd(χ) =

∫ χ

0

cdt
d−1e−t

2/2dt (1.2)

with norming constant cd = 1/Γ(d/2)2d/2−1, and χ0 is the observed value obtained from the

score-based departure measure described in §3. The constant bd = cd/cd+1 = 21/2Γ{(d +

1)/2}/Γ(d/2) is the ratio of norming constants from adjacent χ density functions. The

adjustment factor δ(χ), obtained from (3.4) and (3.5), provides a measure of how much the

underlying distribution differs from normality.

The preceding p-value has second order accuracy, by which we mean the error of the

approximation to the exact distribution is O(n−1). The usual chi-squared approximations

have relative error O(n−1/2). The approximation is derived in §3 after a brief summary of

needed likelihood results in §2; it has second order accuracy and has components that are ac-

cessible and easily interpreted. By comparison, the Skovgaard (1988) directional test is also

accurate to second order but requires full exponential form and cumulant type calculations,

and the Cheah et al (1994) directional test is third order but also requires full exponen-

tial model form and more detailed model characteristics. The proposed test combines the

likelihood ratio and score test statistics in a manner not unrelated to that found with the

Lugannani & Rice (1980) approximation formula. Examples are discussed in §4.

The Bartlett (1955) correction of the likelihood ratio test can also be used for assessing

vector parameters. This has the attractive property that the distribution ascribed to the

related pivot has O(n−2) distributional accuracy and the procedure can then be described as

accurate to fourth order. Our viewpoint is that the assessment should take account of where

the data point is relative to a parameter value, in much the same way as recent third order

p-values do for a scalar parameter of interest, by recording the percentile position of the

data point relative to this parameter. From this viewpoint we argue in §5 that the Bartlett

corrected likelihood ratio assessment is misleading if viewed as being of other than first order.

Skovgaard (2001) derives an adjustment to the likelihood ratio statistic somewhat analogous

to that derived here, although from a different point of view. The relationship between the

two approaches deserves further study.
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2 Likelihood Background

Suppose we have a statistical model with density f(y; θ), where y = (y1, . . . , yn)
′ and θ

is p-dimensional. Recent third order theory for assessing scalar or vector parameters can

be based on just two ingredients, `(θ) and ϕ(θ), where `(θ) = log f(y0; θ) is the observed

log-likelihood function and ϕ(θ) = (d/dV )`(θ; y)|y0 is the observed log-likelihood gradient,

calculated in directions (v1, . . . , vp) = V tangent to an exact or approximate ancillary. The

parameter ϕ(θ) is for convenience written as a row vector, and more explicitly we have

ϕ(θ) =

{
d

dv1

`(θ; y0), . . . ,
d

dvp
`(θ; y0)

}
=

{
d

dt
`(θ; y0 + tv1)

∣∣∣∣
t=0

, . . . ,
d

dt
`(θ; y0 + tvp)

∣∣∣∣
t=0

}
where the n× 1 vectors vj make up the columns of the n× p matrix V .

With an appropriate n-dimensional pivotal quantity z(y, θ) we can obtain V from the

expression

V = −z−1
y′ (y0, θ̂0)zθ′(y0, θ̂0),

where the subscripts denote partial differentiation with respect to the row vectors y′ and

θ′. The use of the gradient implements conditioning on an approximate ancillary statistic

(Fraser & Reid, 2001), and several examples of pivotal quantities z are illustrated in Fraser,

Reid & Wu (1999), Fraser, Wong & Wu (1999) and Reid (2003).

Third order p-values for a scalar parameter ψ(θ) can be obtained from just {`(θ), ϕ(θ)}
using the likelihood ratio r and a special maximum likelihood departure q; see, for example,

equations (1.5) and (2.11) in Fraser, Reid & Wu, or equations (3.13) and (3.16) in Reid

(2003).

The two ingredients `(θ) and ϕ(θ) also yield an approximation to the original model

that produces equivalently the third order p-values and likelihoods just described. The

approximation is obtained as a first derivative calculation on the sample space, using the

derivative ϕ(θ); the approximate model can be written as

f̂(s; θ)ds = (2π)−p/2ek/n exp[`(θ) − `(θ̂0) + {ϕ(θ) − ϕ(θ̂0)}s]|̂ϕϕ|−1/2ds (2.1),

where s = s(y) = −`ϕ{θ̂(y0); y} is the score variable determined at the maximum likelihood

estimate corresponding to y0, and s0 = s(y0) = 0. The approximate model is called the

tangent exponential model and provides a full second order approximation to the original
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model in the moderate deviation range and a third order approximation to first derivative at

the data point. It implements conditioning on an approximate ancillary which corresponds

to the vectors V .

In §3 we will derive a p-value for testing the full p-dimensional parameter vector θ.

For testing a sub-parameter ψ of length d, we can apply the same approximation, using the

adjusted log-likelihood derived in Fraser (2003). Third order log-likelihood for a scalar or

vector parameter ψ(θ) can also be obtained from `(θ) and ϕ(θ) and has the form

`adj(ψ) = `P(ψ) +
1

2
log |j[λλ](θ̂ψ)| (2.2)

where λ is a complementing nuisance parameter, θ̂ψ = (ψ, λ̂ψ) is the constrained maximum

likelihood value given ψ(θ) = ψ, `P(ψ) = `(θ̂ψ) = `(ψ, λ̂ψ) is the profile log-likelihood, and

|[λλ](θ̂ψ)| = |λλ(θ̂ψ)||ϕλ(θ̂ψ)̂ϕϕϕ
′
λ′(θ̂ψ)|−1 (2.3)

is the nuisance information determinant calculated relative to a symmetrized version of

λ. Use of this log-likelihood to construct a conditional p-value is illustrated in the second

example in §4.

3 A conditional p-value for inference about θ

We follow the approach developed in Fraser & Massam (1985), Skovgaard (1988) and Cheah

et al. (1994), which considers the magnitude of the departure from a fixed value θ0, con-

ditional on the direction of the departure. One approach for example might be to use the

distribution of |θ̂ − θ0| conditional on (θ̂ − θ0)/|θ̂ − θ0|, but this is not parameterization in-

variant. In Cheah et al. (1994), where the model is a full exponential family in the canonical

parametrization, the departure from θ0 is measured by the score variable or sufficient statistic

s, and an approximation is derived for the distribution of |s−s0|, given (s−s0)/|s−s0|, where

s0 is the value of the score variable with maximum likelihood value θ0; it is parametrization

invariant.

Here we work directly with the tangent exponential model approximation (2.1). We

denote by χ2 the score based measure of departure from θ0 using the tangent exponential

model:

χ2 = χ2(θ0; s) = (s− s0)
′j−1
ϕϕ(θ0)(s− s0), (3.1)
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where s = −`ϕ(θ̂; y0) is locally defined at y0 as a function of y, satisfying s0 = 0, and

s0 = −`ϕ(θ0; y
0). Note that χ is proportional to |s − s0|. The dependence of χ on the

tested value θ0 is suppressed here. The tangent exponential model (2.1), with θ = θ0 can be

expressed in terms of χ2 as

f̂(s; θ0)ds = (2π)−p/2 exp{−χ
2

2
}A(s)|jϕϕ(θ0)|−1/2ds

where

A(s) = ek/n exp{χ
2

2
− r2

2
}{|jϕϕ(θ0)|

|̂ϕϕ|
}1/2

and r2 is the likelihood ratio statistic for testing θ = θ0:

r2 = r2(θ0; s) = 2[`(θ̂) − `(θ0) + {ϕ(θ̂) − ϕ(θ0)}s]. (3.2)

When r2 is evaluated at the observed data point s0, it coincides with the likelihood ratio

statistic from the original model `(θ; y0). Both r2 and χ2 have a limiting χ2
p distribution

under the model f(y; θ0), and both are parametrization invariant.

We use the density approximation to compute the directional test of θ0 conditioning

on the score direction e = (s0−s0)/|s0−s0| = −s0/|s0|, where s0 = 0 by the definition of the

maximum likelihood estimate. The density of s is essentially a multivariate normal with an

adjustment factor. Using this to compute the conditional distribution introduces a Jacobian

effect sp−1 which combines with the normal kernel to give a chi density. The p-value based

on this conditional test has the form

p(θ0) =

∫ χ0

0

gd(χ)
a(χ)

c
dχ

where c is the norming constant, gd(χ) is the chi density used in (1.2), and

a(χ) = A(θ0 + χe) (3.3)

gives the adjustment factor along the line in the direction e.

It is shown in the Appendix that for functions a(χ) having an asymptotic expansion in

χ, this p-value can be approximated to O(n−1) by (1.1) where δ(χ) = χ−1{a(χ)/a(0)}−χ−1

which in this case is

δ(χ) = χ−1[exp{χ
2

2
− r2

2
}{|jϕϕ(θ0)|

|̂ϕϕ|
}1/2 − 1] (3.4)

Formula (3.4) has third order accuracy but its use in (1.1) yields just second order accuracy.

The calculations in Andrews et al (2004) indicate that third order accuracy for the directional
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p-value is not available from the usual asymptotic information {`(θ), ϕ(θ)} and thus is not

available without additional model information such as exponential or other specified model

form (Cheah et al, 1994).

With just second order accuracy available from (1.1), a reasonable option is to replace

(3.4) by a further second order approximation:

δ(χ) = [χ2 − r2 + log{|jϕϕ(θ0)|
|̂ϕϕ|

}]/2χ. (3.5)

The likelihood and p-value expressions described here are easily seen to be invariant to the

choice of parametrization, and invariant under re-expression of the response variable.

When (3.1), (3.2) and (3.5) are used in (1.1), they are evaluated at s = s0.

The p-value has been developed in the context of inference for the full parameter

vector θ. If we are interested in a sub-parameter vector ψ(θ) of dimension d, then the pair

{`(θ), ϕ(θ)} is replaced by the adjusted log-likelihood (2.2) and the corresponding likelihood

gradient ϕ(ψ). For scalar ψ this gradient is ϕ(ψ) = ν(θ̂) − ν(θ̂ψ) with ν calculated using

a locally orthogonalized version of ϕ(θ). The p-value for assessing ψ(θ) = ψ depends only

on the set Ωψ = {θ;ψ(θ) = ψ} and not on the structure of the parametrization ψ(θ) near

ψ(θ) = ψ. For vector ψ the gradient is determined component by component, using a version

of ψ that has been orthogonalized at the observed data point.

4 Some examples

Example 1. Location normal. Consider (y1, ..., yp)
′ normally distributed with mean (θ1, ..., θp)

′

and identity covariance matrix, and suppose the full parameter θ = (θ1, . . . , θp)
′ is of interest.

The log-likelihood for θ is

`(θ; y) = −1

2
Σp

1(yi − θi)
2,

both obviously and by the third order determination (Fraser,2003). The related third order

symmetrical canonical parametrization is ϕ(θ) = θ; and the related information is jϕϕ(θ0) =

I. The likelihood ratio quantity (4.1) for assessing say θ0 is

r2 = Σp
1(si − si0)

2 = Σp
1(yi − θi0)

2

and the score based departure (3.1)

χ2 = (s− s0)
′I−1(s− s0) = Σp

1(yi − θi0)
2.
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It follows that A(s) = 1 and δ(χ) = 0, to second order. Thus from (1.1) we obtain

p(θ0) = Gp(χ
0)

which is just the ordinary χ departure p-value but derived conditionally.

Example 2. Normal regression. Consider the normal regression model y = Xβ + σe

where e is a sample from the standard normal. We assume that β has dimension r and

thus p = r + 1, and we suppose that the parameter of interest is β(1) = (β1, ..., βd)
′. The

directional results are parametrization and sample space invariant, so here it suffices to take

a canonical design matrix X = (I O)′. Let s2 = Σn
i=1(yi − ŷi)

2 = Σn
i=r+1y

2
i be the sum of

squared residuals, t = (β̂(1) − β(1))/s be the Student statistic for the parameter of interest,

and T 2 = |t|2 = Σd
1(yi− βi)

2/s2 be the ratio of the usual sums of squares for inference about

β(1). The third order likelihood β(1) is derived in Fraser (2003),

L(β(1)) = (1 + T 2)−(n−f)/2 (4.1)

where f = r − d is the number of nuisance regression coefficients. This corresponds to the

multivariate Student density for the usual multivariate quantity t for assessing β(1).

Location scale invariance shows (Fraser, 2003) that much of the analysis can without

loss of generality be developed for a particular data point, with say, β̂(1) = 0, s2 = n. A

differential change in the data point with respect to the first d coordinates gives a corre-

sponding translation of the likelihood in terms of the coordinates of β(1). From Cakmak,

Fraser, & Reid (1994) we have that the asymptotic model determined at and to first deriva-

tive at a data point can to second order be approximated by a location model, and that the

location parameter determination is unique. It follows that (4.1) records the relative density

for that model and that the score variable is t and the score parameter is β(1). For this the

directional assessment of β(1) is given by |t| with a {dF/(n − p)}1/2 distribution where F

has the F distribution with d and n− f degrees of freedom. The expression for p(β(1)) from

(1.1) then gives a second order approximation to that directional test.

5 Discussion

We have developed a simple directed departure measure (1.1) with (3.1) and (3.5) that pro-

vides a statistical measure of where the observed data point is relative to a vector parameter

value. The measure combines the familiar likelihood ratio departure measure and the score
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departure measure and attains second order accuracy. The calculations are based on the log-

likelihood and log-likelihood gradient quantities that are available in wide generality under

moderate regularity conditions and a nominal assumption of asymptotic properties. Higher

accuracy than the secord order seems unavailable without additional information concern-

ing the model, such as say explicit exponential model form. Some background on related

likelihood theory may be found in §6 of Fraser (2003).

An alternative approximation for testing a vector parameter can be obtained by

Bartlett correction of the likelihood ratio quantity (3.2). This is a scale correction, and the

resulting approximate p-value is accurate to O(n−2) (Barndorff-Nielsen & Hall, 1988). This

higher accuracy comes from the restriction to likelihood ratio as the departure measure and

is attained by sacrificing information specific to the direction of departure.

This is most obvious in the case of a scalar parameter of interest, where a Bartlett-

corrected version is inherently two-sided, and when there is an underlying asymmetry can

provide a very poor approximation to the p-value in the direction indicated by the data.

As a simple scalar case where skewness is involved we take y to have the extreme value

distribution with location parameter θ: y = θ + z and

f(z) = exp{−z − e−z}, F (z) = exp{−e−z}.

The distribution is quite asymmetric; it has mode at 0 but the median is 0.366. The likelihood

ratio quantity is

r2 = 2{`(θ̂) − `(θ)} = 2(z + e−z − 1) (5.1)

which has mean value 2γ, where γ = 0.5772... is Euler’s constant. Bartlett correction of the

likelihood ratio leads to the confidence interval (y0 − 3.175, y0 + 1.565); the exact confidence

in the left tail is 0.85%, and in the right is 4.15%. The interval with exact confidence 2.5% in

each tail is (y0−3.676, y0+1.305). Both intervals are asymmetric around the point y0, but the

equi-tailed interval seems more appropriate as a summary of the data. The approximation

Φ(r∗) where r∗ = r+ (1/r) log(q/r), r is defined in (5.1), and q = 1− exp(−z) provides very

accurate inference in each tail, leading in this example to the third order 95% confidence

interval (y0 − 3.699, y0 + 1.309), with exact confidence 2.46% in the left tail and 2.44% in

the right tail.

The anomaly is likely to be more pronounced in the case of vector parameters. As

an illustration suppose y1 and y2 are independent observations from the extreme value dis-

8



tribution with location parameters θ1 and θ2, respectively. The log-likelihood is

`(θ; y) = −y1 + θ1 − y2 + θ2 − e(y1−θ1) − e(y2−θ2)

and

ϕ′(θ) = {`;y1(θ; y0), `;y2(θ; y
0} = {−1 + e(θ1−y

0
1),−1 + e(θ2−y

0
2)}

giving

`ϕ(θ; y
0) = {1 − e−(y01−θ1), 1 − e−(y02−θ2)}′

and thus

χ2(θ0, s
0), = {e(θ10−y01) − 1}2 + {e(θ20−y02) − 1}2

r2(θ0, y
0) = 2{−2 + y0

1 − θ10 + y0
2 − θ20 + e(y

0
1−θ10) + e(y

0
2−θ20)}.

Figure 1 shows the contours in the parameter space using the first order χ2
2 approximation

to the distribution of r2 and the first order χ2
2 approximation to the distribution of χ2, the

Bartlett corrected version of r2, and the second order approximation using (1.1) and (3.5),

all at the observed data point (y0
1, y

0
2) = (0, 0).

The Bartlett adjustment is a uniform rescaling of the likelihood ratio in all regions

of the parameter space, whereas the adjustment to the score statistic is conditional on the

direction. The second-order approximation here uses the standardized score function as

the primary measure of departure, with an adjustment that is a function of the difference

between that and the likelihood ratio. It should also be possible to start with the likelihood

ratio and adjust it by some function related to the difference from the score. This is the

approach taken in Skovgaard (2001), although Skovgaard approximates the needed sample

space derivatives by expected values of various likelihood quantities; we compute the sample

space derivatives using the tangent exponential model. Work on comparing the two methods

in more complex examples is in progress.

6 Appendix

We want to evaluate

p(θ0) =

∫ χ0

0

gd(χ)
a(χ)

c
dχ

where c is the norming constant, gd(χ) is the chi density used in (1.2), and

a(χ)/a(0) = 1 + a1χ/n
1/2 + a2χ

2/2n+O(n−3/2).
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Figure 1: Contours based on: (a), the first order approximation to the likelihood ratio
statistic; (b), the first order approximation to the score statistic; (c), the Bartlett-corrected
likelihood ratio statistic; and (d), the second order approximation given by (1.1) using δ
computed from (3.5).
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Using c = a(0) as a temporary norm to give say p̄(θ0), separating off the chi density and

rewriting the discrepancy as

δ(χ) = χ−1a(χ)

a(0)
− χ−1,

we obtain

p̄(θ0) = Gd(χ
0) +

∫ χ0

0

bdgd+1(χ)δ(χ)dχ,

where bd is the ratio of χ norming constants recorded after (1.2). Since δ(χ) is constant to

O(n−1) we obtain

p̄(θ0) = Gd(χ
0) + bdGd+1(χ

0)δ(χ0)

by integration by parts. Then adjusting for the temporary norm we obtain the second order

p-value (1.1).
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