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Approximate Outline

1. Asymptotic theory for likelihood; likelihood root, maximum likelihood
estimate, score function; pivotal quantities, exact and approximate
ancillary; Laplace approximations for Bayesian inference

2. Higher order approximations for non-Bayesian inference; marginal,
conditional and adjusted log-likelihoods; sample space differentiation
and approximate ancillary; examples

3. Likelihood inference for complex data structure: time series, spatial
models, space-time models, extremes; composite likelihood — definition,
summary statistics, asymptotic theory; examples

4. Semi-parametric likelihoods for point process data; empirical likelihood;
nonparametric models

http://www.utstat.toronto.edu/reid/ltcc

Assessment: Problems assigned weeks 1 to 4; due weeks 2 to 5;
discussion on week 5.
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Nancy Reid LTCC Advanced Course: Likelihood Inference
November/December, 2012

Course Outline

A, Running list of references and background reading

....Curriculum Vitae
..Contact Details « Davison, A.C. (2003) Statistical Models (SM)
o Introduction to likelihood -- Ch 4
o Likelihood and stochastic models -~ Ch 6

Rencnmh « Barndorff-Nielsen, O.E. and Cox, D.R. (1984) inference and Asymp
. o Examples of likelihood functions -- Ch 2.2
Research overview « Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics (CH)
....Recent papers o Intro to likelihood -- Ch 2.1 (i),(ii)
« Cox, D.R. (2008). Principles of Statistical Inference (Cox)
Gl o Intro to likelihood — Ch 2.1

« Brazzale, A.R., Davison, A.C. and Reid, N. (2007). Applied Asympt
o Intro to pivots -- Ch. 2

Teaching "
..Current « Reid, N. (2000). Likelihood in JASA
....Previous Week 1

« Slides

« Handout (with exercises)




The likelihood function

Parametric model: f(y;0), y e Y,0e®© cR?
Likelihood function

L(0;y) = f(y;0), or L(0;y)=c(y)f(y:0), or L(6;y) o f(y;0)

typically, y = (V1,.--,¥n) X{yenos Xn i=1,...,n
f(y;0) or f(y | x; 0) is joint density

v

v

v

v

v

under independence L(6; y) o< [[f(yi | xi; 6)

v

log-likelihood ¢(60; y) = log L(6; y) = >_log f(y;i | xi; 0)

v

6 could have dimension d > n (e.g. genetics), or d 1 n, or
6 could have infinite dimension e.g.
regular model d < n and d fixed as nincreases

v

v
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Examples
> Y~ N(,LL, 02):

L(6:y) 1_n110 "oxp{— 5 5T — 1)}
E(yi) = x5

L(8: y) ﬁo "exp{—55Z(vi— X/ B)?}
E(y)) = m(x;), m(x) 19Bj(x)
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. examples
> Yi=p+p(Yior —p) +e, 6~ N(O,02):

n

L(0;y) =[] fvi | Yie1:0)fo(¥0: 0)

i=1

> ¥1,...,Yn are the times of jumps of a non-homogeneous
Poisson process with rate function A(-):

n T
NGyt = Zlog{)\(y,-)}—/o AMudu, O0<yy<---<ypn<rT
i=1
> ¥1,...,¥nli.i.d. observations from a U(0, ) distribution:

He "0<Yy << Yny <0
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Figure 4.1 Likelihoods
for the spring failure data
at stress 950 N/mm?. The
upper left panel is the
likelihood for the
exponential model, and
below it is a perspective
plot of the likelihood for
the Weibull model. The
upper right panel shows
contours of the log
likelihood for the Weibull
meodel; the exponential
likelihood is obtained by
setting o = 1. that is,
slicing L along the
vertical dotted line. The
lower right panel shows
the profile log likelihood
for @, which corresponds
to the log likelihood
values along the dashed
line in the panel above,
plotted against a.

4.1 - Likelihood
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96 4 . Likelithood

= Figure 4.2 Cauchy
o [ $ I likelihood and log
. ‘ ‘I ‘.I fi likelihood for the spring
<) [ I\ failure data at stress
g @ H o 8 [\ A | 'l‘ 950N/mm?.
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SM p. 96

Data: times of failure of a spring under stress
225,171,198, 189, 189, 135, 162, 135, 117, 162



Principle

“The probability model and the choice of [parameter] serve to
translate a subject-matter question into a mathematical and
statistical one”

Cox, 2006, p.3
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Non-computable likelihoods

» |Ising model:

1
f(y;0) = exp( Z 9:‘/)’:‘)’/)%
(i))eE

v

yi = +1; binary property of a node i in a graph with n
nodes

¢ measures strength of interaction between nodes / and j
E is the set of edges between nodes

v

v

v

partition function Z(0) = >_, exp(>_; jyee 0iVi¥))

Ravikumar et al. (2010). High-dimensional Ising model
selection... Ann. Statist. p.1287
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... complicated likelihoods

>

>

LTCC Likelihood The:

example: clustered binary data

latent variable:
Zip = X{,8+ bj+ ¢, bj~N(0,02), € ~ N(O,1)

r=1,...,n;: observations in a cluster/family/school...
i=1,...,nclusters
random effect b; introduces correlation between

observations in a cluster

observations: y;, = 1if z; > 0, else 0

Pr(yir =11 b)) = (X, + b)) = p; @(2) = [* e *"/2dx
likelihood 0 = (3, op)

L(#:y) =TTy log [ TI7Ly P (1 = pi) '~V (bi, o) b
more general: z; = x5+ w;.b; + ¢;

ory Week 1 November 5, 2012 11/41



Widely used

OO0 A Short Proof that Phylogenetic Tree Reconstruction by Maximum Li
g‘J v @ /l‘ @ http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans /tk
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IEEE/ACM TRANSACTIONS ON
COMPUTATIONAL BIOLOGY
AND BIOINFORMATICS

January-March 2006 (Vol. 3, No. 1) pp.92-94
A Short Proof that Phylogenetic Tree Reconstructi
Maximum Likelihood Is Hard

Sebastien Roch
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O O O Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maxi

@ 2} @ file:///Users/nancy/talks/waterloo/cropscience.html
Le Collége frangais d... Mark Up Your Docu... Canada411l Welcome to Universit.. TD Canada Trust Tech-
QUICK SEARCH: [advz

CROP SCIENCE [J0in Tooay | =
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Published online 1 February 2006
Published in Crop Sci 46:642-654 (2006)
DOI: 10.2135/cropsci2005.0191

@ 2006 Crop Science Society of America
677 S. Segoe Rd., Madison, WI 53711 USA

CROP BREEDING, GENETICS & CYTOLOGY

Estimating Genotypic Correlations and Their Standard Errors (
Multivariate Restricted Maximum Likelihood Estimation with S
Proc MIXED

James B. Holland”
USDA-ARS Plant Science Research Unit, Dep. of Crop Science, Box 7620, North Carolina State University, Raleigh, NC 2’

* Corresponding author (James Holland@ncsu .edu)

Plant breeders traditionally have estimated genotypic and phenotypic correlations between traits using the
moments on the basis of a multivariate analysis of variance (MANOVA). Drawbacks of using the methoc

MAMANnte tn actimate varanroe and Arnvariancse ~nmnnnante snrhide the naccihility Af ahtaining actimatac Ml



The Review of Financial Studies

Maximum Likelihood Estimation
of Latent Affine Processes

David S. Bates
University of Iowa

This article develops a direct filtration-based maximum likelihood methodology for
estimating the parameters and realizations of latent affine processes. Filtration is
conducted in the transform space of characteristic functions, using a version of Bayes’
rule for recursively updating the joint characteristic function of latent variables and
the data conditional upon past data. An application to daily stock market returns
over 1953-1996 reveals substantial divergences from estimates based on the Effi-
cient Methods of Moments (EMM) methodology; in particular, more substantial
and time-varying jump risk. The implications for pricing stock index options are
examined.
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IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5., MAY 2006

Single-Symbol Maximum Likelihood Decodable
Linear STBCs

Md. Zafar Ali Khan, Member, IEEE, and B. Sundar Rajan, Senior Member, IEEE

Abstract—Space-time block codes (STBCs) from orthogonal de-
signs (ODs) and coordinate interleaved orthogonal designs (CIOD)
have been attracting wider attention due to their amenability for
fast (single-symbol) maximum-likelihood (ML) decoding, and
full-rate with full-rank over quasi-static fading channels. How-
ever, these codes are instances of single-symbol decodable codes
and it is natural to ask, if there exist codes other than STBCs
form ODs and CIODs that allow single-symbol decoding? In
this paper, the above question is answered in the affirmative by
characterizing all linear STBCs, that allow single-symbol ML
decoding (not necessarily full-diversity) over quasi-static fading

Is-calling them singl designs (SDD).
The class SDD includes ODs and CIODs as proper subelasses.
Further, among the SDD, a class of those that offer full-diversity,
called Full-rank SDD (FSDD) are characterized and classified. We
then concentrate on square designs and derive the maximal rate
for square FSDDs using a constructional proof. It follows that 1)
except for N = 2, square complex ODs are not maximal rate and
2) a rate one square FSDD exlst only for two and four transmit
antennas. For des
leaved orthogonal designs (a superset of CIODS) are presented and
analyzed. Finally, for rapid-fading channels an equivalent matrix
channel representation is developed, which allows the results of
quasi-static fading channels to be applied to rapid-fading channels.
Using this representation we show that for rapid-fading channels
the rate of single-symbol STBCs are i of the
number of transmit antennas and inversely proportional to the
block-length of the code. Significantly, the CIOD for two transmit

CTDC bt smbol dacadaobl.

LTCC Likelihood Theu?}%"ﬁ ngv'écm%'é‘vi ) “é’dﬁizf“d“'g channels.

difference between coded modulation [used for single-input
single-output (SISO), single-iutput multiple-output (SIMO)]
and space—time codes is that in coded modulation the coding
is in time only while in space-time codes the coding is in
both space and time and hence the name. STC can be thought
of as a signal design problem at the transmitter to realize the
capacity benefits of MIMO systems [1], [2], though, several
developments toward STC were presented in [3]-[7] which
combine transmit and receive diversity, much prior to the results
on capacity. Formally, a thorough treatment of STCs was first
presented in [8] in the form of trellis codes [space—time trellis
codes (STTC)] along with appropriate design and performance
criteria.

The decoding complexity of STTC is exponential in band-
width efficiency and required diversity order. Starting from
Alamouti [12], several authors have studied space-time block
codes (STBCs) obtained from orthogonal designs (ODs) and
their variations that offer fast decoding (single-symbol de-
coding or double-symbol decoding) over quasi-static fading
channels [9]-[27]. But the STBCs from ODs are a class of
codes that are amenable to single-symbol decoding. Due to the
importance of single-symbol decodable codes, need was felt
for rigorous characterization of single-symbol decodable linear

Cs.
Following the spirit of [11], by a linear STBC,' we mean those

15/41



Molecular Biology and Evolution

Accuracy of Coalescent Likelihood Estimates: Do We Need More Sites,
More Sequences, or More Loci?

Joseph Felsenstein
Department of Genome Sciences and Department of Biology, University of Washington, Seattle

A computer simulation study has been made of the accuracy of estimates of @ = 4N, from a sample from a single isolated
population of finite size. The accuracies turn out to be well predicted by a formula developed by Fu and Li, who used
optimistic assumptions. Their formulas are restated in terms of accuracy, defined here as the reciprocal of the squared
coefficient of variation. This should be proportional to sample size when the entities sampled provide independent in-
formation. Using these formulas for accuracy, the sampling strategy for estimation of @ can be investigated. Two models
for cost have been used, a cost-per-base model and a cost-per-read model. The former would lead us to prefer to have a very
large number of loci, each one base long. The latter, which is more realistic, causes us to prefer to have one read per locus
and an optimum sample size which declines as costs of sampling organisms increase. For realistic values, the optimum
sample size is 8 or fewer individuals. This is quite close to the results obtained by Pluzhnikov and Donnelly for a cost-
per-base model, evaluating other estimators of ©. It can be understood by considering that the resources spent collecting
larger samples prevent us from considering more loci. An examination of the efficiency of Watterson’s estimator of © was
also made, and it was found to be reasonably efficient when the number of mutants per generation in the sequence in the
whole population is less than 2.5.

Introduction

The availability of molecular sequencing at prices that
even population biologists can afford has brought into ex-
istence new methods of estimation of population parame-
ters. Sequence samples from populations enable one to
make an estimate of the coalescent tree of genes connecting
these sequences. I have argued (Felsenstein 1992a) that
these enable a substantial increase in the accuracy of esti-
mation of population parameters like ® = 4N, the prod-
uct of effective population size, and the neutral mutation
rate per site. (This is usually expressed as 0, the neutral
mutation rate per locus but is perhaps better thought of
in terms of the neutral mutation rate per site.)

Fu and Li (1993) analyzed my claim further. They de-
veloped some approximations to the accuracy of

Fu (1994) developed a method which makes
a UPGMA estimate of the coalescent tree and constructs
a best linear unbiased estimate conditional on that being
the correct tree. In his simulations using the infinite-sites
model, his BLUE method achieved variances nearly as
low as the Fu and Li lower bound. It is not obvious from
this whether it would perform as well with data from an
actual finite-sites DNA sequence model of evolution, where
the tree is bound to be harder to infer. Nevertheless, the
g00d behavior of BLUE suggests that a full likelihood
method based on summing over all coalescent trees might
do almost as well as the Fu-Li lower bound.

In the present paper, the msul(s of a computer simu-
lation of likelih tes of © will be

likelihood estimation of ©. I will show below that these are

described, demonstrating that one of Fu and Li’s opti-

LTCC Likelihood Theory WJ&"F h@m&'&sl\ﬂmgﬂmcm had assumed that an infinite

Ta avarimad amd that fha cmalaceanf

culating the accuracy of maximum likelihood estimates

CE D Frriidac hacad mm 3t manm than fm e srend e Smoace
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Physical Review D

PHYSICAL REVIEW D 73, 015013 (2006)
Multidimensional mSUGRA likelihood maps

B.C. Allanach
DAMTP, CMS, Wilberforce Road, Cambridge, CB3 OWA, United Kingdom

C.G. Lester

Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 18 November 2005; published 25 January 2006)

We calculate the likelihood map in the full 7-dimensional parameter space of the minimal
symmetric standard model assuming universal boundary conditions on the supersymrmetry breakin,
Simultaneous variations of mg, Ay, My, tanB, m,, m, and a, (M) are apphed using a Markc
Monte Carlo algorithm. We use measurements of b — sy, (g — 2) , and Qpueh? in order to const
model. We present likelihood distributions for some of the sparticle masses, for the branching
BY — p* e~ and for m: — m,». An upper limit of 2 X 107# on this branching ratio might be ach
the Tevatron, and would rule out 29% of the currently allowed likelihood. If one allows for non-t
neutralino components of dark matter, this fraction becomes 35%. The mass ordering allows the in
cascade decay G, — x3 — Iy — x) with a likelihood of 24 = 4%. The stop-coannihilation r
highly disfavored, whereas the light Higgs region is marginally disfavored.

TV 101102 Mo oy T3 0180173 TACE _aopeaboso 14 0T o
e e e o e s o R S o e
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US Patent Office

07058142B2
a2y United States Patent (10) Patent No.: US 7,058,1¢
Coene et al. 45) Date of Patent: Jun. 6
(54) GENERATION OF AMPLITUDE LEVELS (56) References Cited

FOR A PARTIAL RESPONSE MAXIMUM
LIKELIHOOD (PRML) BIT DETECTOR

5,113,400
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In the News

HAVING A MID-LIFE CRISIS?
YOURE NOT ALONE
A study involving two million Dpeople in 72 countries
Sound men and women were less happy in their 40s
but that improved in later life.

PROBABILITY OF DEPRESSION BY AGE
PERCENTAGE LIKELTHOOD
0.022%

0.020% —
0.018%

0.016% — 5
0.014% — z -
0.012% — -
0.010% T
0.008%

0.006%

0.004%
0.002%
0.000%

Twenties Thirties Forties Fifties Sixties

SOURCES: IS WELL-BEING U-SHAPED OVER THE LIFE CYCLE?
RICHARD JOHNSON / NATIONAL POST

National Post, Toronto, Jan 30 2008

19/41
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Likelihood inference

» direct use of likelihood function
» note that only relative values are well-defined

» define relative likelihood

_ L)y L)
(9) = supy L(0")  L(6)

Royall (1977)

1= RL(6) > % # strongly supported,

% = RL(#) = l'—u, # supported,

ﬁ > RL(#) > ﬁ. 8 weakly supported, 6__)
5 = RL(6) > . 6 poorly supported,

1
To0s = RL(E) = 0, & very poorly supported.

SM (4.11)
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observed likelihood

Derived quantities; f(y; 0) t}e%ﬁ o é gg)
ikeli L(6:y) = c(y)f(y:0)

log-likelihood

n
score -

observed information

expected information

LTCC Likelihood Theory Week 1 November 5, 2012

0;y)=logL(8;y) =logf(y;0) + a(y)

uE) = ouo:y)/o0 - U (G ?{)

j(0) = —820(6; y) /00067

i(0) = EqU(O)U(0)T called i1 (0) in CH
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. derived quantities; f(y; 0)

observed likelihood L(9;y) o< TT f(¥i; 0)
log-likelihood 00;y)=>"1,logf(y;0)+aly)
o
score U9) = 0¢(0;y)/00 = Op(\/)
maximum likelihood estimate 0 = d(y) = arg sup, £(6; y)
Fisher information j(0) = —8%0(0; y) /90007
expected information i(0) = EoU(O)U(0)T = Ogp)

P H'H
ULI. IUUIILILIUO
ek 23/41

Al L
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Limiting distributions

> U0) = X7 Ui(0) . T/(’Q'(JL/};'/W

~ E{U)}= O
»var(U®) = 1(6) = nt, (9) d
> U(0)/v/n 55 N{0,i1(0)} <— %2 CLT
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.. limiting distributions p
- U0))yn s NpO (o)) WL — L (6)

A R L/[@) )

»| U) = 0= U(9) + (0 — 0)U'(6) + Rn

> (0-6)={U(9)/i(O)H1 + 0p(1)} /N

> /n(d — 0) £+ N{0, i (0)} \§ © :a%ﬁﬁl@
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... limiting distributions

N 1 -
> /n(d) = N{o, i7" (6)} B ( 9 - 3) —N fOJll(U))
> 0(0) = £(0) + (0 — 0)¢' (D) + (0 — 0)2¢"(D) + Ry

> 2{(0) — £(0)} = (0 - )%i(6){1 + 0p(1)}

&0 Lk k)
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... limiting distributions
> /n() 55 N{0.i77(0)}

> 0(0) = £(0) + (0 — 0)¢' (D) + (0 — 0)2¢"(D) + Ry
> 2{¢(0) — £(0)} = (- 0)%i(0){1 + 0p(1)}

> 2{0(0) — €(6)} 5 3




Inference from limiting distributions

> 0~ Ng{6,j1(6)} j(@) =—t"(8: y)
» “f is estimated to be 21.5 (95% CI 19.5 — 23.5)” .
> 19.521.5 23.5 0+25

v

w(0) = 2{¢(0) — ()} ~ x3
“likelihood based ClI for 6§ with confidence level 95% is
(18.6,23.0)" 18.621.9 230

log-likelihood function

v

log-likelihood

. . a o
T T T T T T T T
16 17 18 19 20 21 22 23
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Inference from limiting distributions

> 0~ Ng{6,j1(6)} j(@) =—t"(8: y)
» “f is estimated to be 21.5 (95% CI 19.5 — 23.5)” .
> 19.521.5 23.5 0+25

v

w(0) = 2{¢(0) — ()} ~ x3
“likelihood based ClI for 6§ with confidence level 95% is
(18.6,23.0)" 18.621.9 230

log-likelihood function

v

log-likelihood

. . a o
T T T T T T T T
16 17 18 19 20 21 22 23
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... inference from limiting distributions

» pivotal quantities and p-value functions; 6 scalar

LTCC Likelihood Theory Week 1 November 5, 2012 29/41



... inference from limiting distributions
» pivotal quantities and p-value functions; 6 scalar [L(Q) —

- n /\/(O,L@

ru(0) = U(0)j~/2(8) ~ N(0,1) -
(/L L l/‘%N/O,I)

LTCC Likelihood Theory Week 1 November 5, 2012 29/41
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. inference from limiting distributions

» pivotal quantities and p-value functions; 6 scalar
| 2
ry(0) = U(0)j"/2(6) ~ N(0, 1)
>
Pr{U(9)i~"/2(8) < u(6)j~/2(6)} = o {u(9)i"/%(9)}
» under sampling from the model f(y; 0) = f(y1,...,Yn: 0)

pu(9) = {u(6)j~/3(9)}
p-value function (of 6, for fixed data)
shorthand

— ®{r,(0)},and
{ru(0)},an I

= o{r(0)}. (&’J‘a(ﬁe)ﬂ
= U0} + 25(6)~ (e

are all p-value functlonsTor 6, based on limiting dist'ns

v
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«( 14 CHAPTER 2. UNCERTAINTY AND APPROXIMATION

06 08
1 1

Significance function
04
|

Figure 2.2: Approximate pivots and P-values based on an exponential sample
of size n = 1. Left: likelihood root r(f) (solid), score pivot s(f) (dots), Wald
pivot £(6) (dashes), modified likelihood root r*(#) (heavy), and exact pivot
A3 y; (dot-dash). The modified likelihood root is indistinguishable from
the exact pivot. The horizontal lines are at 0,£1.96. Right: corresponding
significance functions, with horizontal lines at 0.025 and 0.975.
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Example
> f(y;;0) = 6Yie 0]y,

ST =3
> ((0) = l
Hs ~p(nie)

> re(0) = (s — nb)//s

» Pr(S<s)#1—-Pr(S>5s)

disc Ao

» upper and lower p-valug/functions: Pr(Sk s), Pr(S<s)

» mid p-value function: Pé(S < sf) + 0.5IT9r(S = s)
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30 CHAPTER 3. SIMPLE ILLUSTRATIONS

Cumulative distribution function

20 25 30

Figure 3.2: Cumulative distribution function for Poisson distribution with
parameter 6.7 (solid), with approximations ®{r*(y)} (dashes) and ®{r*(y +
1/2)} (dots). The vertical lines are at 0.5,1.5,2.5, . ..



Aside

v

for inference re 6, given y, plot p(0) vs 0

v

for p-value for Hp : 6 = 6, compute p(6p)

v

for checking whether, e.g. ®{rs(9)} is a good
approximation,

» compare p(6) = ¢{re(0)} to Pexact(¢), as a function of 6,
fixed y

» or compare p(fy) to Pexact(fo) as a function of y

v

if Pexact(€) Not available, simulate
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Nuisance parameters
> (= (’Lb,/\) = (1/)1,...,¢q,)\1,...,)\d_q)
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Nuisance parameters
> 0= (¢»)\) = (¢1a"'7¢(77)‘1a"'7)‘d—q)
o= (g5) BwA =0 couplraieeA ik

] .
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Nuisance parameters
> 0= (¢7A) = (¢1a"'7¢(77)‘1a"'7)‘d—q)

uo)= (). A =0

i i , ] ]
5 5) -G 5

N D Dy D
3 N TN
i~1(0) = (iW ,-»\) j71(8) = G,\w 5-»)-

> 190(0) = {ipp(0) = ipa(0)is\ (0)inu (0},

v

v
~

>
~

v

> lp(v) = L, Xy), () = —Ch(1)
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Inference from I|m|t|ng dlstrlbutlons nwsance

parameters L9 -9) ~N (o /(J 8))

Wu(¥) = Up(v, Ap) TP (0, 80) U (0, 8y) ~ X5
We(v) = (b — D) (I (b, N} (D — ) ~ x5
w(tp) = 2{0(sh, A) — £(1p, Ay)} = 2{tp(P) — tp(1)} ~ X5

Approximate Pivots

;-

Sesve () = )@ < N.1),
W ) = (- D)) < N,
foghl 1) = snd PR~ o)) NO.D

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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2.3. SEVERAL PARAMETERS 19

6 -4 <
| | |

Log likelihood

-8
1

-10

Figure 2.3: Inference for shape parameter 1 of gamma sample of size n =
5. Left: profile log likelihood £ (solid) and the log likelihood from the
conditional density of u given v (heavy). Right: likelihood root r(v) (selid),
Wald pivot t(v) (dashes), modified likelihood root r*(v) (heavy), and exact
pivot overlying 7*(1). The horizontal lines are at 0, +1.96.



Properties of likelihood functions and likelihood
inference
» the likelihood depends only on the minimal sufficient
statistic

» recall:
L(6;y) = my(s;0)mo(y) <= sis minimal sufficient

L(0;y)

» equivalently L{6o: )

depends only on s

» “the likelihood map is sufficient” Fraser & Naderi, 2006;
Barndorff-Nielsen, et al, 1976

i.ey — Lo(-;y), ory — L(-;y) normed
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. properties
» maximum likelihood estimates are equivariant: h(6) = h(
for one-to-one h(-)
» gquestion: which of we, w,, w are invariant under
reparametrization of the full parameter: ¢(6)?

» question: which of re, r,, r are invariant under
interest-respecting reparameterizations

(10, A) = {, n(4, A)}?

>

)

» consistency of maximum likelihood estimate?

» equivalence of maximum likelihood estimate and root of
score equation?

observed vs. expected |nfor ation

we)i%le)  wlol ;™ () (Jg','z(e) o)y @)
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Asymptotics for Bayesia inference

> T = eXp{EG}( :/(
Y Teelis Xl 0 }w A il&(ai iS)
J

Toty) ~ N (8 47 (B)
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Asymptotics for Bayesian inference wd)+ L 0-8)1'f3)
(0] y) = exp{£(0:x)im(0) — o AL
[ exp{(6; x)}x(6)d6 (e- mq

» expand numerator and denomlnator about f, assuming

.M))O. U’“GW @ =) ()33

(@ |y
(”“L)*feo

N —32 v
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Asymptotics for Bayesian inference

> (0] y) = exp{4(0; x)}(0)
[ exp{£(0; x)}m(6)do

expand numerator and denominator about f, assuming
¢(6) =0

v

(6| y) = N@.j7"(6)

v

expand denominator only about 8

v

result

v

"019)= 5 1)d/z|/( B) =2 exp{U(B: y) — €(6; y)} =

3

—~
e

N—r
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xlely)= € - (&
fo’( —vr/@’a‘g/

6L(9)7<’(9 /f 48)+1(6-8)L"(9)«-
(7 (6)t-)

ﬁ —y{e\} db
«t( ) /\ 1 (e- ’/8
® 5) feb[& CANA )’

(l

0
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