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Adjusted profile log-likelihoods and Transformation models 11/19/12

1. Adjusted profile log-likelihoods

As usual, we assume y = (y1, . . . , yn) have a distribution with density f(y; θ).
The maximum likelihood estimator of θ is asymptotically normal, and its
asymptotic variance achieves the ‘information bound’; any other consistent
estimator has an asymptotic variance greater than or equal to the inverse
Fisher information. (In the case of vector parameters, this means the differ-
ence between the two matrices is non-negative definite.)

However, if we are particularly interested in a small number of components of
θ = (ψ, λ), with the remainder treated as nuisance parameters, then the maxi-
mum likelihood estimator of these components, while ‘asymptotically optimal’
may have poor finite sample properties. We have

`p(ψ̂) = `(ψ̂, λ̂ψ̂) = `(ψ̂, λ̂),

i.e. we can maximize the full log likelihood by first finding the maximum at
each fixed ψ and then maximizing over ψ. (It is worth double-checking this
starting with the profile score equation `′p(ψ) = 0. While you are at it, you can

check that −`′′p(ψ̂) = {jψψ(θ̂)}−1. But the profile log-likelihood `p(ψ) does not
make any adjustment for the estimation of λ, so can lead to a point estimator
of ψ with poor finite sample properties, especially if the number of nuisance
parameters is large relative to the sample size. If the number of nuisance
parameters increases with the sample size, then the usual asymptotic theory
does not apply, and ψ̂ may not be consistent, or it may be consistent, but not
asymptotically efficient.

This observation, as well as the detailed formulas for higher order approxi-
mation, suggest that an adjustment to the profile likelihood might give bet-
ter finite sample performance. The generic form for an adjusted profile log-
likelihood is

`A(ψ) = `p(ψ) + A(ψ) = `(ψ, λ̂ψ) + A(ψ), (1)

where A(ψ) is assumed to be Op(1) (recall that `p(ψ) is Op(n), or at least we
are assuming so).

The most accurate version of adjusted profile likelihood uses A(ψ) in Fraser
(2003):

AFR(ψ) = +
1

2
log |jλλ(ψ, λ̂ψ)| − log |d(λ)

dλ̂ψ
|,

but the precise interpretation of d(λ)/dλ̂ needs some background on tangent
exponential models. A closely related version given in Barndorff-Nielsen (1983)
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is

ABN(ψ) = −1

2
log |jλλ(ψ, λ̂ψ)|+ | log

dλ̂

dλ̂ψ
|,

and you can find the derivation sketched in Davison (2003, Ch.12.4). However,
again the last term is difficult to calculate in general. Furthermore, if we
have set up our parameterization so that λ is orthogonal to ψ with respect
to expected Fisher information, then λ̂ψ/λ̂ = 1 + Op(n

−1), as you showed in
Problems 2.2, so we might think of dropping the last term to get

ACR(ψ) = −1

2
log |jλλ(ψ, λ̂ψ)|.

This last was suggested in Cox & Reid (1987) as an approximation to condi-
tional likelihood, although ‘approximation to marginal likelihood’ is probably
more accurate. A drawback of this version of adjusted log-likelihood is that
it is not invariant to changes in parameterization of λ, so, for example, the
adjusted log-likelihood for ψ, with nuisance parameter

√
λ is different than the

adjusted log-likelihood for ψ, with nuisance parameter λ. Also, an orthogonal
nuisance parameterization can only be found, in general, if the parameter of
interest is scalar.

We can use any of these adjusted log-likelihoods in the same fashion as we
use the profile log-likelihood, i.e. constructing log-likelihood ratio statistics,
standardized maximum ‘likelihood’ estimators, and so on. So, for example, if
we use

`CR(ψ) = `p(ψ)− 1

2
log |jλλ(ψ, λ̂ψ),

assuming ψ ∈ R and λ ⊥ ψ, then we would have

(ψ̂CR − ψ){−`′′CR(ψ̂CR)}−1/2 d→ N(0, 1),

±
√
{`CR(ψ̂CR)− `CR(ψ)} d→ N(0, 1).

We don’t automatically get improved inference from the adjusted log-likelihoods,
at least in the asymptotic theory, but in finite samples the inferences do seem
to be better. Detailed discussion is given in Fraser (2003); see also Sartori
(2003) for a discussion of Neyman-Scott problems, and DiCiccio et al. (1996).

2. Transformation models

(a) The models

Location models A one parameter family of distributions on R is said to be
a location family if the density function f(y; θ) takes the form f0(y − θ),
for −∞ < θ <∞. The density f0(y) is the standard form of the density
and θ is the location parameter.
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Examples The normal distribution with mean θ and known variance is a
location family. The tν distribution with density function given by

f(y; θ) = c{1 +
(y − θ)2

ν
}−(ν+1)/2

is also a location family. The standard form of the density is just the
usual tν density. The Cauchy distribution is a special case of this. The
exponential location density is

f(y; θ) = e−(y−θ) , y − θ ≥ 0;

note that the support of the density is the interval (θ,∞), although θ
can be any real value. Members of the same location family are simply
shifted along the axis, relative to each other, and all have the same shape.

Scale models A one parameter family of distributions on R is said to be a
scale family if the density function f(y; θ) takes the form θ−1f0(y/θ), for
0 < θ <∞. The density f0(y) is the standard form of the density and θ
is the scale parameter.

Examples The normal distribution with known mean and unknown vari-
ance is a scale family. The gamma distribution with known shape pa-
rameter is a scale family. A special case of this is the simple exponential
distribution:

f(y; θ) = θ−1 exp(−y/θ); y > 0.

Note that Z = log(Y ) has the density function

g(z; η) = exp{z − η − e(z−η)}; −∞ < z <∞

where η = log θ; this is a location family.

Location-scale models A one parameter family of distributions on R is
said to be a location-scale family if the density function f(y; θ) takes the
form θ−12 f0((y − θ1)/θ2), for −∞ < θ1 < ∞, 0 < θ2 < ∞. The density
f0(y) is the standard form of the density, θ1 is the location parameter
and θ2 is the scale parameter.

Examples The normal distribution with mean θ1 and variance θ22 is a
location scale family, and the standard normal is the standard form. The
tν(θ1, θ2) is

f(t; θ) = c{1 + (y − θ1)2/νθ2}−(ν+1)/2

and the logistic(θ1, θ2) density is

f(y; θ) =
e−(y−θ1)/θ2{1 + e−(y−θ1)/θ2}2

.
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It is more conventional to use µ and σ for the location and scale param-
eter, although they do not always correspond to the mean and variance
of the distribution. Any continuous density on R can be embedded in
a location-scale family, and in fact most location-scale families are con-
structed this way. It is easily proved that if the distribution of the random
variable Y is a member of the location-scale family, then it can be ex-
pressed as

Y = θ2Z + θ1

where Z has the standard distribution with density function f0(z).

Note that discrete distributions are not members of the location-scale
family, essentially because the parameter space and the variable must
take values on the same space.

Transformation families The location, scale and location-scale families
are examples of transformation families. The basic idea is that a trans-
formation on the sample space has a corresponding transformation on
the parameter space that leaves the density function unchanged. For ex-
ample, if Y has the density f0(y − θ), then Z = Y + a has the density
f0(z−a−θ) = f0(z−θ′) so the family of densities for Y ,{f0(y−θ); θ ∈ R},
is is the same as that for Z = Y + a. Similarly, the family of location-
scale densities is unchanged under location and scale transformations: if
f(y; θ) = θ−12 f0((y − θ1)/θ2) then Z = cY + a has density f(z; θ′) =
θ′−12 f0((z − θ′1)/θ′2) where θ′1 = cθ1 + a and θ′2 = cθ2.

In general, we denote by g a transformation on the sample space Y , and
by g∗ the induced transformation on the parameter space. Then the
formalization of the above is the statement that

pr(gY ∈ A; θ) = pr(Y ∈ A; g∗θ).

If g∗Θ = Θ, the family of densities indexed by θ ∈ Θ in invariant under
the transformation g on Y . Let C be a class of transformations on Y
satisfying this condition, and G the smallest class containing C that is a
group. Then G∗ = {g∗ induced by g ∈ G} is a group on Θ.

Example: linear regression A generalization of the location-scale model
is the regression model

y = Xβ + σε

where y is a vector of length n, X is a known n× p matrix, β is a vector
of unknown parameters of length p, ε is a vector of length n that follows
a known distribution f0(·). If we let y∗ = Xb + cy, where b ∈ Rp and
c > 0, then we can write

y∗ = X(b+ cβ) + cσε

which is a member of the same family, as long as the parameter space is
Rp ×R+.

4



(b) Dimension reduction in transformation models

A key feature of transformation models is that the model for a sample of
size n permits a reduction in dimension of the sufficient statistic. This
reduction is obtained by conditioning. Thus, there exist functions of the
data, say s(Y ) and a(Y ), for which we can write

f(y; θ) ∝ f1(s(y)|a(y); θ)f2(a(y))

where the marginal density of a(Y ) does not depend on the parameter
θ. More importantly, the conditional density f1 is itself a transformation
family density, with parameter θ and sample space variable s(Y ).

Location family Suppose Y1, . . . , Yn are i.i.d. observations from the loca-
tion family f0(y− θ). Letting s(y) = yn and ai = yi− yn, i = 1, . . . , n−1,
we can write

f(y; θ) =
∏

f0(yi − θ) = f1(yn|a; θ)f2(a) (2)

where

f2(a) =

∫
f0(a1 + t) · · · f0(an−1 + t)f0(t)dt (3)

and

f1(yn|a; θ) =
f0(yn + a1 − θ) · · · f0(yn + an−1 − θ)f0(yn − θ)

f2(a)
. (4)

The numerator is just a rewriting of
∏
f(yi; θ), and an expression equiv-

alent to (3) is

f1(yn|a; θ) =
f0(y1 − θ) · · · f0(yn − θ)∫
f0(y1 − θ) · · · f0(yn − θ)dθ

. (5)

The density of A does not depend on θ, and the conditional density of
Yn given A is a location family density on R.

The functions s(Y ) and a(Y ) are not uniquely determined, but they are
uniquely determined up to a location transformation. We could for ex-
ample let S = Ȳ and Ai = Yi − Ȳ . The vector A has n components but
lies in Rn−1 (as all its components must sum to 0, or in other words it is
orthogonal to the 1-vector). The marginal density for a is again given by
(2), and

f(y; θ) ∝ f(ȳ, a; θ) = f1(ȳ|a; θ)f2(a).

We might choose instead to let S be θ̂, the maximum likelihood estimate
of θ, and define Ai = Yi − θ̂.
Location-scale model A version of S and A that can be used for the
location-scale model is s(Y ) = (Ȳ , sY ), where s2Y = (n−1)−1

∑
(Yi− Ȳ )2,
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and ai(Y ) = (Yi−Ȳ )/sY , i = 1, . . . , n. The vector A has n components,
but is restricted to lie in Rn−2. To prove that the distribution of A is
indeed free of θ, we write

f(y; θ)dy = θ−n2

∏
{f0
(
yi − θ1
θ2

)
}dy1 . . . dyn

= θ−n2

∏
f0

(
ais+ ȳ − θ1

θ2

)
|J |da1 . . . dandȳds (6)

where |J | is the Jacobian of the transformation from y to (a, ȳ, s). To
compute f(a) we need to integrate out ȳ and s from this expression, so we
need to figure out the dependence of |J | on ȳ and s. The computation is
a little bit tricky, but by writing yi = ais+ ȳ we can see that dyi = sdai,
and since a has n− 2 free dimensions, the factor sn−2 will be part of the
Jacobian. It turns out that this is the only part that depends on ȳ and
s. The details are presented in the next section. The result is

f(a)da =

∫ ∫
sn−2

θn2
f0

(
a1s+ ȳ − θ1

θ2

)
. . . f0

(
ans+ ȳ − θ1

θ2

)
dȳds

=

∫ ∫
(θ2v)n−2

θn2
f0

(
a1θ2v + ȳ − θ1

θ2

)
. . . f0

(
anθ2v + ȳ − θ1

θ2

)
dȳθ2dv

=

∫ ∫
vn−2

θ2
f0

(
a1v +

ȳ − θ1
θ2

)
. . . f0

(
anv +

ȳ − θ1
θ2

)
dȳdv

=

∫ ∫
vn−2f0(a1v + t) . . . f0(anv + t)dtdv (7)

which shows that the marginal distribution of A does not depend on θ.
The conditional distribution of s(Y ), given A, is simply the ratio of the
joint density to this marginal density. Again, the ancillary is not uniquely
determined, but it is unique up to choice of location and scale variable.
We could use (a′, x(1), x(n) − x(1)), where a′i = (x(i) − x(1))/(x(n) − x(1)),
instead of (a, x̄, s), or many other equivalent formulations.

(c) Details on the Jacobian:

As mentioned above, it is necessary to compute the Jacobian in the
transformation from (y1, . . . , yn) to (ȳ, s, a), where a = (a1, . . . an) and
ai = (yi− ȳ)/s. This will be done below both algebraically and geometri-
cally. The algebraic derivation is due to Angelo Canty, and the geometric
one is taken from Chapter 2 of Inference and Linear Models.

Since s2 =
∑

(yi − ȳ)2, we can see that the vector a, although it has n
components, in fact lies in Rn−2, because

∑
ai = a · 1 = 0 and

∑
a2i =

||a||2 = 1. To compute the Jacobian we make the transformation one-to-
one by letting

t1 = ȳ, t2 = s, ti = ai i = 3, . . . , n;
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note that we are explicitly using only n− 2 components of a. To find the
inverse transformation we have

yi = t1 + t2ti i = 3, . . . , n

and using the restrictions on a we have

a1 + a2 = −
n∑
3

ti

1− a21 − a22 =
∑n

3 t
2
i

from which we can write

a1 = f1(t3, . . . , tn) = f1(t(2)), say

a2 = f2(t3, . . . , tn) = f2(t(2)), say

y1 = ȳ + s · f1(t3, . . . , tn) = t1 + t2f1(t(2))

y2 = ȳ + s · f2(t3, . . . , tn) = t1 + t2f2(t(2)

thus completing the transformation. We now have

∣∣∣∣∂y∂t
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 f1(t(2)) sg13(t(2)) . . . sg1n(t(2))
1 f2(t(2)) sg23(t(2)) . . . sg2n(t(2))
1 t3 s . . . 0
1 t4 0 s . . .
...

...
...

...
1 tn 0 . . . s

∣∣∣∣∣∣∣∣∣∣∣∣∣
where gij(t(2)) = ∂fi(t(2))/∂tj, i = 1, 2; j = 3, . . . , n. A well-known for-
mula for the determinant of a partitioned matrix shows that the Jacobian
is of the form

sn−2h(t(2)) = sn−2h(a)

which is the result we were looking for.

In the above derivation the location and scale estimates were ȳ and s,
with the result that a is orthogonal to the 1-vector, and has length 1.
However, the same derivation applies for a variety of other location and
scale estimates. For example, suppose we wanted to use the maximum
likelihood estimates of µ and σ, which are defined as the solutions to the
equations ∂ log f(y; µ̂, σ̂)/∂µ = 0, ∂ log f(y; µ̂, σ̂)/∂σ = 0 i.e.

−1

σ̂

∑
g′(
yi − µ̂
σ̂

) = 0

−n
σ̂

+
yi − µ̂
σ̂2

∑
g′(
yi − µ̂
σ̂

) = 0
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where g(yi) = log f(yi). The ancillary statistic a is defined by ai =
(yi−µ̂)/σ̂, so that yi = σ̂ai+µ̂, and these two equations can be reexpressed
as ∑

g′(ai) = 0∑
aig
′(ai) = n

which gives two restrictions on the ai. Thus we can proceed as above and
express (µ̂, σ̂, a3, . . . an) as a one-to-one function of ȳ, and find the inverse
transformation. It is of exactly the same form (with s replaced by σ̂),
but the functions called f1 and f2 in the above derivation are different.

The geometric derivation of the result is actually very similar, but a little
more elegant. It again uses ȳ and s as coordinates to get the result, and
then argues that this choice of coordinates is arbitrary. Although it’s not
necessary, it’s a little bit easier to first define zi = (yi−µ)/σ; we want to
construct the conditional distribution of z̄, s(z), where z̄ = n−1

∑
zi, and

s2(z) =
∑

(zi− z̄)2, given d(z) = (z− z̄ 1)/||z− z 1||. Note that in terms
of the original variables z̄ = (ȳ − µ)/σ, s(z) = s/σ, and d(z) = a. (Bold
font is used for vectors here to try to clarify the geometric argument.)

Now we compute the Jacobian of the transformation from z to (z̄, s(z),d(z))
by figuring out what the differential element dz is in the new coordinates.
That is, in the joint density of z,

f(z)dz =
∏

f(zi)dzi

we consider the differential element
∏
dzi as giving the volume of a small

box at the point z. We want to express this volume in the new coordi-
nates. The coordinates (z̄, s(z),d(z)) provide locally orthogonal coordi-
nates at the point z = z̄ 1 + s(z)d(z), and we want to know how they
change as we change to point z to z + dz. The coordinate specified by z̄
lies on the 1-vector, so a small change in the coordinates z cause a change
in z̄ of

√
ndz̄. Since s(z) measures the length of z− z̄ 1, its rate of change

is simply ds. (Think of the picture in R2.) Now d(z) is orthogonal to
the 1-vector, and lies on a unit sphere in the n− 1-dimensional subspace
of Rn that is orthogonal to the 1-vector. Thus the volume element is
the surface volume on the sphere defined by s(z)d(z), i.e. the sphere of
radius s(z). This volume is s(z)n−2du, where du is surface volume on
the unit sphere in Rn−1 (which is n− 2-dimensional). (In fact an explicit
expression for the surface area of the unit sphere in Rd is (2π)d/2/Γ(d/2).)

The coordinates in this development are orthogonal, so the volume ele-
ment is the product of the three pieces. For this reason these coordinates
are a convenient choice for computing the differential. However, if we
choose to coordinatize the point using other location and scale functions,
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the result is unchanged. The only thing we need to make sure of is that the
location coordinate, say µ̃(z), satisfies the property µ̃(az+b1) = aµ̃(z)+b,
the scale coordinate, say σ̃(z), satisfies σ̃(az + b1) = aσ̃(z), and d is ap-
propriately defined in terms of these two coordinates. We can show that
such location and scale coordinates must themselves be location scale
transformations of z̄ and s(z), so that we can convert the above result to
a more general one. (Although µ̂1 and σ̂ will not give orthogonal coor-
dinates, so that in these two dimensions the ‘box’ is a parallelogram, we
can still figure out the volume by multiplying the base by the height!)
Using the more general coordinates will not provide an explicit expression
for the normalizing constant in terms of the surface area on the sphere,
because the new vector d isn’t forced to lie in the orthogonal complement
of the 1-vector.

This latter part of the argument is formalized in Chapter 2 of Fraser’s
The Structure of Inference.

References

Transformation models
[SM] Davison, A.C. (2003). Statistical Models. Cambridge University Press, Cam-
bridge. Ch 5.3
[BNC94] Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics.
Chapman & Hall. Ch 2.8
[PS] Pace, L. and Salvan, A. (1997). Principles of Statistical Inference. World
Scientific, Singapore. Ch. 7.

Adjusted profile likelihoods
SM Ch 12.4, BNC94 Ch 8, PS Ch 4.3.
Fraser, D.A.S. (2003). Likelihood for component parameters. Biometrika 90, 327–
339.
Barndorff-Nielsen, O.E. (1983). On a formula for the distribution of the maximum
likelihood estimator. Biometrika 70, 343–65.
DiCiccio T. J., Martin, M. A., Stern, S. E. & Young, G. A. (1996). Information bias
and adjusted profile likelihoods. J. R. Statist. Soc. B 58, 189–203.
Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate condi-
tional inference. J. R. Statist. Soc. B 49, 1–39.

9


