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Approximate Outline
1. Asymptotic theory for likelihood; likelihood root, maximum likelihood

estimate, score function; pivotal quantities, exact and approximate
ancillary; Laplace approximations for Bayesian inference

2. Higher order approximations for non-Bayesian inference; marginal,
conditional and adjusted log-likelihoods; sample space differentiation
and approximate ancillary; examples

3. Likelihood inference for complex data structure: time series, spatial
models, space-time models, extremes; composite likelihood – definition,
summary statistics, asymptotic theory; examples

4. Semi-parametric likelihoods for point process data; empirical likelihood;
nonparametric models

http://www.utstat.toronto.edu/reid/ltcc

Assessment: Problems assigned weeks 1 to 4; due weeks 2 to 5;
discussion on week 5.
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The likelihood function
I Parametric model: f (y ; θ), y ∈ Y, θ ∈ Θ ⊂ Rd

I Likelihood function

L(θ; y) = f (y ; θ), or L(θ; y) = c(y)f (y ; θ), or L(θ; y) ∝ f (y ; θ)

I typically, y = (y1, . . . , yn) x1, . . . , xn i = 1, . . . , n

I f (y ; θ) or f (y | x ; θ) is joint density

I under independence L(θ; y) ∝
∏

f (yi | xi ; θ)

I log-likelihood `(θ; y) = log L(θ; y) =
∑

log f (yi | xi ; θ)

II θ could have dimension d > n (e.g. genetics), or d ↑ n, or
I θ could have infinite dimension e.g.
I regular model d < n and d fixed as n increases
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Examples
I yi ∼ N(µ, σ2):

L(θ; y) =
n∏

i=1

σ−n exp{− 1
2σ2 Σ(yi − µ)2}

I E(yi) = xT
i β:

L(θ; y) =
n∏

i=1

σ−n exp{− 1
2σ2 Σ(yi − xT

i β)2}

I E(yi) = m(xi), m(x) = ΣJ
j=1φjBj(x):

L(θ; y) =
n∏

i=1

σ−n exp{− 1
2σ2 Σ(yi − ΣJ

j=1φjBj(xi))2}
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... examples
I yi = µ+ ρ(yi−1 − µ) + εi , εi ∼ N(0, σ2):

L(θ; y) =
n∏

i=1

f (yi | yi−1; θ)f0(y0; θ)

I y1, . . . , yn are the times of jumps of a non-homogeneous
Poisson process with rate function λ(·):

`{λ(·); y} =
n∑

i=1

log{λ(yi)}−
∫ τ

0
λ(u)du, 0 < y1 < · · · < yn < τ

I y1, . . . , yn i.i.d. observations from a U(0, θ) distribution:

L(θ; y) =
n∏

i=1

θ−n, 0 < y(1) < · · · < y(n) < θ
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SM
p. 95



SM p. 96

Data: times of failure of a spring under stress
225, 171, 198, 189, 189, 135, 162, 135, 117, 162



Principle
“The probability model and the choice of [parameter] serve to
translate a subject-matter question into a mathematical and
statistical one”

Cox, 2006, p.3
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Non-computable likelihoods
I Ising model:

f (y ; θ) = exp(
∑

(i,j)∈E

θijyiyj)
1

Z (θ)

I yi = ±1; binary property of a node i in a graph with n
nodes

I θij measures strength of interaction between nodes i and j
I E is the set of edges between nodes

I partition function Z (θ) =
∑

y exp(
∑

(i,j)∈E θijyiyj)

Ravikumar et al. (2010). High-dimensional Ising model
selection... Ann. Statist. p.1287
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... complicated likelihoods
I example: clustered binary data
I latent variable:

zir = x ′irβ + bi + εir , bi ∼ N(0, σ2
b), εir ∼ N(0,1)

I r = 1, . . . ,ni : observations in a cluster/family/school...
i = 1, . . . ,n clusters

I random effect bi introduces correlation between
observations in a cluster

I observations: yir = 1 if zir > 0, else 0
I Pr(yir = 1 | bi) = Φ(x ′irβ + bi) = pi Φ(z) =

∫ z 1√
2π

e−x2/2dx

I likelihood θ = (β, σb)
L(θ; y) =

∏n
i=1 log

∫∞
−∞

∏ni
r=1 pi

yir (1− pi)
1−yirφ(bi , σ

2
b)dbi

I more general: zir = x ′irβ + w ′ir bi + εir
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Widely used
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The Review of Financial Studies
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Single-Symbol Maximum Likelihood Decodable
Linear STBCs

Md. Zafar Ali Khan, Member, IEEE, and B. Sundar Rajan, Senior Member, IEEE

Abstract—Space–time block codes (STBCs) from orthogonal de-
signs (ODs) and coordinate interleaved orthogonal designs (CIOD)
have been attracting wider attention due to their amenability for
fast (single-symbol) maximum-likelihood (ML) decoding, and
full-rate with full-rank over quasi-static fading channels. How-
ever, these codes are instances of single-symbol decodable codes
and it is natural to ask, if there exist codes other than STBCs
form ODs and CIODs that allow single-symbol decoding? In
this paper, the above question is answered in the affirmative by
characterizing all linear STBCs, that allow single-symbol ML
decoding (not necessarily full-diversity) over quasi-static fading
channels-calling them single-symbol decodable designs (SDD).
The class SDD includes ODs and CIODs as proper subclasses.
Further, among the SDD, a class of those that offer full-diversity,
called Full-rank SDD (FSDD) are characterized and classified. We
then concentrate on square designs and derive the maximal rate
for square FSDDs using a constructional proof. It follows that 1)
except for = 2, square complex ODs are not maximal rate and
2) a rate one square FSDD exist only for two and four transmit
antennas. For nonsquare designs, generalized coordinate-inter-
leaved orthogonal designs (a superset of CIODs) are presented and
analyzed. Finally, for rapid-fading channels an equivalent matrix
channel representation is developed, which allows the results of
quasi-static fading channels to be applied to rapid-fading channels.
Using this representation we show that for rapid-fading channels
the rate of single-symbol decodable STBCs are independent of the
number of transmit antennas and inversely proportional to the
block-length of the code. Significantly, the CIOD for two transmit
antennas is the only STBC that is single-symbol decodable over
both quasi-static and rapid-fading channels.

Index Terms—Diversity, fast ML decoding, multiple-input–mul-
tiple-output (MIMO), orthogonal designs, space–time block codes
(STBCs).

I. INTRODUCTION

S INCE the publication of capacity gains of multiple-input
multiple-output (MIMO) systems [1], [2] coding for MIMO

systems has been an active area of research and such codes
have been christened space–time codes (STCs). The primary
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on Advanced Research in Mathematical Engineering, and in part by the
Council of Scientific and Industrial Research (CSIR, India) Research Grant
(22(0365)/04/EMR-II). The material in this paper was presented in part at the
2002 and 2003 IEEE International Symposia on Information Theory, Lausanne,
Switzerland, June/July 2002 and Yokohama, Japan, June/July 2003.

Md. Z. A. Khan is with the Wireless Communications Research Center, Inter-
national Institute of Information Technology, Hyderabad 500019, India (e-mail:
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partment, Indian Institute of Science, Bangalore 560012, India (e-mail:
bsrajan@ece.iisc.ernet.in).
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Digital Object Identifier 10.1109/TIT.2006.872970

difference between coded modulation [used for single-input
single-output (SISO), single-iutput multiple-output (SIMO)]
and space–time codes is that in coded modulation the coding
is in time only while in space–time codes the coding is in
both space and time and hence the name. STC can be thought
of as a signal design problem at the transmitter to realize the
capacity benefits of MIMO systems [1], [2], though, several
developments toward STC were presented in [3]–[7] which
combine transmit and receive diversity, much prior to the results
on capacity. Formally, a thorough treatment of STCs was first
presented in [8] in the form of trellis codes [space–time trellis
codes (STTC)] along with appropriate design and performance
criteria.

The decoding complexity of STTC is exponential in band-
width efficiency and required diversity order. Starting from
Alamouti [12], several authors have studied space–time block
codes (STBCs) obtained from orthogonal designs (ODs) and
their variations that offer fast decoding (single-symbol de-
coding or double-symbol decoding) over quasi-static fading
channels [9]–[27]. But the STBCs from ODs are a class of
codes that are amenable to single-symbol decoding. Due to the
importance of single-symbol decodable codes, need was felt
for rigorous characterization of single-symbol decodable linear
STBCs.

Following the spirit of [11], by a linear STBC,1 we mean those
covered by the following definition.

Definition 1 (Linear STBC): A linear design, , is a
matrix whose entries are complex linear combinations of
complex indeterminates ,
and their complex conjugates. The STBC obtained by letting
each indeterminate to take all possible values from a complex
constellation is called a linear STBC over . Notice that

is basically a “design” and by the STBC we mean
the STBC obtained using the design with the indeterminates
taking values from the signal constellation . The rate of the
code/design2 is given by symbols/channel use. Every
linear design can be expressed as

(1)

where is a set of complex matrices called weight
matrices of . When the signal set is understood from the
context or with the understanding that an appropriate signal set

1Also referred to as a linear dispersion code [36]
2Note that if the signal set is of size 2 the throughput rateR in bits per second

per Hertz is related to the rate of the designR as R = Rb.

0018-9448/$20.00 © 2006 IEEE
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Molecular Biology and Evolution

Accuracy of Coalescent Likelihood Estimates: Do We Need More Sites,
More Sequences, or More Loci?

Joseph Felsenstein
Department of Genome Sciences and Department of Biology, University of Washington, Seattle

A computer simulation study has been made of the accuracy of estimates ofH5 4Nel from a sample from a single isolated
population of finite size. The accuracies turn out to be well predicted by a formula developed by Fu and Li, who used
optimistic assumptions. Their formulas are restated in terms of accuracy, defined here as the reciprocal of the squared
coefficient of variation. This should be proportional to sample size when the entities sampled provide independent in-
formation. Using these formulas for accuracy, the sampling strategy for estimation of H can be investigated. Two models
for cost have been used, a cost-per-base model and a cost-per-read model. The former would lead us to prefer to have a very
large number of loci, each one base long. The latter, which is more realistic, causes us to prefer to have one read per locus
and an optimum sample size which declines as costs of sampling organisms increase. For realistic values, the optimum
sample size is 8 or fewer individuals. This is quite close to the results obtained by Pluzhnikov and Donnelly for a cost-
per-base model, evaluating other estimators of H. It can be understood by considering that the resources spent collecting
larger samples prevent us from considering more loci. An examination of the efficiency of Watterson’s estimator ofH was
also made, and it was found to be reasonably efficient when the number of mutants per generation in the sequence in the
whole population is less than 2.5.

Introduction

The availability of molecular sequencing at prices that
even population biologists can afford has brought into ex-
istence new methods of estimation of population parame-
ters. Sequence samples from populations enable one to
make an estimate of the coalescent tree of genes connecting
these sequences. I have argued (Felsenstein 1992a) that
these enable a substantial increase in the accuracy of esti-
mation of population parameters like H 5 4Nel, the prod-
uct of effective population size, and the neutral mutation
rate per site. (This is usually expressed as h, the neutral
mutation rate per locus but is perhaps better thought of
in terms of the neutral mutation rate per site.)

Fu and Li (1993) analyzed my claim further. They de-
veloped some approximations to the accuracy of maximum
likelihood estimation ofH. I will show below that these are
remarkably good approximations, better than one might
have expected. My argument had assumed that an infinite
number of sites could be examined and that the coalescent
tree was therefore precisely known in both topology and
coalescence times. Fu and Li (1993) did not assume that
the coalescence times were precisely known, but they
did assume that we could infer the substitutions on each
branch of the tree and that in addition we could assign those
according to which coalescent interval they occurred in.
Their result made use of the total number of substitutions
in each coalescent interval. Although it did not use the tree
topology, it is hard to see how one could have the assign-
ment to coalescent interval without an assignment to branch
of the topology as well. Their approximations were there-
fore necessarily overoptimistic, though not as much as mine
had been. They found that there was an increase in accuracy
of estimation using likelihood methods but that it would not
be as large an increase as I had claimed.

Fu (1994) developed a method which makes
a UPGMA estimate of the coalescent tree and constructs
a best linear unbiased estimate conditional on that being
the correct tree. In his simulations using the infinite-sites
model, his BLUE method achieved variances nearly as
low as the Fu and Li lower bound. It is not obvious from
this whether it would perform as well with data from an
actual finite-sites DNA sequence model of evolution, where
the tree is bound to be harder to infer. Nevertheless, the
good behavior of BLUE suggests that a full likelihood
method based on summing over all coalescent trees might
do almost as well as the Fu-Li lower bound.

In the present paper, the results of a computer simu-
lation of coalescent likelihood estimates of H will be
described, demonstrating that one of Fu and Li’s opti-
mistic approximation formulas does do a good job of cal-
culating the accuracy of maximum likelihood estimates
of H. Formulas based on it can then to be used to inves-
tigate optimal design of experiments for estimating H. The
results turn out to be quite similar to those of Pluzhnikov
and Donnelly (1996), who evaluated optimal designs
using earlier methods of estimation ofH. Their simulations
explicitly check the effect of the number of loci, finding
that the accuracy is proportional to the number of loci,
as expected and as assumed here. These allow one to
see how effectively accuracy can be increased by sampling
more sites, more sequences, or more unlinked loci. The
results, which strongly back collecting more loci rather
than more sites or more sequences, can be argued to be in-
tuitively reasonable.

Likelihoods with Coalescents

In population samples at a locus, there are likely to
be only a few sites segregating within the population so
that the tree topology is unlikely to be known well.
Monte Carlo integration methods have been developed
by Griffiths and Tavaré (1994a, 1994b, 1994c) and by
Kuhner, Yamato, and Felsentein (1995) to address this
problem.

Key words: coalescent, maximum likelihood, population size, sam-
pling design.

E-mail: joe@gs.washington.edu.

Mol. Biol. Evol. 23(3):691–700. 2006
doi:10.1093/molbev/msj079
Advance Access publication December 19, 2005

� The Author 2005. Published by Oxford University Press on behalf of
the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please e-mail: journals.permissions@oxfordjournals.org
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Physical Review D
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US Patent Office
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In the News

National Post, Toronto, Jan 30 2008
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Likelihood inference
I direct use of likelihood function
I note that only relative values are well-defined

I define relative likelihood

RL(θ) =
L(θ)

supθ′ L(θ′)
=

L(θ)

L(θ̂)

SM (4.11)

LTCC Likelihood Theory Week 1 November 5, 2012 20/41

Nancy



Derived quantities; f (y ; θ)

observed likelihood L(θ; y) = c(y)f (y ; θ)

log-likelihood `(θ; y) = log L(θ; y) = log f (y ; θ) + a(y)

score U(θ) = ∂`(θ; y)/∂θ

observed information j(θ) = −∂2`(θ; y)/∂θ∂θT

expected information i(θ) = EθU(θ)U(θ)T called i1(θ) in CH
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... derived quantities; f (y ; θ)
observed likelihood L(θ; y) ∝

∏n
i=1 f (yi ; θ)

log-likelihood `(θ; y) =
∑n

i=1 log f (y ; θ)+a(y)

score U(θ) = ∂`(θ; y)/∂θ = Op( )

maximum likelihood estimate θ̂ = θ̂(y) = arg supθ `(θ; y)

Fisher information j(θ̂) = −∂2`(θ̂; y)/∂θ∂θT

expected information i(θ) = EθU(θ)U(θ)T = O( )

Bartlett identities
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Limiting distributions
I U(θ) =

∑n
i=1 Ui(θ)

I E{U(θ)} =

I var{U(θ)} =

I U(θ)/
√

n L−→ N{0, i1(θ)}
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... limiting distributions
I U(θ)/

√
n L−→ N{0, i1(θ)}

I U(θ̂) = 0 = U(θ) + (θ̂ − θ)U ′(θ) + Rn

I (θ̂ − θ) = {U(θ)/i(θ)}{1 + op(1)}

I
√

n(θ̂ − θ)
L−→ N{0, i−1

1 (θ)}
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... limiting distributions
I
√

n(θ̂)
L−→ N{θ, i−1

1 (θ)}

I `(θ) = `(θ̂) + (θ − θ̂)`′(θ̂) + 1
2(θ − θ̂)2`′′(θ̂) + Rn

I 2{`(θ̂)− `(θ)} = (θ̂ − θ)2i(θ){1 + op(1)}

I 2{`(θ̂)− `(θ)} L−→ χ2
d
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Inference from limiting distributions
I θ̂

.∼ Nd{θ, j−1(θ̂)} j(θ̂) = −`′′(θ̂; y)
I “θ is estimated to be 21.5 (95% CI 19.5− 23.5)”
I 19.5 21.5 23.5 θ̂ ± 2σ̂

I w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2
d

I “likelihood based CI for θ with confidence level 95% is
(18.6,23.0)” 18.6 21.5 23.0

16 17 18 19 20 21 22 23

−
4

−
3

−
2

−
1

0

log−likelihood function

θθ

lo
g−

lik
el

ih
oo

d

θθθθ

θθ −− θθ

1.92 w
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... inference from limiting distributions
I pivotal quantities and p-value functions; θ scalar
I

ru(θ) = U(θ)j−1/2(θ̂)
.∼ N(0,1)

I

Pr{U(θ)j−1/2(θ̂) ≤ u(θ)j−1/2(θ̂)} .= Φ{u(θ)j−1/2(θ̂)}
I under sampling from the model f (y ; θ) = f (y1, . . . , yn; θ)
I

pu(θ) = Φ{u(θ)j−1/2(θ̂)}
p-value function (of θ, for fixed data)

I shorthand

= Φ{ru(θ)},and
= Φ{re(θ)},
= Φ{r(θ)}

are all p-value functions for θ, based on limiting dist’ns
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Example
I f (yi ; θ) = θyi e−θ/yi !

I `(θ) =

I `′(θ) =

I `′′(θ) =

I re(θ) = (s − nθ)/
√

s

I Pr(S ≤ s) 6= 1− Pr(S ≥ s)

I upper and lower p-value functions: Pr(S < s), Pr(S ≤ s)

I mid p-value function: Pr(S < sr) + 0.5Pr(S = s)
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Aside
I for inference re θ, given y , plot p(θ) vs θ

I for p-value for H0 : θ = θ0, compute p(θ0)

I for checking whether, e.g. Φ{re(θ)} is a good
approximation,

I compare p(θ) = Φ{re(θ)} to pexact(θ), as a function of θ,
fixed y

I or compare p(θ0) to pexact(θ0) as a function of y

I if pexact(θ) not available, simulate

LTCC Likelihood Theory Week 1 November 5, 2012 34/41



Nuisance parameters
I θ = (ψ, λ) = (ψ1, . . . , ψq, λ1, . . . , λd−q)

I U(θ) =

(
Uψ(θ)
Uλ(θ)

)
, Uλ(ψ, λ̂ψ) = 0

I i(θ) =

(
iψψ iψλ
iλψ iλλ

)
j(θ) =

(
jψψ jψλ
jλψ jλλ

)
I i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
j−1(θ) =

(
jψψ jψλ

jλψ jλλ

)
.

I iψψ(θ) = {iψψ(θ)− iψλ(θ)i−1
λλ (θ)iλψ(θ)}−1,

I `P(ψ) = `(ψ, λ̂ψ), jP(ψ) = −`′′P(ψ)
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I θ = (ψ, λ) = (ψ1, . . . , ψq, λ1, . . . , λd−q)

I U(θ) =

(
Uψ(θ)
Uλ(θ)

)
, Uλ(ψ, λ̂ψ) = 0

I i(θ) =

(
iψψ iψλ
iλψ iλλ

)
j(θ) =

(
jψψ jψλ
jλψ jλλ

)
I i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
j−1(θ) =

(
jψψ jψλ

jλψ jλλ

)
.

I iψψ(θ) = {iψψ(θ)− iψλ(θ)i−1
λλ (θ)iλψ(θ)}−1,
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Inference from limiting distributions, nuisance
parameters

wu(ψ) = Uψ(ψ, λ̂ψ)T{iψψ(ψ, λ̂ψ)}Uψ(ψ, λ̂ψ)
.∼ χ2

q

we(ψ) = (ψ̂ − ψ){iψψ(ψ̂, λ̂)}−1(ψ̂ − ψ)
.∼ χ2

q

w(ψ) = 2{`(ψ̂, λ̂)− `(ψ, λ̂ψ)} = 2{`P(ψ̂)− `P(ψ)} .∼ χ2
q;

Approximate Pivots

ru(ψ) = `′P(ψ)jP(ψ̂)1/2 .∼ N(0,1),

re(ψ) = (ψ̂ − ψ)jP(ψ̂)1/2 .∼ N(0,1),

r(ψ) = sign(ψ̂ − ψ)2{`P(ψ̂)− `P(ψ)} .∼ N(0,1)
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Properties of likelihood functions and likelihood
inference

I the likelihood depends only on the minimal sufficient
statistic

I recall:
L(θ; y) = m1(s; θ)m2(y) ⇐⇒ s is minimal sufficient

I equivalently
L(θ; y)

L(θ0; y)
depends only on s

I “ the likelihood map is sufficient” Fraser & Naderi, 2006;
Barndorff-Nielsen, et al, 1976

i.e y → L̄0(·; y), or y → L̄(·; y) normed
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... properties
I maximum likelihood estimates are equivariant: ĥ(θ) = h(θ̂)

for one-to-one h(·)
I question: which of we, wu, w are invariant under

reparametrization of the full parameter: ϕ(θ)?
I question: which of re, ru, r are invariant under

interest-respecting reparameterizations
(ψ, λ)→ {ψ, η(ψ, λ)}?

I consistency of maximum likelihood estimate?
I equivalence of maximum likelihood estimate and root of

score equation?

I observed vs. expected information
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Asymptotics for Bayesian inference
I π(θ | y) =

exp{`(θ; x)}π(θ)∫
exp{`(θ; x)}π(θ)dθ

I expand numerator and denominator about θ̂, assuming
`′(θ̂) = 0

I π(θ | y)
.

= N(θ̂, j−1(θ̂)

I expand denominator only about θ̂

I result

π(θ | y)
.

=
1

(2π)d/2 |j(θ̂)|−1/2 exp{`(θ̂; y)− `(θ; y)}π(θ)

π(θ̂)
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