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Laplace approximation of integrals

where ¢'(g) = 0, ¢"(§) > 0, ps = g" (@) /{g"@D)}*? ps = gV @)/{9" @)},

and we assume here and in the following that the function ¢ has a unique
non-zero minimum in the interval (a,b).
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for which we need to assume that h(g) # 0.
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Saddlepoint approximation for sums

1. Assume Yy, ..., Y, areiid from a density fy(y),y € R, with moment generating
function My (t) = E{exp(tY)} = [exp(ty)fy(y;0) and cumulant generating
function Ky (t) = log My (t) (each for a single observation). We assume enough
smoothness in the model that Ky () has a series expansion about 0 of the form
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note that k; = p = E(Y)), ke = 02 = Var(Vy), 3 = E(Y; — p)3, and
kg = E(Y] — p)* — 30, The standardized 3rd and 4th cumulants are
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2. Let S, =3, Yi. The saddlepoint approximation for the density of S, is
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fs.(s) exp{nKy(¢) — ¢s} (3)

where ¢ satisfies the equation nK% (¢) = s.

(a) Under smoothness conditions on the density f(-), it can be shown that

fs.(s) = fs.(){1+ 0"},
and that the O(n™') term in (3) is (3p4 — 5p3)/(24n) where p; = p;().

(b) If (3) is renormalized to integrate to 1, it approximates the density of S,
with relative error O(n=3/2). It is more usual to assume this renormal-
ization, and write either

fo (s) = ;Aex nKy 5) — ¢s or
) = o P (6) — s}
fs.(s) = — L oxp{nKy(d) — ds)

V2 {nky (¢)}1/2

where ¢ here is used as a ‘generic’ constant. The second form is a use-
ful reminder that the leading term in the renormalization constant is

1/4/(27).
(c) A simple change of variables gives a saddlepoint approximation to the
density of Y,, = S, /n.

(d) If Y; are d-dimensional vectors, then My (t) = Eexp(t'Y) and
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where K3 (¢) is a d x 1 vector and K7 (¢) is a d X d matrix.

fs.(s) xp{nKy(¢) — ¢"s} (4)
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3. If fYA(y)

= fy(y;0) = exp{0Ty — k(0) — d(y)}, then K(¢) = k(0 + ¢) — k(0),
¢=0—0, and

(3) becomes
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fo(050) = 7(0)"2 exn{€(6) — €(6)} (5)

using the change of variable nk’(6) = s: compare (1). In (5) £(0) = (0;y1,. .., yn) =

0(0;0) = 0(0; s) = 6Ts — nk(#) = 0Tnk'(0) — nk(h).* Equivalently
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4. Tf 0 = (¢, \) then we write fy(y) = exp{wTy; + AN'ys — k(v), \) }h(y), where y;
and gy are sub-vectors, then
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where s; = S y15, 52 = .1, y2;. This uses the results |5(8)] = |79%(8)| | (0)],

and —€1(0) = {j**(9)} .
Homework problems

1. Suppose Yi,...,Y, are i.i.d. with density

1 Y
Jvi(y; 1) = EGXP(—p),y >0, > 0.

Show that the leading term in the saddlepoint approximation to the density
of Y = [ reproduces the gamma density, with I'(n) replaced by Stirling’s
approximation to it. Deduce that the renormalized saddlepoint approximation
is exact.

2. (A Neyman-Scott problem). A class of problems where maximum likelihood
estimators are not consistent are those in which the number of nuisance pa-
rameters increases with the sample size. These are often called Neyman-Scott
problems. For example, if Y;;,j =1,...,m;;i=1,...,nfollow a N(u;, 0%) dis-
tribution, the maximum likelihood estimator of o2 is inconsistent as n — 00o;
in particular if m; = 2, then 6% — 0%/2; see CH Example 9.24.

IThis is just a cumbersome way of saying that the maximum likelihood estimator is a one-to-one
function of the minimal sufficient statistic.



(a) Suppose that Yj; and Yj, are independent observations from exponen-
tial distributions with means ¥\; and v /\;, respectively, i = 1,... n.
Show that the maximum likelihood estimator of v is not consistent, but
converges in probability to (7/4)v.

(b) A modification to the profile likelihood to account for estimation of nui-
sance parameters was proposed in Cox & Reid (1987):

() = U0 ) = 3 Tog i (A

where A = (Aq,...,A,) and A, is the constrained maximum likelihood
estimator of X\. This is to be computed using a parametrization of
the nuisance parameter that is orthogonal to the parameter of interest
¥, with respect to expected Fisher information. (The correction term
%log |7 (v, 5\1;,)] is not invariant to reparameterizations,) Show for the
exponential case that A is orthogonal to ¢, and that the value of ¢ that
solves £/, (1)) = 0, by, say, converges to (m/3)v.
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