Last weeks
» likelihood

v

marginal and conditional likelihood

v

profile likelihood

v

adjusted profile likelihood

v

composite likelihood
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This week

» semiparametric likelihoods
» nonparametric likelihoods
» consistency of maximum likelihood estimators

» comments on problem sets
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Survival Data: single sample

» Model: f(t), h(t),1 — F(t), H(¢)
density, hazard, survivor function, cumulative hazard

A ) = F(E)
|- F(+)

t
H’(%);f%/m)a'w
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Survival Data: single sample

» Model: f(t), h(t),1 — F(t), H(t)
density, hazard, survivor function, cumulative hazard
» Data: (t1 , 01 ), ceey (tn, 5n)
» f; an observed time
» 0; = 1if t; a true failure time, 0 if t; is a censoring time

» random censorship assumption
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Survival Data: single sample

» Model: f(t), h(t),1 — F(t), H(t)
density, hazard, survivor function, cumulative hazard
» Data: (t1 , 01 ), ceey (tn, 5n)
» f; an observed time
» 0; = 1if t; a true failure time, 0 if t; is a censoring time

» random censorship assumption
» parametric inference:

A Mot = Zéloght, ) — H(t;: 0)

.8 ¢
L fﬁf(vb:j’&) 8 ’?:[ﬁg 9)/

S
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Parametric regression models

» Data: (tj,0;,x;),...,i=1,....n
» Likelihood function:

L(0;t,8) = Zéloght, — H(t;0)
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Parametric regression models
» Data: (t;,0;,X;),...,i=1,...,n

» Likelihood function:
L(6;1,9) §:5mghn — H(t;

» Example: Exponential distribution
» h(t; B) = exp(x; B), for example

» U(B) = 27:1 5/X,'Tﬂ - exp(X/Tﬂ)ti
» usual maximum likelihood theory applies
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Parametric regression models
» Data: (t;,0;,X;),...,i=1,...,n

» Likelihood function:
L(6;1,9) §:5mghn — H(t;

» Example: Exponential distribution
» h(t; B) = exp(x; B), for example

» U(B) = 27:1 5/X,'Tﬂ - exp(x,-Tﬂ)t,
» usual maximum likelihood theory applies

» Example: Weibull distribution
> h(t;0) = h(t; B, ) = exp(x] B)t

> 0=(5,0)
» usual maximum likelihood theory applies
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Semi-parametric regression models

» proportional hazards model:

h(t; x, B) = ho(t) exp(x" B)

> ho(t) unknown
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h(t; x, B) = ho(t) exp(x" B)
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Semi-parametric regression models

» proportional hazards model:

h(t; x, B) = ho(t) exp(x" B)

v

ho(t) unknown

h(t; x)

it 0) exp(x' ), does not depend on t

1= F(t;x) = {1 = Fo(0)}7P0?)

survivor functions can never cross

v
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Semi-parametric regression models

» proportional hazards model:

h(t; x, B) = ho(t) exp(x" B)

» ho(t) unknown

ZE; 8 = exp(x' ), does not depend on t
| 2
1= F(tix) = {1 = Fo(t)}7P0?)
» survivor functions can never cross

v

xTB=x1B1 + -+ XpBp, NO constant term
Cox, 1972; SM, §10.8
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Estimation of

» partial likelihood

exp(x/ §) )6'
> keR, exp(x/ )

Lpart(ﬁ) = H (
i=1

» R;risk set at time ¢ ; number of units with t, > {;
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Estimation of

» partial likelihood

) exp(X,Tﬁ) dj
Lpart(B) = H (ZkeR/ eX’p(XkTﬁ)>

i=1

» R;risk set at time t;; number of units with # > t;

» derived in SM §10.8 as approximately a profile likelihood
(ho(-) maximized out)

» (3 estimated by maximizing partial log-likelihood

Cpart(B) = 109 Lpart(3)
» estimated standard error from Egaff(%lat
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... partial likelihood
» usual asymptotic theory applies:
Bpart ~ NIB, {—Lpart(Bpart)} ']

» special property of this model: components of the score
vector are uncorrelated

» no need to compute analogue of Godambe information
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... partial likelihood

» usual asymptotic theory applies:

Bpart ~ N8, {—part(Bpart)} ']

special property of this model: components of the score
vector are uncorrelated

no need to compute analogue of Godambe information

v

v

v

there could be loss of efficiency in estimating j; this loss
has been shown to be small in a wide range of settings

v

general treatment of likelihood inference for
semi-parametric models Murphy and van der Waart, 2000

v

this model is particularly easy to handle
Cox, 1975; 2006, §7.6.5
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Semi-parametric regression models

> for example, E(y;) = ui(6) = x7 8+ m(t;), Var(y;) = o®
» m(-) a ‘smooth’ function of covariates t
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Semi-parametric regression models

> for example, E(y;) = ui(0) = x7 8+ m(t), Var(y)) = o
» m(-) a ‘smooth’ function of covariates t

» least squares
n
rr;ri]?) > {yi—x 8- m(t)}?
=

» without constraint on m(-), minimum will be 0, thus
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Semi-parametric regression models

> for example, E(y;) = ui(0) = x7 8+ m(t), Var(y)) = o
» m(-) a ‘smooth’ function of covariates t

» least squares

n
min —x!B— m(t)}2
ﬁ,m(-);{yl i B ()}

» without constraint on m(-), minimum will be 0, thus

gmin >0 = () - oA [ (o2t
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Semi-parametric regression models

» for example, E(y;) = wi(0) = x/ B+ m(t;), Var(y;) = o2
» m(-) a ‘smooth’ function of covariates t
» least squares
min Z{y, x7 5 — m(t))?
» without constraint on m(-) minimum will be 0, thus
mm Z{y, x| B —m(t)}? — )\/{m” (t)2dt
» equivalent to

n "
min > “{y; — x/ 8 — my}? + am’Km
ﬁ;;‘nM 1 - -

for suitable n x n matrix K
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... Semi-parametric regression models

>

min >0y~ %75 - m(t))? - A [ o2

» extend to generalized linear model

hE(N} = X8+ m(t) =
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. semi-parametric regression models

>

min Z{y, x! B — m(t)}? — —)\/{m”(t )}2dt

g.m() 5

» extend to generalized linear model

hE(N} = X8+ m(t) =

» penalized log-likelihood

n

(i m"(t)}2adt
min = ) /{ ()

Green, 1987; Green & Silverman, 1994; SM, §10.7
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Nonparametric likelihood

» likelihood functions for infinite-dimensional parameters can
be tricky
pause

» for example, given yy, ..., ypi.i.d. with distribution function
F(-) and density function f(-)

» the nonparametric maximum likelihood estimator of F(-) is

1 n
Fn(t) = 521(\/,5 ), teR
i=1

» this is a cumulative distribution function, although discrete
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Nonparametric likelihood

» likelihood functions for infinite-dimensional parameters can
be tricky

pause

for example, given yy, ...,y i.i.d. with distribution function
F(-) and density function f(-)

the nonparametric maximum likelihood estimator of F(-) is

v

v

1 n
F(t)= > 1Yi<t), teR
i=1

v

this is a cumulative distribution function, although discrete
the nonparametric maximum likelihood estimator of f(-) is
not a density function

unless we put some constraints on the class of densities
over which we maximize

v

v
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Nonparametric likelihood

>

v

v

vy

v

>

LTCC Likelihood The:

likelihood functions for infinite-dimensional parameters can
be tricky

pause

for example, given yy, ...,y i.i.d. with distribution function
F(-) and density function f(-)

the nonparametric maximum likelihood estimator of F(-) is

1 n
F(t)= > 1Yi<t), teR
i=1

this is a cumulative distribution function, although discrete
the nonparametric maximum likelihood estimator of f(-) is
not a density function

unless we put some constraints on the class of densities
over which we maximize

for example, might require f(x) to be log concave:

f(x) = exp{n(x)},n concave Balabdaoui et al, 2009
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Empirical likelihood

> ¥1,...,Ynii.d. with distribution function Fy(-)
» define

L(F)=][{FO») — Fi )}
=1

» maximized at F,, empirical c.d.f.
» empirical likelihood ratio

R(F)
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Empirical likelihood

> Vi,...,¥nli.d. with distribution function Fy(+)
» define

n

L(F)=[{F) - Fi )}

i=1
» maximized at F,, empirical c.d.f.
» empirical likelihood ratio

L(F)
R(F) =

)= 1F)
» suppose T(Fp) is a function of interest, e.g. 1 = [ xdFp(x)
» maximizing R(F), subject to y fixed, is equivalent to

n n n
W:nazfvnH w, subjectto > wiy;=p, > wi=1,w;>0,Vi

=1 i=1 =1

Owen, 1988; 2001
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. empirical likelihood

>

max H w;, subject to E wiyi = p, E wi=1,w; > 0,Vi
Wy,.. ’Wn
i=1 i=1

» likelihood ratio confidence intervals are valid

—2log R(Fo) =5 v2, n— oo
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... empirical likelihood

>

n

n n
max w;, subject to E Wy = i, E wi=1,w;>0,Vi
Wi,...,Wn - i—1 i=1
1= 1= =

likelihood ratio confidence intervals are valid

v

—2log R(Fo) =5 v2, n— oo

v

parameter of interest, © € R
nuisance parameter w = (wy, ..., Wy)

generalized to many more complex situations
Hjort et al. 2009

v

v
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Those pesky regularity conditions
» two proofs of the consistency of the maximum likelihood
estimator

» Wald, 1949 — the log-likelihood is maximized in expectation
at the true value; apply Jensen’s inequality to conclude ¢
must converge to the true value

» requires the parameter space to be compact
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Those pesky regularity conditions
» two proofs of the consistency of the maximum likelihood
estimator

» Wald, 1949 — the log-likelihood is maximized in expectation
at the true value; apply Jensen’s inequality to conclude ¢
must converge to the true value

» requires the parameter space to be compact

» Cramer, 1946 — there exist solutions to the score equation
that are consistent

» Taylor series expansion of log f(y; )

» if the likelihood function is maximized in the interior of the
parameter space, the m.l.e. is one of these solutions

» if the score equation has only one root, the m.l.e. is

Consiste;/tw\" “L tq/}: S\otbo(,z E S_S_ (\Jb}
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Non-standard cases
» true parameter 6, on the boundary of the parameter space
» example: yj = p+ bj+¢€j, b ~ N(0,02),¢; ~ N(0,02)

> if o—g = 0, no difference between groups; this is a boundary
point of the parameter space
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Non-standard cases

LTCC Likelihood The:

true parameter 6, on the boundary of the parameter space
example: yj = p+ bj+ €5, by ~ N(0,02),¢; ~ N(0,052)

if o—g = 0, no difference between groups; this is a boundary
point of the parameter space

non-identifiability; two different 61, 6> for which
f(y:01) = f(y: 02)

example f(y;0) = pN(u1,1) + (1 — p)N(p2, 1)
if 1 = po, then p is not identifiable

if p = 0 ,then 4 is not identifiable

likelihood ratio test of, e.g. Hy : p = 0 will not be
asymptotically x?
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... hon-standard cases

» multi-modal log-likelihoods

» in principle, find all the stationary points, and choose that
corresponding to the maximum

» in practice, may not be feasible
» example: feed-forward neural networks
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. hon-standard cases

multi-modal log-likelihoods

in principle, find all the stationary points, and choose that
corresponding to the maximum

in practice, may not be feasible Z—

v

v

v

v

example: feed-forward neural networks

v

support of the distribution depends on the parameter

example U(0, 0); n(y(n) — 0) Exponential A _
m-9) 25N 0=

v
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... hon-standard cases

v

LTCC Likelihood The:

multi-modal log-likelihoods

in principle, find all the stationary points, and choose that
corresponding to the maximum

in practice, may not be feasible
example: feed-forward neural networks

support of the distribution depends on the parameter
example U(0, 0); n(y(n) — 0) £, Exponential

example f(y; 0) = Xexp{—\(y — u)} gt

—_—

SM, §4.6; BNC94, §3.8; Cox[Ch. 7
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... hon-standard cases

» singular information matrix: vary,{U(6p)} =0

» usual Taylor series expansions do not apply; need to go to
higher order terms

» might be fixable by re-parameterization
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... hon-standard cases

» singular information matrix: vary,{U(6p)} =0

» usual Taylor series expansions do not apply; need to go to
higher order terms

» might be fixable by re-parameterization

» Example: skew-normal distribution

» Z ~ SKN(a) : fz(z; a) = 2¢(2)d(az)
» three-parameter version: Y = + wZ
» information matrix is singular, at « = 0

» can be fixed by reparametrization to (u, o, )  Azzalini, 1999;
2011
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. hon-standard cases

LTCC Likelihood The:

singular information matrix: varg,{U(f)} =0
usual Taylor series expansions do not apply; need to go to

higher order terms
might be fixable by re-parameterization k‘

\~\/

Z ~ SKN(a) : fz(z; a) = 2¢(2)P(a2)
three-parameter version: Y = £ + wZ
information matrix is singular, at « =0

can be fixed by reparametrization to (i, o, )  Azzalini, 1999;
2011

Example: informative non-response Rotnitzky et al., 2000

Example: skew-normal distribution f\‘]\[[\
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Figure 2: Twice relative profile loglikelihood of a (left) and contour levels of the similar function of
(w, ) (right) for the Ots data, when the direct parametrization is used

Azzalini, 1999



... hon-standard cases

» informative non-response
Rotnitzky et al., 2000; Cox, 2009 Example 7.6

» observation (R;, Y;): R = 1(Y; observed )

>

Yi ~ N(u,0®), Pr(R;=1) = exp{H(ao + a1(y; - u)@}

n

0o;y,r) = Z —rilogo — ri(y; — p)?/(20%) + riH{ag + a1 (yi — p)/o}
(1 1) log Bt — exp{H(ao + a1(Yi — w)/o)}]
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. hon-standard cases

» informative non-response
Rotnitzky et al., 2000; Cox, 2009 Example 7.6

» observation (R;, Y;): R = 1(Y; observed )

>

Y ~ N(u,0%), Pr(Ri=1) = exp{H(ao + a1(y; — )/}

n

W0, y,r) = Z —rilogo — ri(yi — 1)?/(20%) + riH{ag + a4 (y; — ) /o}
(1 1;)log e[1 — exp{H(ao + a1(Y; — u)/o)}]
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. hon-standard cases

» informative non-response
Rotnitzky et al., 2000; Cox, 2009 Example 7.6

» observation (R;, Y;): R; = 1(Y; observed )

>

Y ~ N(u,0%), Pr(Ri=1) = exp{H(ao + a1(y; — )/}

n

U0:y,r) = —riloga —ri(yi = p)?/(20%) + riH{ao + a1(yi = )/}
+(1-r) Ilgg] e[1 — exp{H(ap + a1(Y; — p)/o)}] singular

information matrix at « = 0 = missing at random
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. hon-standard cases

» informative non-response
Rotnitzky et al., 2000; Cox, 2009 Example 7.6

» observation (R;, Y;): R; = 1(Y; observed )

>

Y ~ N(u,0%), Pr(Ri=1) = exp{H(ao + a1(y; — )/}

n

U0:y,r) = —riloga —ri(yi = p)?/(20%) + riH{ao + a1(yi = )/}
+(1-r) Ilgg] e[1 — exp{H(ap + a1(Y; — p)/o)}] singular

information matrix at a,= 0 = missing at random
if, e.g., 1 and o2 both unknown, sampling fluctuations in 4 are

Op(”_”g)
P AL 2spO
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Problems — Week 4

1. Suppose y =i, ..., Yn are independent and identically distributed from a dis-
tribution with density f(y;8) = [I.., fi(i;6), @ € R. Further let g(y;8) =
S 91y 0) be an unbiased estimating equation for 0, satisfying Ey{g(y:; 8)} =

o=l 0, ~The estimate tefiged by g(y; ;) = 0 has asymptotic variance

H-1(6).J(6)H-1(6), Where H(8) = —Eo{Vog(ys;0)} and J(6) =

varglg(y;; )T mating equation is called optimal if it has the largest
possible value of G(#).

Show that G(#) < i1(6), where ¢1(0) is the expected Fisher information in

a single observation. This implies that the score equation is the optimum
estimating equation.

Two fun facts that you don’t need to prove:

(a)The multivariate version of this is that i, (#) — G(f) is non-negative definite
but don’t need to show this). :
(but you don nez? o show this) C—g QS o~
(b) In the autoregressive model

yi=0yate i=1l...,n
where g is a constant and ¢; are i.i.d. N(0,¢?), show the equation

Zyve =0 =0 G— Score ag 2

is an unbiased estimating equation obtaining the lower bound.
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2. Suppose Z ~ ¥ oot here Xi,..., X are independent observations
from a N(0,1) distribution. If all the p, were equal, the distribution of Z
would be proportional to a x2,. Satterthwaite’s approzimation (Satterthwaite, .
1946) to the distribution of Z is ax}, where a and b are chosen so that E(Z) 3\ a/'/\
and var(Z) are equal to the mean and variance of a ay} random variable. This
idea can also be used to approximate a non-central x? distribution, and arises
in the distribution of quadratic forms in unbalanced analysis of variance.

Problems — Week 4 -
pely (™' J) all
LDt

(a) Find expressions for a and b, in terms of p, ..., ;.

(b) Illustrate the approximation numerically in a simple example with, say,

m = 5,10. You can choose the values of y, in any way you like, but one

possibility is to simulate a random vector from N(0, A) for some choice of

. A # I then X7 X will (I think), have the distribution you are looking for.

Z ~/ The function mvrnorm in the MASS library simulates multivariate normal
2
a)(b

random variables.

EZ
w2

\l

Tpo = Eladt)= ab
2?}4: = W/ﬂXI):a\,Izb

11
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Problems — Week 3

1. Suppose Yi,...,Y, are independent and identically distributed from a model
f(y:0),y € R,0 € R, and that (@) is a proper prior density (with respect to
Lebesgue measure on R). Denote by 6, the posterior mode:

6, = argsup(6 | y) G—
]

which we assume is obtained as the unique root of the equation
2 log (i 1) =0 o
a0 Og T\ [ Y} = U,

Denote by f the posterior mean:

,§=f61r(6|y)d6. 4 b‘&(‘“’(
Show that éﬂ_é:op(i), andg—ézop(iL (qo &J%j

where f is the maximum likelihood estimator of 6. C 1))
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Problems — Week 3
2. Consider a linear regression model g\ W_OL"'-\ mg B L‘K 7

y=z!8+e& i=1,...,n H-‘PL (:) ,\MSM\{

where z; and [ are p x 1 vectors, and ¢; are i.i.d. N(0,0%). Compare the
log-likelihood ratio statistics for inference about 3, based on the

(a) profile log-likelihood w(8) = 2{€,(8) — £(8)},
{(b) adjusted profile log-likelihood w, () = Q{EA(ﬁA_) —£,4(8)}, and
(c) modified profile log-likelihood wy(8) = 2{&x(Bu) — £u(B)},

where
T i . = da?
L,(B) = £(8,63), £a(8) = £5(B)—35 l0g3s252(8, 53)|, and £(0?) = £a(B)+log |d%rg,"|’

and ,{;’A, By are the adjusted and modified maximum likelihood estimators,
respectively. L\')

/‘—;L_\
Gip = -2hels ) G-10) L (6) = {21,
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Problems — Week 2

1. Suppose Y3,...,Y, are i.i.d. with density

1 Yy
) = —exp(—=),y >0,u > 0.
Fri(y; ) i xp( ”) y>0,pu

Show that the leading term in the saddlepoint approximation to the de
of ¥ = f reproduces the gamma density, with T'(n) replaced by Stirli

is exact.

3 —-fu &l.lbu OQ»/L/J\
poedred oot opfpes” e

Goumme. N ol [nv 6%?&"1.0\-«\
L= b DeEE, b3

L]
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Problems — Week 2

(a) Suppose that ¥j; and Y}, are independent observations from exponen-
tial distributions with means ¥!A; and /A, respectively, i = 1,...,n.
Show that the maximum likelihood estimator of ¢ is not consistent, but
converges in probability to (w/4)¢.

(b) A modification to the profile likelihood to account for estimation of nui-
sance parameters was proposed in Cox & Reid (1987):

nl®) = €08, 30) — 3 gl (%, 30,

where A = (A1,...,A) and X, is the constrained maximum likelihood
estimator of A. This is to be computed using a parametrization of
the nuisance parameter that is orthogonal to the parameter of interest
9, with respect to expected Fisher information. (The correction term
3 log | (¥, :\.;,)\ is not invariant to reparameterizations,) Show for the
exponential case that A is orthogonal to ¢, and that the value of ¢ that
solves £ (¥) = 0, by, say, converges to (r/3)v.

F fgn) = I T
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Problems — Week 1

1. Orthogonal nuisance parameters. In a model f(y;#) with 8 = (¢, A), the com-

ponent parameter ¢ and A are orthogonal (with respect to Fisher information)
if dya(f) = 0.

(a) Suppose we have a sample i, ..., Y, from the density f(y;6). Show that
Mo =3+ 0y(n71),
whereas if ¢» and X are orthogonal that
do=X+0(nh).

(b) Assume y; follows an exponential distribution with mean Ae %% where z;
is known. Find conditions on the sequence {z;,i = 1,...,n} in order that
A and ¢ are orthogonal with respect to expected Fisher information. Find
an expression for the constrained maximum likelihood estimate A, and
show the effect of parameter orthogonality on the form of the estimate.

A A Ny
)= e 3+ 2= Ly,
)y + [‘P—‘?N)f'})j%\/\

+ Ofllo--BI () §
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Problems — Week 1

2. Sufficient statistics (CH Ezercise 2.2). Find the log-likelihood function for a
sample of size n from an AR(1) process:

we=ptpyer —p) e, eliid)~N0,6%), t=1,.,n

where [p| < 1, as a function of § = (p, o?, p) and y,. Write down the likelihood
for data y1,...,y, in the cases where the initial value yy is

(a) a given constant;
(b) normally distributed with mean p and variance o2/(1 — p?);

(c) assumed equal to y,,

and give the sufficient statistic for each case.

S\[\&_—Q 1=\ ) n-1 h
B > 3 (Zy,t P Z,'étb>?3t9{;1

P
U Yo )
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Extra notes for HW1, 3
Notes to help

LTCC/Reid: Derivation of limiting results: scalar parameter November 6, 2012
Using the notation on the handout from November 5, (“weekl-handout.pdf’), here
is a moderately rigorous proof of the results
1k
V(6 —6) %21"(9)U(9){1+0p(1)}, (1)

2{0(8) — £6)} = (6~ 8)7i(B) (8 — 6){1 + 0p(1)}. @)
The vector case is unchanged, except for tedious notational changes in Taylor's
theorem with remainder, although of course we need the dimension of f fixed as
n — oa.
For (1), we have

#0) = £@)+ (@ -0)e) + %(é — )2 (%),

E ﬁ,’,—((?} = @-o0+ %(9 = 9)—23:,%"'})},
780 i) i 1. . £/
T it o R = L N I Sl U Y/
v B St K Tyt

1

ﬁf'(ﬁ‘) ﬂ B 5
i1(6) (—E"(e),/n) = Vn(0—6){1+Z.}.

The term in brackets on the LHS of the last line converges in probability to 1,
by the WLLN, so can be written 1 + 6,(1). The remainder term Z, converges in
probability to 0, becanse we assume § % 8, so that 8% B 0, because |65 —6] < |§—9|.
Also 26"(62) 2 E{£"(6;¥)} which we assume is finite (p.281 of CH, for example);
similml_yf%é’"(ﬁ) 5 41(6), so Z, = 0,(1)0,(1) = 0,(1). Then we can move over the

LHS> term as
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