LTCC/Reid: Likelihood and derived quantities November 5, 2012

Given a model for Y which assumes Y has a density $f(y; \theta)$, $\theta \in \Theta \subset \mathbb{R}^d$, we have the following definitions:

observed likelihood function	$L(\theta; y) = c(y)f(y; \theta)$
log-likelihood function	$\ell(\theta; y) = \log L(\theta; y) = \log f(y; \theta) + a(y)$
score function	$U(\theta) = \partial \ell(\theta; y) / \partial \theta$
observed information function	$j(\theta) = -\partial^2 \ell(\theta; y) / \partial \theta \partial \theta^T$
expected information (in one observation)	$i(\theta) = \mathcal{E}_{\theta} U(\theta) U(\theta)^T$ (called $i_1(\theta)$ in CH)
expected information (in one observation)	$i(\theta) = \mathcal{E}_{\theta} U(\theta) U(\theta)^{T}$ (called $i_{1}(\theta)$ in CH

When we have Y_i independent, identically distributed from $f(y_i; \theta)$, then, denoting the observed sample $y = (y_1, \ldots, y_n)$ we have:

log-likelihood function	$\ell(\theta) = \ell(\theta; y) + a(y)$	$O_p(n)$
maximum likelihood estimate	$\hat{\theta} = \hat{\theta}(y) = \arg \sup_{\theta} \ell(\theta)$	$\theta + O_p(n^{-1/2})$
score function	$U(\theta) = \ell'(\theta) = \sum U_i(\theta) = U_+(\theta)$	$O_p(n^{1/2})$
observed information function	$j(\theta) = -\ell''(\theta) = -\ell(\theta; Y)$	$O_p(n)$
observed (Fisher) information	$j(\hat{ heta})$	
expected (Fisher) information	$i(\theta) = E_{\theta} \{ U(\theta) U(\theta)^T \} = n i_1(\theta)$	O(n),

where with the risk of some confusion we use the same notation. Sometimes the expected Fisher information is defined instead as $i(\theta) = E_{\theta}\{-\partial U(\theta; Y)/\partial \theta^T\}$ (e.g. in BNC). In models for which we can interchange differentiation and integration in $\int f(y;\theta) dy = 1$, these are the same due to the Bartlett identities:

$$E_{\theta}\{U(\theta)\} = 0,$$

$$E_{\theta}\{U'(\theta)\} + E_{\theta}\{U^{2}(\theta)\} = 0,$$

$$E_{\theta}\{U''(\theta)\} + 3E_{\theta}\{U(\theta)U'(\theta)\} + E_{\theta}\{U^{3}(\theta)\} = 0,$$

and so on, where the result applies to vector θ , but as presented here is for scalar θ . (In the vector setting the second derivative of U is a $d \times d \times d$ array.)

First order asymptotic theory

The following results are used for approximate inference based on the likelihood function:

1. θ is a scalar

$$\begin{split} \frac{1}{\sqrt{n}}U(\theta)/i_1^{1/2}(\theta) &\stackrel{d}{\to} N(0,1) & \text{by the central limit theorem} \\ \text{standardized score statistic} & r_u = U(\theta)/j^{1/2}(\hat{\theta}) \stackrel{d}{\to} N(0,1) \\ \sqrt{n}(\hat{\theta} - \theta)i_1^{1/2}(\theta) &= & \frac{1}{\sqrt{n}}\frac{U(\theta)}{i_1^{1/2}(\theta)}\{1 + o_p(1)\} \\ \text{standardized m.l.e.} & r_e = (\hat{\theta} - \theta)j^{1/2}(\hat{\theta}) \stackrel{d}{\to} N(0,1) \\ (\log) \text{ likelihood ratio statistic} & w(\theta) = 2\{\ell(\hat{\theta}) - \ell(\theta)\} = (\hat{\theta} - \theta)^2 i(\theta)\{1 + o_p(1)\} \\ & w(\theta) \stackrel{d}{\to} \chi_1^2 \\ \text{likelihood root} & r(\theta) = \text{sign}(\theta - \hat{\theta})\{w(\theta)\}^{1/2} \\ & r(\theta) \stackrel{d}{\to} N(0,1) \end{split}$$

2. θ a vector of length d

$$\begin{split} & \frac{1}{\sqrt{n}} \{ U(\theta) \} \xrightarrow{d} N_d \{ 0, i_1(\theta) \} & \text{by the central limit theorem} \\ & \text{standardized score statistic} & w_u = U(\theta)^T \{ i(\theta) \}^{-1} U(\theta) \\ & \sqrt{n}(\hat{\theta} - \theta) = & \frac{1}{\sqrt{n}} i_1^{-1}(\theta) U(\theta) \{ 1 + o_p(1) \} \\ & \text{standardized m.l.e.} & w_e = (\hat{\theta} - \theta)^T i(\theta) (\hat{\theta} - \theta) \\ & \text{likelihood ratio statistic} & w = 2 \{ \ell(\hat{\theta}) - \ell(\theta) \} = (\hat{\theta} - \theta)^T i(\theta) (\hat{\theta} - \theta) \{ 1 + o_p(1) \} \\ & w(\theta) \xrightarrow{d} \chi_d^2 \end{split}$$

3. $\theta = (\psi, \lambda) = (\psi_1, \dots, \psi_q, \lambda_1, \dots, \lambda_{d-q})$ We partition the information matrices compatibly and write

$$U(\theta) = \begin{pmatrix} U_{\psi}(\theta) \\ U_{\lambda}(\theta) \end{pmatrix},$$
$$i(\theta) = \begin{pmatrix} i_{\psi\psi} & i_{\psi\lambda} \\ i_{\lambda\psi} & i_{\lambda\lambda} \end{pmatrix} \quad j(\theta) = \begin{pmatrix} j_{\psi\psi} & j_{\psi\lambda} \\ j_{\lambda\psi} & j_{\lambda\lambda} \end{pmatrix}$$

and

$$i^{-1}(\theta) = \begin{pmatrix} i^{\psi\psi} & i^{\psi\lambda} \\ i^{\lambda\psi} & i^{\lambda\lambda} \end{pmatrix} \quad j^{-1}(\theta) = \begin{pmatrix} j^{\psi\psi} & j^{\psi\lambda} \\ j^{\lambda\psi} & j^{\lambda\lambda} \end{pmatrix}.$$

The constrained maximum likelihood estimator of λ is denoted by $\hat{\lambda}_{\psi}$, which in regular models satisfies $U_{\lambda}(\psi, \hat{\lambda}_{\psi}) = 0$.

Note that

$$i^{\psi\psi}(\theta) = \{i_{\psi\psi}(\theta) - i_{\psi\lambda}(\theta)i_{\lambda\lambda}^{-1}(\theta)i_{\lambda\psi}(\theta)\}^{-1},\tag{1}$$

using the formula for the determinant of a partitioned matrix. A similar result holds for j.

The profile log-likelihood function is $\ell_{\rm P}(\psi) = \ell(\psi, \hat{\lambda}_{\psi})$, and the (observed) profile information function is $j_{\rm P}(\psi) = -\ell''_{\rm P}(\psi)$, a $q \times q$ matrix.

The limiting results above can be used to derive the following

$$w_u(\psi) = U_{\psi}(\psi, \hat{\lambda}_{\psi})^T \{ i^{\psi\psi}(\psi, \hat{\lambda}_{\psi}) \} U_{\psi}(\psi, \hat{\lambda}_{\psi}) \quad \sim \quad \chi_q^2$$
$$w_e(\psi) = (\hat{\psi} - \psi) \{ i^{\psi\psi}(\hat{\psi}, \hat{\lambda}) \}^{-1} (\hat{\psi} - \psi) \quad \sim \quad \chi_q^2$$
$$w(\psi) = 2 \{ \ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi}) \} = 2 \{ \ell_{\mathrm{P}}(\hat{\psi}) - \ell_{\mathrm{P}}(\psi) \} \quad \sim \quad \chi_q^2;$$

see (52), (54) and (56) in CH §9.3.

This determines the following first-order pivotal quantities, for scalar ψ :

$$\begin{aligned} r_{e}(\psi) &= (\hat{\psi} - \psi) j_{\rm P}^{1/2}(\hat{\psi}) \stackrel{\sim}{\sim} N(0, 1), \\ r_{u}(\psi) &= \ell_{\rm P}'(\psi) j_{\rm P}^{-1/2}(\hat{\psi}) \stackrel{\sim}{\sim} N(0, 1), \\ r(\psi) &= {\rm sign}(\hat{\psi} - \psi) \sqrt{2\{\ell_{\rm P}(\hat{\psi}) - \ell_{\rm P}(\psi)\}} \stackrel{\sim}{\sim} N(0, 1) \\ w(\psi) &= 2\{\ell_{\rm P}(\hat{\psi}) - \ell_{\rm P}(\psi)\} \stackrel{\sim}{\sim} \chi_{1}^{2}, \end{aligned}$$

where the third form follows from the fourth.

Exercises

- 1. Orthogonal nuisance parameters. In a model $f(y; \theta)$ with $\theta = (\psi, \lambda)$, the component parameter ψ and λ are orthogonal (with respect to Fisher information) if $i_{\psi\lambda}(\theta) = 0$.
 - (a) Suppose we have a sample y_1, \ldots, y_n from the density $f(y; \theta)$. Show that

$$\hat{\lambda}_{\psi} = \hat{\lambda} + O_p(n^{-1/2}),$$

whereas if ψ and λ are orthogonal that

$$\hat{\lambda}_{\psi} = \hat{\lambda} + O_p(n^{-1}).$$

(b) Assume y_i follows an exponential distribution with mean $\lambda e^{-\psi x_i}$, where x_i is known. Find conditions on the sequence $\{x_i, i = 1, \ldots, n\}$ in order that λ and ψ are orthogonal with respect to expected Fisher information. Find an expression for the constrained maximum likelihood estimate $\hat{\lambda}_{\psi}$ and show the effect of parameter orthogonality on the form of the estimate.

2. Sufficient statistics (CH Exercise 2.2). Find the log-likelihood function for a sample of size n from an AR(1) process:

$$y_t = \mu + \rho(y_{t-1} - \mu) + \epsilon_t, \quad \epsilon_t(i.i.d.) \sim N(0, \sigma^2), \quad t = 1, ..., n_t$$

where $|\rho| < 1$, as a function of $\theta = (\mu, \sigma^2, \rho)$ and y_0 . Write down the likelihood for data y_1, \ldots, y_n in the cases where the initial value y_0 is

- (a) a given constant;
- (b) normally distributed with mean μ and variance $\sigma^2/(1-\rho^2)$;
- (c) assumed equal to y_n ,

and give the sufficient statistic for each case.

Measure theory

The likelihood function is defined as (proportional to) the density function, and this is a density with respect to some dominating measure. Since θ varies in Θ , we need f to be a density function with respect to the same dominating measure for each value of θ . Schervish (p.13) states it this way:

Let (S, \mathcal{A}, μ) be a probability space, and let $(\mathcal{X}, \mathcal{B})$ be a Borel space. Let $X : S \longrightarrow \mathcal{X}$ be measurable. The parametric family of distributions for X is the set

$$\{P_{\theta}: \forall A \in \mathcal{B}, P_{\theta}(A) = \Pr(X \in A), \theta \in \Theta\}.$$

Assume that each P_{θ} , considered as a measure on $(\mathcal{X}, \mathcal{B})$ is absolutely continuous with respect to a measure ν on $(\mathcal{X}, \mathcal{B})$. We write

$$f(x;\theta) = \frac{dP_{\theta}}{d\nu}(x);$$

this is the likelihood function for θ .

Some books describe the likelihood function as the Radon-Nikodym derivative of the probability measure with respect to a dominating measure. Sometimes the dominating measure is taken to be P_{θ_0} for a fixed value $\theta_0 \in \Theta$. When we consider probability spaces and/or parameter spaces that are infinite dimensional, it is not obvious what to use as a dominating measure. For counting processes, this is done rigorously in Ch.II of Andersen et al. The result is Jacod's formula for the likelihood ratio:

Suppose we have a counting process $N(\cdot)$ on $[0, \tau]$, and a filtration $\mathcal{F}_t = \mathcal{F}_0 \cup \sigma\{N(s); s \leq t\}$, with $\mathcal{F} = \mathcal{F}_{\tau}$. A counting process is a piecewise constant, nondecreasing, stochastic process with jumps of size +1. It can be shown to be a local submartingale, with compensator Λ . Suppose P and \tilde{P} are two probability measures on \mathcal{F} , for which the two compensators are Λ and $\tilde{\Lambda}$. Suppose \tilde{P} is absolutely continuous with respect to P. If Λ and $\tilde{\Lambda}$ are absolutely continuous a.s. P, then

$$\frac{d\tilde{P}}{dP} = \left. \frac{d\tilde{P}}{dP} \right|_{\mathcal{F}_0} \frac{\prod_t \tilde{\lambda}(t)^{\Delta N(t)} \exp\{-\tilde{\Lambda}(\tau)\}}{\prod_t \lambda(t)^{\Delta N(t)} \exp\{-\Lambda(\tau)\}}.$$

Except for the somewhat unfamiliar notation, this is identical to the likelihood function for the non-homogeneous Poisson process (SM, Ex.6.5),

$$\prod_{j=1}^n \lambda(t_j) \exp\{-\int_0^\tau \lambda(u) du\}, \quad 0 < t_1 < \dots < t_n < \tau.$$

References

Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993). *Statistical Models Based on Counting Processes*. Springer, New York.

[BNC] Barndorff-Nielsen, O.E. and Cox, D.R. (1994). *Inference and Asymptotics*. Chapman & Hall, London.

[SM] Davison, A.C. (2003). *Statistical Models*. Cambridge University Press, Cambridge.

Schervish, M.J. (1995). Theory of Statistics. Springer, New York.