Continuous time processes - Part I

We are going to look at \(\{X(t) \mid t \geq 0\} \) such that the state space is \(\{0, 1, 2, \ldots\} \) and such that \(\forall t_0 < t_1 < t_2 < \ldots \) \(\{X(t_2)\} \) is a MC. We also assume time homogeneous processes. The Markov property is \(\Rightarrow \) given \(X(t) \), \(\{X(s) \mid s \prec t\} \) and \(\{X(s) \mid s \succ t\} \) are independent.

A typical "data set" or sample path or realization looks like:

\[
x(t)
\]

\[
\begin{array}{c}
\text{form a point process}
\end{array}
\]
A discrete-time Markov chain \(\{X(t) : t \geq 0\} \) may be thought of as a point process where points occur in the following way:
- \(X(t) \) stays in state \(i \) for a time \(T_i \).
- \(T_i \) is exponential (\(\mathcal{E}(\lambda_i) \)).
- The \(T_i \) are independent.
- When leaving \(i \), the probability of going to \(j \) is \(P_{ij} \) (\(j \neq i \)).

Remarks:
(a) If the process is observed only at jumps, then we get a discrete-time Markov chain.
(b) A semi-Markov process would be similar except that the times between jumps would not be exponential and the time stayed in \(i \) would depend on the target \(j \).
(c) \(P(T_i > t+s | T_i > s) = P(T_i > t) \)

\[\text{Lack of memory} \]

© © © of the Markov Property.

© © © \(T_i \sim \text{exponential}(\beta_i) \)

Note that large rates \(\Rightarrow \) small means so it's not hard to imagine jumping right out of the state space.
The q_i may be thought of as the rate of leaving i. Typically $0 < q_i < \infty$ but $q_i = 0$ may be thought of as an absorbing state and $q_i = \infty$ an "instantaneous" state—leave as soon as you enter.

The transition rate from i to $j \neq i$ is defined as

$$q_{ij} = q_i \cdot P_{ij}$$

The process is regular or honest if there can only be a finite number of transitions in $[0, t]$, $\forall t > 0$. In fact, a possibility which we will see in a Birth process. Assuming none doesn't escape the state space

$$\sum_{j \neq i} P_{ij} = 1$$
Set \(q_{ii} = -q_i \) and \(Q = \{ q_{ij} \} \).

This matrix is called the generator of the process and plays a similar role to that of the transition matrix \(P \) in a discrete time MC. Notice

\[
\sum_j q_{ij} = \left(\sum_{j \neq i} q_i P_{ij} \right) - q_i = \left(q_i \sum_{j \neq i} P_{ij} \right) - q_i = 0
\]

That is

\[Q \mathbf{1} = 0 \]
The CKE are
\[P(t+h) = P(t) P(h), \]
where \(P(t) = \{ p_{ij}(t) \} \) and \(p_{ij}(t) \) is the transition function.

Consider
\[p_{ij}(t+h) = \sum_k P(X(t+h) = j | X(h) = k, X(0) = i) \]
\[\times P(X(h) = k | X(0) = i) \]
\[= \sum_k P(X(t+h) = j | X(h) = k) P(X(h) = k | X(0) = i) \]

Note that we have conditioned back to \(X(h) \). So
\[p_{ij}(t+h) = \sum_k p_{kj}(t) p_{ik}(h) \]
\[= \sum_k p_{ik}(h) p_{kj}(t) \]

which is, of course, restating the CKE in component form. In matrix terms
\[P(t+h) = P(h) P(t) \]
Now, under certain conditions,

\[Q = \lim_{h \to 0} \frac{P(h) - I}{h} = \dot{P}(0) \]

In this case

\[\frac{P(t+h) - P(t)}{h} = \frac{P(h) P(t) - P(t)}{h} \]

\[= \left[\frac{P(h) - I}{h} \right] P(t) \]

so that

\[\dot{P}(t) = Q P(t) \quad \Leftrightarrow \quad P(t) = e^{Q t} \]

which are the backward equations.

There was an interchange of limit and summation which has to be justified.
For \(\{ X(t) \mid t \geq 0 \} \) the KBE and KFE's are

\[
\dot{P}(t) = Q P(t)
\]

\[
\dot{P}(t) = P(t) G
\]

\[
\rho_{ij}(t) = \sum_k Q_{ik} P_{kj}(t)
\]

\[
\rho_{ij}(t) = \sum_k P_{ik}(t) Q_{kj}
\]

\[
Q = \{ q_{ij} \} \text{ is often denoted by } \Lambda \text{ or } G.
\]

\[
i \neq j \quad \rho_{ij}(h) = q_{ij} \cdot h + o(h)
\]

\[
q_{i} = -q_{ii} \quad Q \rho = 0 - \text{often}
\]
To see this go back to the component equation

\[p_{ij}(t+h) - p_{ij}(t) = (\sum_{k} p_{ik}(h) p_{kj}(z)) - p_{ij}(t) \]

\[= (\sum_{k \neq i} p_{ik}(h) p_{kj}(z)) + p_{ic}(h) p_{ij}(t) - p_{ij}(t) \]

or

\[\frac{p_{ij}(t+h) - p_{ij}(t)}{h} = \sum_{k \neq i} \frac{p_{ik}(h)}{h} p_{kj}(z) \]

\[+ \frac{(p_{ic}(h)-1) p_{ij}(t)}{h} \]

Now \(\frac{p_{ik}(h)}{h} \rightarrow \varphi_{ik} \)

\(\frac{p_{ic}(h)-1}{h} \rightarrow \varphi_{ii} \)

\(-\varphi_{i} \)

must be proved

Assuming we can interchange the \(\lim \) and \(\sum \) we get

\[\dot{p}_{ij}(t) = (\sum_{k \neq i} \varphi_{ik} p_{kj}(z)) - \varphi_{i} p_{ij}(t) \]
Examples

Poisson process of rate λ on $t \geq 0$

- $N(0) = 0$
- $N(t)$ has independent increments
- $N(t)$ has "local" transitions given by

$$P(N(t+h) = j+1 | N(t) = j) = \lambda h + o(h)$$
$$P(N(t+h) > j+1 | N(t) = j) = o(h)$$
$$P(N(t+h) = j | N(t) = j) = 1 - \lambda h + o(h)$$

This leads to $N(t) \sim \text{Poisson}(\lambda t)$.

We can specify the Poisson model by assuming that the only possible transitions out of state i is to

$i+1$ with constant rate λ. Then

we have the KE's

$$\dot{P}_{ik}(t) = \lambda \left(P_{ik-1}(t) - P_{ik}(t) \right) \quad (E)$$
$$\dot{P}_{ik}(t) = \lambda \left(P_{i+1,k}(t) - P_{ik}(t) \right) \quad (B)$$
The sol'n to either is

\[P_{kn}(t) = e^{-\lambda t} (\lambda t)^{n-k} \frac{1}{(k-i)!} \quad k \geq i \]

Of course \(P_{kn}(t) = 0 \) for \(k < i \). We can solve these use generating functions

\[P_{\ell}(z, t) = \sum_{k=0}^{\infty} P_{kn}(t) z^k \]

The (F) and (B) become

\[\dot{P}_{\ell}(z, t) = \lambda (z-1) P_{\ell}(z, t) \quad \text{(F)} \]

\[\dot{P}_{\ell}(z, t) = \lambda (P(z, t) - P_{\ell}(z, t)) \quad \text{(B)} \]

with initial conditions

\[P_{\ell}(z, 0) = z^i \]

The (F) eq's have sol'n

\[P_{\ell}(z, t) = z^i e^{\lambda t (z-1)} \quad \text{(x)} \]
For our Poisson process \(i = 0 \)
\(\Rightarrow N(0) = 0 \) which yields the
PDF
\[e^{-t} (t-1) \]
for \(N(t) \). This is the PDF of a Poisson(\(\lambda t \)).

You can verify that (*) satisfies the
(3) eq'ns.
Birth + Death process

\[i \rightarrow i+1 \quad \text{with rate } \lambda_i \]
\[i \rightarrow i-1 \quad \text{" } \quad \mu_i \quad \text{" death rate} \]

The simple birth process (Rule) has \(\lambda_i = i \) and \(\mu_i = i \). If we set \(\lambda_i = \lambda + \mu \), \(\mu_i = \mu \)
yields a simple B + D + immigration process. Set

\[P_i(z,t) = E(z^{N(t)+s} \mid N(0) = i) \]
\[= E(z^{N(t)} \mid N(0) = i) \]

Then the KFE is

\[\dot{P}_i = (\lambda z - \mu) (z-1) \frac{d}{dz} P_i + \gamma (z-1) P_i \]
while the KBE are
\[
\frac{dP_i}{dt} = (\lambda + \gamma)(P_{i+1} - P_i) + \mu i (P_i - P_{i-1})
\]
The PDE for the KBE can be solved but here the KBE is simpler.

\(N(t)\) is made up of a component related to the initial ancestors and a contribution from immigration (there are \(u(\gamma)\)). So
\[
P_i(z, t) = A(z, t) B(z, t)
\]
where \(A(z, t)\) is the pgf of the component derived from immigration and \(B(z, t)\) that from an initial ancestor. Substitute into the KBE to get
\[
\dot{\bar{A}} = \gamma (B-1) \bar{A}, \quad \bar{B} = (\lambda B - u)(B-1)
\]

\(A(0) = 1, \ B = \frac{z}{B}\) for the initial conditions \(t=0\).

\[\lambda < \gamma (B-1)\]
\[B(z, t) = \frac{\lambda (1-z) e^{(1-\mu) t} - (\mu - 1) z}{\lambda (1-z) e^{(1-\mu) t} - (\mu - 1) z} \]

\[A(z, t) = \left[\frac{\lambda (1-z) e^{(1-\mu) t} - (\mu - 1) z}{\lambda - \mu} \right] ^{-1/\lambda} \]

If \(\lambda = 0 \) then

\[P(N(t) = 0 | N(0) = i) = B(0, i) \]

\[= \left(\frac{\mu e^{(1-\mu) t} - \mu}{\lambda e^{(1-\mu) t} - \mu} \right) ^i \]