
LTCC/Reid: Likelihood and derived quantities November 5, 2012

Given a model for Y which assumes Y has a density f(y; θ), θ ∈ Θ ⊂ Rd, we have
the following definitions:

observed likelihood function L(θ; y) = c(y)f(y; θ)
log-likelihood function `(θ; y) = logL(θ; y) = log f(y; θ) + a(y)
score function U(θ) = ∂`(θ; y)/∂θ
observed information function j(θ) = −∂2`(θ; y)/∂θ∂θT

expected information (in one observation) i(θ) = EθU(θ)U(θ)T (called i1(θ) in CH)

When we have Yi independent, identically distributed from f(yi; θ), then, denoting
the observed sample y = (y1, . . . , yn) we have:

log-likelihood function `(θ) = `(θ; y) + a(y) Op(n)

maximum likelihood estimate θ̂ = θ̂(y) = arg supθ `(θ) θ +Op(n
−1/2)

score function U(θ) = `′(θ) =
∑
Ui(θ) = U+(θ) Op(n

1/2)
observed information function j(θ) = −`′′(θ) = −`(θ;Y ) Op(n)

observed (Fisher) information j(θ̂)
expected (Fisher) information i(θ) = Eθ{U(θ)U(θ)T} = ni1(θ) O(n),

where with the risk of some confusion we use the same notation. Sometimes the
expected Fisher information is defined instead as i(θ) = Eθ{−∂U(θ;Y )/∂θT} (e.g.
in BNC). In models for which we can interchange differentiation and integration in∫
f(y; θ)dy = 1, these are the same due to the Bartlett identities:

Eθ{U(θ)} = 0,

Eθ{U ′(θ)}+ Eθ{U2(θ)} = 0,

Eθ{U ′′(θ)}+ 3Eθ{U(θ)U ′(θ)}+ Eθ{U3(θ)} = 0,

and so on, where the result applies to vector θ, but as presented here is for scalar θ.
(In the vector setting the second derivative of U is a d× d× d array.)
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First order asymptotic theory

The following results are used for approximate inference based on the likelihood
function:

1. θ is a scalar
1√
n
U(θ)/i

1/2
1 (θ)

d→ N(0, 1) by the central limit theorem

standardized score statistic ru = U(θ)/j1/2(θ̂)
d→ N(0, 1)

√
n(θ̂ − θ)i1/21 (θ) =

1√
n

U(θ)

i
1/2
1 (θ)

{1 + op(1)}

standardized m.l.e. re = (θ̂ − θ)j1/2(θ̂) d→ N(0, 1)

(log) likelihood ratio statistic w(θ) = 2{`(θ̂)− `(θ)} = (θ̂ − θ)2i(θ){1 + op(1)}
w(θ)

d→ χ2
1

likelihood root r(θ) = sign(θ − θ̂){w(θ)}1/2

r(θ)
d→ N(0, 1)

2. θ a vector of length d

1√
n
{U(θ)} d→ Nd{0, i1(θ)} by the central limit theorem

standardized score statistic wu = U(θ)T{i(θ)}−1U(θ)√
n(θ̂ − θ) = 1√

n
i−11 (θ)U(θ){1 + op(1)}

standardized m.l.e. we = (θ̂ − θ)T i(θ)(θ̂ − θ)
likelihood ratio statistic w = 2{`(θ̂)− `(θ)} = (θ̂ − θ)T i(θ)(θ̂ − θ){1 + op(1)}

w(θ)
d→ χ2

d

3. θ = (ψ, λ) = (ψ1, . . . , ψq, λ1, . . . , λd−q) We partition the information matrices
compatibly and write

U(θ) =

(
Uψ(θ)
Uλ(θ)

)
,

i(θ) =

(
iψψ iψλ
iλψ iλλ

)
j(θ) =

(
jψψ jψλ
jλψ jλλ

)
and

i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
j−1(θ) =

(
jψψ jψλ

jλψ jλλ

)
.

The constrained maximum likelihood estimator of λ is denoted by λ̂ψ, which

in regular models satisfies Uλ(ψ, λ̂ψ) = 0.

Note that
iψψ(θ) = {iψψ(θ)− iψλ(θ)i−1λλ (θ)iλψ(θ)}−1, (1)

using the formula for the determinant of a partitioned matrix. A similar result
holds for j.
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The profile log-likelihood function is `P(ψ) = `(ψ, λ̂ψ), and the (observed)
profile information function is jP(ψ) = −`′′P(ψ), a q × q matrix.

The limiting results above can be used to derive the following

wu(ψ) = Uψ(ψ, λ̂ψ)T{iψψ(ψ, λ̂ψ)}Uψ(ψ, λ̂ψ)
.∼ χ2

q

we(ψ) = (ψ̂ − ψ){iψψ(ψ̂, λ̂)}−1(ψ̂ − ψ)
.∼ χ2

q

w(ψ) = 2{`(ψ̂, λ̂)− `(ψ, λ̂ψ)} = 2{`P(ψ̂)− `P(ψ)} .∼ χ2
q;

see (52), (54) and (56) in CH §9.3.

This determines the following first-order pivotal quantities, for scalar ψ:

re(ψ) = (ψ̂ − ψ)j
1/2
P (ψ̂)

.∼ N(0, 1),

ru(ψ) = `′P(ψ)j
−1/2
P (ψ̂)

.∼ N(0, 1),

r(ψ) = sign(ψ̂ − ψ)

√
2{`P(ψ̂)− `P(ψ)} .∼ N(0, 1)

w(ψ) = 2{`P(ψ̂)− `P(ψ)} .∼ χ2
1,

where the third form follows from the fourth.

Exercises

1. Orthogonal nuisance parameters. In a model f(y; θ) with θ = (ψ, λ), the com-
ponent parameter ψ and λ are orthogonal (with respect to Fisher information)
if iψλ(θ) = 0.

(a) Suppose we have a sample y1, . . . , yn from the density f(y; θ). Show that

λ̂ψ = λ̂+Op(n
−1/2),

whereas if ψ and λ are orthogonal that

λ̂ψ = λ̂+Op(n
−1).

(b) Assume yi follows an exponential distribution with mean λe−ψxi , where xi
is known. Find conditions on the sequence {xi, i = 1, . . . , n} in order that
λ and ψ are orthogonal with respect to expected Fisher information. Find
an expression for the constrained maximum likelihood estimate λ̂ψ and
show the effect of parameter orthogonality on the form of the estimate.
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2. Sufficient statistics (CH Exercise 2.2). Find the log-likelihood function for a
sample of size n from an AR(1) process:

yt = µ+ ρ(yt−1 − µ) + εt, εt(i.i.d.) ∼ N(0, σ2), t = 1, ..., n,

where |ρ| < 1, as a function of θ = (µ, σ2, ρ) and y0. Write down the likelihood
for data y1, . . . , yn in the cases where the initial value y0 is

(a) a given constant;

(b) normally distributed with mean µ and variance σ2/(1− ρ2);
(c) assumed equal to yn,

and give the sufficient statistic for each case.

Measure theory

The likelihood function is defined as (proportional to) the density function, and this
is a density with respect to some dominating measure. Since θ varies in Θ, we need
f to be a density function with respect to the same dominating measure for each
value of θ. Schervish (p.13) states it this way:

Let (S,A, µ) be a probability space, and let (X ,B) be a Borel space. Let X :
S −→ X be measurable. The parametric family of distributions for X is the set

{Pθ : ∀A ∈ B, Pθ(A) = Pr(X ∈ A), θ ∈ Θ}.

Assume that each Pθ, considered as a measure on (X ,B) is absolutely continuous
with respect to a measure ν on (X ,B). We write

f(x; θ) =
dPθ
dν

(x);

this is the likelihood function for θ.
Some books describe the likelihood function as the Radon-Nikodym derivative of
the probability measure with respect to a dominating measure. Sometimes the
dominating measure is taken to be Pθ0 for a fixed value θ0 ∈ Θ. When we consider
probability spaces and/or parameter spaces that are infinite dimensional, it is not
obvious what to use as a dominating measure. For counting processes, this is done
rigorously in Ch.II of Andersen et al. The result is Jacod’s formula for the likelihood
ratio:
Suppose we have a counting process N(·) on [0, τ ], and a filtration Ft = F0 ∪
σ{N(s); s ≤ t}, with F = Fτ . A counting process is a piecewise constant, non-
decreasing, stochastic process with jumps of size +1. It can be shown to be a local
submartingale, with compensator Λ. Suppose P and P̃ are two probability measures
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on F , for which the two compensators are Λ and Λ̃. Suppose P̃ is absolutely
continuous with respect to P . If Λ and Λ̃ are absolutely continuous a.s. P , then

dP̃

dP
=
dP̃

dP

∣∣∣∣∣
F0

∏
t λ̃(t)4N(t) exp{−Λ̃(τ)}∏
t λ(t)4N(t) exp{−Λ(τ)}

.

Except for the somewhat unfamiliar notation, this is identical to the likelihood
function for the non-homogeneous Poisson process (SM, Ex.6.5),

n∏
j=1

λ(tj) exp{−
∫ τ

0

λ(u)du}, 0 < t1 < · · · < tn < τ.
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