LTCC/Reid: Likelihood and derived quantities November 5, 2012

Given a model for Y which assumes Y has a density f(y;6), 0 € © C R?, we have
the following definitions:

observed likelihood function L(0;y) = c(y) f(y;0)

log-likelihood function 0(0;y) =log L(0;y) = log f(y;0) +

score function U(o) =0t0;y)/00

observed information function 7(0) = —0%*(0;y)/0000"

expected information (in one observation) i(0) = EoU(0)U(0)T (called i,(6) in CH)

When we have Y; independent, identically distributed from f(y;;#), then, denoting
the observed sample y = (y1,...,y,) we have:
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log-likelihood function vy) +a(y) O,(n)

maximum likelihood estimate 6 = A(y) = argsup, £(6) 0+ O,(n~1/?)
score function U@)=0(0)=>U(0) =U.(0) O,(n'/?)
—0(8) = t(6;Y On(n)

(
observed information function j(0) =
0

observed (Fisher) information j
expected (Fisher) information i(0) = Ep{U(0)U(0)T} = ni;(6) O(n),

where with the risk of some confusion we use the same notation. Sometimes the
expected Fisher information is defined instead as i(0) = Eg{—0U(0;Y)/06"} (e.g.
in BNC). In models for which we can interchange differentiation and integration in
[ f(y;0)dy = 1, these are the same due to the Bartlett identities:

Eo{U(0)} = 0,
Eo{U'(0)} + E{U?*(#)} = 0,
Eo{U"(0)} + 3E{U(0)U'(0)} + Eo{U*(8)} = 0,

and so on, where the result applies to vector 8, but as presented here is for scalar 6.
(In the vector setting the second derivative of U is a d x d X d array.)



First order asymptotic theory

The following results are used for approximate inference based on the likelihood
function:

1. 0 is a scalar
ﬁU(@)/z}/z(@) KN N(0,1) by the central limit theorem

standardized score statistic  r, = U(6)/5/2(0) N N(0,1)
1 U(0)

i /2,y
V0 - 0)i*(0) i o)
standardized m.l.e. re = (0 — 0)52(0) % N(0,1)
(log) likelihood ratio statistic w(0) = 2{£(6) — £(0)} = (0 — 6)%i(A){1 + 0,(1)}
w(®) % X}
likelihood root () = sign(6 — 6){w(H)}/2
r(6) % N(0,1)

2. 0 a vector of length d

LAU(0)} % Na{0,i1(6)} by the central limit theorem
standardized score statistic w, = U(0)7{i(0)} U (0)

V(0 —0) = it OU(0){1+0,(1)}

standardized m.l.e. we = (0 —0)1i(0)(6 — 0)

likelihood ratio statistic w = 2{0(0) — £(0)} = (0 — 0)Ti(0)( — 0){1 + 0,(1)}
w(®) % X3

3. 0= (Y, \) = (¢1,...,%g, A1, ..., Aa—q) We partition the information matrices

compatibly and write
Uy(0)
ue)=|(,"
(6) (U/\(G)>7
0= (0 ) o= ()
o) (Z,\w (39 i) Ixp JAx

B T TRTRON
t 1(9) = (iw i’\’\) J 1(9) = G»\w ‘;,\,\)-

The constrained maximum likelihood estimator of A is denoted by S\w, which

and

in regular models satisfies U, (%, S\w) = 0.

Note that

i"%(0) = {iy(0) — iga(0)ixy (0)iry(0)} (1)
using the formula for the determinant of a partitioned matrix. A similar result
holds for j.



The profile log-likelihood function is £p()) = €(1), \,), and the (observed)

profile information function is jp(v) = —¢%(¢), a ¢ X ¢ matrix.

The limiting results above can be used to derive the following

wa (1) = Uy, Ag) (i (10, Ap) YU (4, Ay)
we(y) = (b — ) (VY@ —v) <~ X2
w(®) = 200, ) — €, A)} = 2{lp () — ()}~ Xj;
see (52), (54) and (56) in CH §9.3.

This determines the following first-order pivotal quantities, for scalar :

re(W) = (b — ) () ~ N(0, 1),

r(®) = )jp 2 (%) ~ N(0,1),

r@) = sign(d — $)y/2{ee(8) — ()} < N0, 1)

w(y) = 2{e() — ()} ~ X3,

where the third form follows from the fourth.
Exercises

1. Orthogonal nuisance parameters. In a model f(y;#) with 8 = (¢, \), the com-
ponent parameter ¢ and A are orthogonal (with respect to Fisher information)
if iy (0) = 0.

(a) Suppose we have a sample y1,...,y, from the density f(y;#). Show that
Ay = A+ 0y (n71?),
whereas if 1) and A are orthogonal that
Ay = A+ 0,(n7h).

(b) Assume y; follows an exponential distribution with mean Ae~¥%, where x;
is known. Find conditions on the sequence {x;,i = 1,...,n} in order that
A and v are orthogonal with respect to expected Fisher information. Find
an expression for the constrained maximum likelihood estimate 5\¢ and
show the effect of parameter orthogonality on the form of the estimate.
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2. Sufficient statistics (CH Ezercise 2.2). Find the log-likelihood function for a
sample of size n from an AR(1) process:

Yo = p4 pye1 — p) + €, eliid)~N(0,0%), t=1,..n,

where |p| < 1, as a function of = (u, 02, p) and yo. Write down the likelihood
for data vy, ..., ¥y, in the cases where the initial value y, is

(a) a given constant;
(b) normally distributed with mean p and variance o2/(1 — p?);

(c) assumed equal to y,,

and give the sufficient statistic for each case.

Measure theory

The likelihood function is defined as (proportional to) the density function, and this
is a density with respect to some dominating measure. Since 6 varies in ©, we need
f to be a density function with respect to the same dominating measure for each
value of 6. Schervish (p.13) states it this way:

Let (S,.A, 1) be a probability space, and let (X, B) be a Borel space. Let X :
S — X be measurable. The parametric family of distributions for X is the set

{Py:VAe B, P(A)=Pr(X € A),0 € ©}.

Assume that each Py, considered as a measure on (X, B) is absolutely continuous
with respect to a measure v on (X, B). We write

dP,
f(2:0) = —(x);

this is the likelihood function for 6.

Some books describe the likelihood function as the Radon-Nikodym derivative of
the probability measure with respect to a dominating measure. Sometimes the
dominating measure is taken to be Py, for a fixed value 6, € ©. When we consider
probability spaces and/or parameter spaces that are infinite dimensional, it is not
obvious what to use as a dominating measure. For counting processes, this is done
rigorously in Ch.IT of Andersen et al. The result is Jacod’s formula for the likelihood
ratio:

Suppose we have a counting process N(-) on [0,7], and a filtration F; = Fy U
o{N(s);s < t}, with F = F,. A counting process is a piecewise constant, non-
decreasing, stochastic process with jumps of size +1. It can be shown to be a local
submartingale, with compensator A. Suppose P and P are two probability measures



on F, for which the two compensators are A and A. Suppose P is absolutely
continuous with respect to P. If A and A are absolutely continuous a.s. P, then

1, A0 exp{-A(r)}
L IO exp{=A(n)}

P dpP
dP  dP

Except for the somewhat unfamiliar notation, this is identical to the likelihood
function for the non-homogeneous Poisson process (SM, Ex.6.5),

n

H)\(tj)exp{—/T)\(u)du}, 0<ty < - <t,<T.

Jj=1
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