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Laplace approximation of integrals

1.

∫ b

a

e−ng(y)dy = e−ng(ỹ)

√
2π

n
{g′′(ỹ)}−1/2{1 +

5ρ̃2
3 − 3ρ̃4

24n
+O(n−2)},

where g′(ỹ) = 0, g′′(ỹ) > 0, ρ̃3 = g′′′(ỹ)/{g′′(ỹ)}3/2, ρ̃4 = g(4)(ỹ)/{g′′(ỹ)}2,
and we assume here and in the following that the function g has a unique
non-zero minimum in the interval (a, b).

2.

∫
h(y)e−ng(y) = h(ỹ)e−ng(ỹ)

√
2π

n
{g′′(ỹ)}−1/2{1 +

5ρ̃2
3 − 3ρ̃4

24n
+

h′′(ỹ)

2g′′(ỹ)h(ỹ)n
− ρ̃3h

′(ỹ)/h(ỹ)

2{g′′(ỹ)}1/2n

+O(n−2)} ,

for which we need to assume that h(ỹ) 6= 0.

3. ∫
Rd

h(y)e−ng(y)dy = e−ng(ỹ)h(ỹ)

(√
2π

n

)d

|g′′(ỹ)|−1/2{1 +O(n−1)}

= e−ng(y
∗)h(y∗)

(√
2π

n

)d

|g′′(y∗)|−1/2{1 +O(n−1)}

4.

π(θ | y) =
exp{`(θ; y)}π(θ)∫
exp{`(θ; y)}π(θ)dθ

.
=

exp{`(θ; y)}π(θ)

exp{`(θ̂; y)}π(θ̂)|j(θ̂)|−1/2
√

(2π)d

=
1√

(2π)d
e`(θ)−`(θ̂)|j(θ̂)|1/2π(θ)

π(θ̂)
(1)

5.

πm(ψ | y) =

∫
exp{`(ψ, λ; y)}π(ψ, λ)dλ∫

exp{`(ψ, λ; y)}π(ψ, λ)dψdλ

.
=

exp{`(ψ, λ̂ψ)}π(ψ, λ̂ψ)|jλλ(ψ, λ̂ψ)|−1/2
√

(2π)d−q

exp{`(ψ̂, λ̂)}π(ψ̂, λ̂)|j(ψ̂, λ̂)|−1/2
√

(2π)d

=
1√

(2π)q
e`P(ψ)−`P(ψ̂)j

1/2
P (ψ̂)

π(ψ, λ̂ψ)

π(ψ̂, λ̂)

|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
(2)
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Saddlepoint approximation for sums

1. Assume Y1, . . . , Yn are iid from a density fY (y), y ∈ R, with moment generating
function MY (t) = E{exp(tY )} =

∫
exp(ty)fY (y; θ) and cumulant generating

function KY (t) = logMY (t) (each for a single observation). We assume enough
smoothness in the model that KY (t) has a series expansion about 0 of the form

KY (t) = κ1t+
1

2
κ2t

2 +
1

6
κ3t

3 +
1

24
κ4t

4 + . . . ;

note that κ1 = µ = E(Y1), κ2 = σ2 = Var(Y1), κ3 = E(Y1 − µ)3, and
κ4 = E(Y1 − µ)4 − 3σ4. The standardized 3rd and 4th cumulants are

ρ3 =
κ3

σ3/2
, ρ4 =

κ4

σ2
.

2. Let Sn =
∑n

i=1 Yi. The saddlepoint approximation for the density of Sn is

f̂Sn(s) =
1√
2π

1

{nK ′′Y (φ̂)}1/2
exp{nKY (φ̂)− φ̂s} (3)

where φ̂ satisfies the equation nK ′Y (φ̂) = s.

(a) Under smoothness conditions on the density f(·), it can be shown that

fSn(s) = f̂Sn(s){1 +O(n−1)},

and that the O(n−1) term in (3) is (3ρ̂4 − 5ρ̂2
3)/(24n) where ρ̂j = ρj(φ̂).

(b) If (3) is renormalized to integrate to 1, it approximates the density of Sn
with relative error O(n−3/2). It is more usual to assume this renormal-
ization, and write either

f̂Sn(s) =
c

{nK ′′Y (φ̂)}1/2
exp{nKY (φ̂)− φ̂s} or

f̂Sn(s) =
c√
2π

1

{nK ′′Y (φ̂)}1/2
exp{nKY (φ̂)− φ̂s}

where c here is used as a ‘generic’ constant. The second form is a use-
ful reminder that the leading term in the renormalization constant is
1/
√

(2π).

(c) A simple change of variables gives a saddlepoint approximation to the
density of Ȳn = Sn/n.

(d) If Yi are d-dimensional vectors, then MY (t) = E exp(tTY ) and

f̂Sn(s) =
c
√

2π
d

1

{n|K ′′Y (φ̂)|}1/2
exp{nKY (φ̂)− φ̂T s} (4)

where K ′Y (φ) is a d× 1 vector and K ′′Y (φ) is a d× d matrix.
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3. If fY (y) = fY (y; θ) = exp{θTy − k(θ) − d(y)}, then K(φ) = k(θ + φ) − k(θ),
φ̂ = θ̂ − θ, and (3) becomes

f̂Θ̂(θ̂; θ) =
c
√

2π
d
|j(θ̂)|1/2 exp{`(θ)− `(θ̂)} (5)

using the change of variable nk′(θ̂) = s: compare (1). In (5) `(θ) = `(θ; y1, . . . , yn) =
`(θ; θ̂) = `(θ; s) = θT s− nk(θ) = θTnk′(θ̂)− nk(θ).1 Equivalently

f̂S(s; θ) =
c√

(2π)d
|j(θ̂)|−1/2 exp{`(θ)− `(θ̂)}. (6)

4. If θ = (ψ, λ) then we write fY (y) = exp{ψTy1 +λTy2− k(ψ, λ)}h(y), where y1

and y2 are sub-vectors, then

f(s1 | s2;ψ) =
f(s1, s2;ψ, λ)

f(s2;ψ, λ)

.
=

c√
(2π)q

|jp(ψ̂)|−1/2 exp{`p(ψ)− `p(ψ̂)}

{
|jλλ(ψ̂, λ̂)|
|jλλ(ψ, λ̂ψ)|

}−1/2

,

where s1 =
∑n

i=1 y1i, s2 =
∑n

i=1 y2i. This uses the results |j(θ̂)| = |jψψ(θ̂)|−1|jλλ(θ̂)|,
and −`′′p(ψ̂) = {jψψ(θ̂)}−1.

Homework problems

1. Suppose Y1, . . . , Yn are i.i.d. with density

fYi(y;µ) =
1

µ
exp(−y

µ
), y > 0, µ > 0.

Show that the leading term in the saddlepoint approximation to the density
of Ȳ = µ̂ reproduces the gamma density, with Γ(n) replaced by Stirling’s
approximation to it. Deduce that the renormalized saddlepoint approximation
is exact.

2. (A Neyman-Scott problem). A class of problems where maximum likelihood
estimators are not consistent are those in which the number of nuisance pa-
rameters increases with the sample size. These are often called Neyman-Scott
problems. For example, if Yij, j = 1, . . . ,mi; i = 1, . . . , n follow a N(µi, σ

2) dis-
tribution, the maximum likelihood estimator of σ2 is inconsistent as n → ∞;
in particular if mi ≡ 2, then σ̂2 → σ2/2; see CH Example 9.24.

1This is just a cumbersome way of saying that the maximum likelihood estimator is a one-to-one
function of the minimal sufficient statistic.
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(a) Suppose that Yi1 and Yi2 are independent observations from exponen-
tial distributions with means ψλi and ψ/λi, respectively, i = 1, . . . , n.
Show that the maximum likelihood estimator of ψ is not consistent, but
converges in probability to (π/4)ψ.

(b) A modification to the profile likelihood to account for estimation of nui-
sance parameters was proposed in Cox & Reid (1987):

`m(ψ) = `(ψ, λ̂ψ)− 1

2
log |jλλ(ψ, λ̂ψ)|,

where λ = (λ1, . . . , λn) and λ̂ψ is the constrained maximum likelihood
estimator of λ. This is to be computed using a parametrization of
the nuisance parameter that is orthogonal to the parameter of interest
ψ, with respect to expected Fisher information. (The correction term
1
2

log |jλλ(ψ, λ̂ψ)| is not invariant to reparameterizations,) Show for the
exponential case that λ is orthogonal to ψ, and that the value of ψ that
solves `′m(ψ) = 0, ψ̂m, say, converges to (π/3)ψ.
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