Background

\[\mathbb{N} = \{1, 2, 3, \ldots \} \quad \text{natural #}'s \]
\[\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \} \quad \text{integers} \]

Sets which can be put into a 1-1 correspondence with \(\mathbb{N} \) are countably infinite. Sets which have a finite # of elements are countably finite. These two are the countable sets. Usually countable will mean countably infinite.

\(\mathbb{Z} \) is countable. So is \(\mathbb{Z}^2 \) so is \(\mathbb{Q} = \text{set of rationals} \)

\[\frac{m}{n} \quad \text{integer} \]
\[n \neq 0 \]

If a set is not countable it is uncountable. An example would be \([0, 1]\) or \(\mathbb{R} \).
Let a_1, a_2, \ldots be a sequence. Consider
\[\sup_{m \geq N^2} \{ a_m : m \geq N^2 \} = \inf_{m \geq N^2} \{ a_m : m \geq N^2 \} \]
(this is either finite or $\pm \infty$).

Now define
\[\limsup_{m \to \infty} a_m = \lim_{N \to \infty} \sup_{m \geq N^2} \{ a_m : m \geq N^2 \} \]
This is either finite or $\pm \infty$. We will denote it by $\lim a_m$. In the same way,
\[\liminf_{m \to \infty} a_m = \lim_{N \to \infty} \inf_{m \geq N^2} \{ a_m : m \geq N^2 \} \]
This is either finite or $\pm \infty$.

\[\lim a_m = a \iff \limsup a_m = \liminf a_m = a \]

Also it is always true $\lim a_m \leq \lim a_m$.

This can be extended to $a(t)$, $-\infty < t < \infty$ in the obvious way so we have
\[\limsup_{t \to \infty} a(t) \]
\[a_n \to a \quad \text{if} \quad \forall \epsilon > 0 \quad \exists N \text{ such that } \quad m > N \Rightarrow |a_m - a| < \epsilon \]

\[a_m \to a \Rightarrow a_{m_k} \to a \quad \text{as} \quad k \to \infty \]

where \(\{a_{m_k}\} \) is a subsequence.

By convention \(m_1 < m_2 < \ldots \)

On the other hand, if every \(a_{m_k} \to a \Rightarrow a_m \to a \)

Prop Let \(\{a_n\} \) be a sequence of \(\mathbb{R} \).

If every subsequence \(\{a_{m_{k_j}}\} \) has a further subsequence \(a_{m_{k_{j_k}}} \to a \)

then \(a_m \to a. \)
\[a^n \rightarrow a \quad \text{if for every rational } \frac{1}{n} > 0 \exists \quad N \quad \text{and } m \geq N \]
\[\Rightarrow |a_m - a| \leq \frac{1}{n} \]

\[a^n \uparrow a \quad \text{if } a_1 \leq a_2 \leq \ldots \quad \text{and } a^n \rightarrow a \]

\[a^n \downarrow a \quad \text{if } a_1 \geq a_2 \geq \ldots \]

\textbf{Fact:} \quad \lim_{x \to a} g(x) = l \quad \text{if } \forall x_m \rightarrow a

\[g(x_m) \rightarrow l \quad \text{In fact this is } \quad g(x_m) \rightarrow l. \]

Another way of approaching \(a^n \rightarrow a \).

\[a_m \rightarrow a \quad \text{if for every } \varepsilon > 0 \text{ only } \]
\[a_m \rightarrow a \quad \text{if for every } \varepsilon > 0 \text{ only a finite number of the statements } |a_m - a| > \varepsilon \text{ hold.} \]
\((a, b)\) is an open interval
\(\{x \mid |x - a| < \varepsilon\}\) is an open disc (the inside of a circle/sphere of radius \(\varepsilon\)). A set \(B \subset \mathbb{R}^k\) is open if for every \(a \in B\) there is a disc \(\{x \mid |x - a| < \varepsilon\} \subset B\).

\([a, b]\) is clearly not open.

\[\begin{array}{c}
\boxed{a} \\
\text{disc is not a subset of } [a, b] \\
\boxed{b}
\end{array}\]

Suppose \(B \subset \mathbb{R}\) is open. Then \(B\) is a countable union of disjoint open intervals.

The rationals are dense in \(\mathbb{R}\).
Let \(G = \text{set of subsets of } V. \)
Then \(f^{-1}(G) = \{f^{-1}(B) \mid B \in G\} \)

Let \(S = \{w\} \) be a finite set.
The collection of all subsets of \(S \) is called the power set on \(S \). This power set includes \(S \) and \(\emptyset \). The number of elements in this power set is \(2^{|S|} = 2^1 = 2^1 \).
Now suppose \(\mathbb{Z} = \mathbb{N} \). Would the power set be countable? No! The number of sequences of the type 1, 1, 0, 1, 0, \ldots is uncountable.

Def'n \(\mathcal{F} \) is a \(\sigma \)-field of subsets of \(\mathbb{N} \) if:

(i) \(\emptyset \in \mathcal{F} \)

(ii) \(A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \)

(iii) \(A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_i A_i \in \mathcal{F} \)

Recall \((\bigcup_t A_t)^c = \bigcap_t A_t^c \) \(\{ \text{de Morgan} \} \)

\((\bigcap_t A_t)^c = \bigcup_t A_t^c \)
Each if $\{ F_t, t \in T \}$ is a collection of σ-fields then $\bigcap_{t \in T} F_t$ is a σ-field.

Let C be a collection of subsets of \mathbb{R}. Clearly $C \subseteq \text{power set}$ is a σ-field if $F \in C$ is the σ-field generated by C and is denoted by $\sigma(C)$. It is the smallest σ-field which includes C.
On \mathbb{R}^n, the σ-field generated by the open sets is called the Borel σ-field and denoted by \mathcal{B}_n. This σ-field is very rich and includes open, closed sets etc.

Now consider

$$X : \Omega \rightarrow \mathbb{R}$$

Let F_n be a σ-field on Ω. If $X^{-1}(\mathcal{B}) \subseteq F_n$, then we say that X is measurable with respect to F_n and \mathcal{B}.

(Ω, F, P) is called a sample space probability space.
$X_n \xrightarrow{a.s.} X$ \hspace{1cm} $X_m \xrightarrow{p} X$

"with prob 1" \hspace{1cm} "almost surely"

If \(P(\lim_{n \to \infty} X_n = X) = 1 \). This is \iff

\[
P(\{\omega | X_m(\omega) \to X(\omega)\}) = 0
\]

Suppose for each rational $\epsilon_n > 0$

\[
P(\{1X_n - X > \epsilon_n, i.o\}) = 0
\]

\[
A_{\epsilon_n} \{1X_n - X > \epsilon_n, i.o\} \quad \text{is the event that an infinite number of events occur infinitely often.}
\]

Since \(P(U_{\epsilon_n} A_{\epsilon_n}) \leq \sum_{\epsilon_n > 0} P(A_{\epsilon_n}) = 0 \) we conclude that there is an event A^c with $P(A^c) = 1$ such that for each $\epsilon > 0$

\[
P(\{\omega \in A^c | a \text{ finite } \# \text{ of } |X_n(\omega) - X(\omega)| > \epsilon\}) = 1
\]

Note A^c does not depend on ϵ_n. It then follows

$X_m \xrightarrow{a.s.} X$
More on convergence

Events A_1, A_2, \ldots (∞ #)

Borel Cantelli Lemma

(i) $P(A_{\infty 0}) = 0 \quad \text{if} \quad \sum P(A_k) < \infty$

(ii) $A_\text{ind} \quad \text{and} \quad \sum P(A_k) = \infty \quad \text{then} \quad P(A_{\infty 0}) = 1$

\[X_n \overset{a.s.} \to X \quad (X_n \overset{w.p.} \to X) \]

Suppose
\[\sum P(|X_n - X| > \epsilon) < \infty \]

BCCL
\[\Rightarrow P(1_{|X_n - X| > \epsilon_0} \text{i.o}) = 0 \]

\[\Rightarrow \text{All } X_n \text{ are within } \epsilon_0 \text{ of } X \text{ w.p.1} \]

Now let B_n be the event $\text{st } P(B_n) = 1$. Set $B = \bigcap \cap B_n \Rightarrow P(B) = 1$. On B all X_n are within ϵ of X for any $\epsilon > 0$.

\[\Rightarrow X_n \overset{a.s.} \to X \]

Lemma Let B_n be st $P(B_n) = 1$, $\forall n \in \mathbb{Q}$ then $P(\bigcap \cap B_n) = 1$
Proof
\[P((\bigcap_n B_n)^c) \]
\[= P(\bigcup_n B_n^c) \leq \sum_n P(B_n^c) = 0 \]
\[\Rightarrow P((\bigcap_n B_n)^c) = 0 \quad \Rightarrow P(\bigcap_n B_n) = 1 \] \(q.e.d. \)

\[X_m \rightarrow X \quad (P(|X_m - X| > \epsilon) \rightarrow 0) \]
\[\Rightarrow \exists X_{m_k} \xrightarrow{a.d.} X \]

Example Suppose \(X_m \rightarrow X \) \& \(|X_m| \leq W \) where \(E(W) < a \). Then \(E(X_m) \rightarrow E(X) \).

Proof Set \(a_m = E(X_m) \) \& \(a = E(X) \). Let \(a_{m_k} \) be any subsequence of \(\{a_m\} \).

Now look at \(X_{m_k} \rightarrow X \). Then there is a subsequence of this subsequence, say \(X_{n_k} \) such that \(X_{n_k} \rightarrow X \). Now use the
DCT to get
\[E(x_{m_n}) \to E(x) \]

That is
\[a_{m_n} \to a \]

so
\[a_m \to a \]

A bit more on \(\sigma \)-fields

\((a, b) \leftarrow \) open interval \(\subset \mathbb{R} \)

open subset of \(\mathbb{R} \)

closed set = complement of an open set

open set on \(\mathbb{R} = \) countable union of disjoint open intervals

open set on \(\mathbb{R}^n = \) countable union of open "intervals"

\[\{ \exists \alpha < x < \beta \} \]

On \(\mathbb{R} \)
\(\mathcal{B} = \sigma(\text{open sets}) = \) Borel \(\sigma \)-field
\[= \sigma(\text{open intervals}) = \sigma(\text{closed sets}) \]
\[\sigma(\{(a, b] \}) = \sigma(\{(\infty, b] \}) \text{ etc...} \]

Now let \(g : \mathbb{R} \to \mathbb{R} \) be cts.
Then \(g^{-1}(\text{open set}) \) is open which means \(g^{-1}(B) \subset B \Rightarrow g \) is measurable w.r.t. \(B \) or \(\mathcal{B} \) (also true \(g : \mathbb{R}^m \to \mathbb{R}^m \)).

Look at all the cts f's \(f : \mathbb{R} \to \mathbb{R} \) and limits of convergent sequences of cts f's. These are the \textit{Baire f's} (\& they = set of \textit{measurable} f's \text{ wrt } \mathcal{B})

(Also true from \(\mathbb{R}^m \to \mathbb{R} \))

\text{Proposition}: Let \(X : L^2 \to \mathbb{R}^m \) be a r vec \& \(g : \mathbb{R}^m \to \mathbb{R} \) be cts.
Then \(g(X) : L^2 \to \mathbb{R} \) is \textit{measurable rv}.
Take a σ-field F. Suppose for the moment that F is countably the nonempty elements of F are A_1, A_2, \ldots

Let $\mathcal{E} = \{\mathcal{E}_1, \mathcal{E}_2, \ldots\}$. \mathcal{E} is uncountable.

Set $A = A_1 \cup A_2 \cup \cdots$

$A_m = \bigcup_{\mathcal{E}_i \subseteq \mathcal{E}_m} A_i$

$A_m^\circ = A_m^c$

$A_m^1 = A_m^\cap$

\Rightarrow countable \mathcal{M} of A_i disjoint $\mathcal{M} \cap F = 0$

$\Rightarrow F$ is uncountable $\in F$
A bit more on rv's & other matters

\((\Omega, \mathcal{F}, P)\) - probability space

\(\sigma\)-field

If \(A \in \mathcal{F}\) & \(P(A) = 0\) & \(A_0 \subseteq A\) then we will assume \(A_0 \in \mathcal{F}\). That is \(\mathcal{F}\) is complete.

Recall \(P\) satisfies

1. \(P(\Omega) = 1\) - finite
2. \(P(A) \geq 0\) - positive
3. \(P(\sum A_i) = \sum P(A_i)\) - \(\sigma\)-additive

Drop \(P\Rightarrow\) measure \(\mu(A)\). If \(P\)

can be partitioned into sets \(\Omega_1, \Omega_2, \ldots\)

such that \(\mu(\Omega_i) < \infty\) then \(\mu\) is a \(\sigma\)-finite measure. In this case

\(\mu = \sum P_i\)
Note \(M(A) = c_1 P_1(A) + c_2 P_2(A) + \cdots \). The \(P_i \) are restricted to \(\Omega_i \). In this case

\[
\int_X d\mu = c_1 \int_X dP_1 + c_2 \int_X dP_2 + \cdots
\]

\(E_1(X) \quad E_2(X) \)

The \(c_i \)'s are just the \(\mu(\Omega_i) \). The

DCT + MCT continue to hold for these integrals.

Bohr o-field

eg. Look at \(\mathbb{R} \) with \(\mathcal{B} \). Let \(\mathcal{B} \) be a Borel o-field.

Let \(P_i \) be uniform on \((i, i+1) \).

Define the length of \(\mathcal{B} \) \(\mathcal{B} \) as

Lebesgue \(\lambda(B) = \sum_{i \in \mathbb{Z}} P_i(B) \)

measure
\[\int f(x) \, dx \text{ is the Lebesgue integral. You see it as } \int g(x) \, dx. \]

Note \(g : \mathbb{R} \to \mathbb{R} \) is mbe wrt \(\mathcal{B} = \mathcal{C} \).

\[X \xrightarrow{\text{O-field}} G \]

\[X^{-1}(B) \subset G \]

\[Y^{-1}(B) \subset X^{-1}(B) \]

If \(Y = h(X) \) then \(Y^{-1}(B) \subset X^{-1}(B) \)

Start with \(X \xrightarrow{\text{O-field}} X^{-1}(B) \)

O-fields which are subsets of \(X^{-1}(B) \) correspond to rv's which are f'm of \(X \).
We have defined $E(Y|X)$ as a function of X. It is convenient to define $E(Y|X)$ as that 0-field rv which is $A \times B$ mle, which best predicts Y. Most of the time (for us) A corresponds to a rv X which is why we started with $E(Y|X)$.

Finally, for any $m, m' \in \mathbb{Z}$, $r \in [0, 1)$ such that
$$m = km + r$$

Define The gcd of integers m and m' is an integer $k > 0$ such that $k|m$ and $k|m'$ and is $l > 0$ divides m and m' then $l|m$.
Remark
1. The gcd is just the largest divisor.
2. If \(i, j \geq 0 \) have \(\gcd = 1 \) then
 \[
 \left\{ c, i + c_2 j \mid c, c_2 \in \mathbb{Z}^+ \right\}
 \]
 includes all of \(\mathbb{Z}^+ \) except possibly for a finite set. Is this still true for \(i, \ldots, i_k \) with \(\gcd = 1 \)?
 Yes.

\[\text{EA} \text{ if } m \in \mathbb{Z}, m \in \mathbb{Z}^+ \Rightarrow q \in \mathbb{Z} + r \in \mathbb{Z}^+ \]
where \(0 \leq r < m \) such that
\[
m = qm + r
\]

If \(i, j \) are such that \(\gcd = 1 \) then \(\exists \)
integers \(a \times b \) st \(ai + bj = 1 \)
\[
\Rightarrow \left\{ c, i + c_2 j \mid c, c_2 \in \mathbb{Z}^+ \right\} \text{ includes all of } \mathbb{Z}^+ \text{ except possibly a finite set}.
\]
Also true for \(i, \ldots, i_k \geq 0 \) with \(\gcd = 1 \)
\[
\exists \text{ integers } a, \ldots, a_k \text{ st } a, i_1 + \ldots + a_k i_k = 1
\]
\(\mathbb{R}, \mathcal{B} = \text{Borel } \sigma\text{-field} \)
\(\mathbb{R}^n, \mathcal{B}_n = \cdots \)
\(\mathbb{R}^\infty = \left\{ \left(\frac{x_i}{i} \right) \right\}, \mathbb{R}^m = \left\{ \left(\frac{x_i}{i} \right) \right\} \)
\(\mathcal{B}_\infty = \text{Borel } \sigma\text{-field on } \mathbb{R}^\infty \)

\((\mathbb{R}, \mathcal{F}, \mathbb{P})\)

\(X \sim (\mathcal{B}_m) \subset \mathbb{R} \)
\(\sigma\text{-field generated by } X - \sigma(X) \)

Let \(X \in \mathbb{R}^\infty \) and suppose we want to calculate \(\mathbb{P}(X \in B) \). This can be approximated by \(\mathbb{P}(X_m \in B_m) \).
Notice that for B_1 on \mathbb{R}, it is generated by sets of the type B_1. Thus the smallest σ-field including these types of sets is B_1. For B_2 on \mathbb{R}^2 we generate it by product sets of the type $B_1 \times B_2$.

So $B_2 = \sigma(\{B_1 \times B_2\})$.

For $\mathbb{R}^\infty = \{(x_i)\}$, $B_\infty = \sigma(\{B_1 \times B_2 \times \ldots\})$.
If X is a r vec (f'm from \mathbb{R}^m)
\[\sim \]
then $\{ X \in B \}$ in an event in \sim. We then denote it by $X^{-1}(B)$. Formally, it is $\{ \omega : X(\omega) \in B \}$. The collection of such events, $\{ X^{-1}(B) : B \in \mathcal{B}_m \}$, is a σ-field in \sim and is denoted by $\sigma(X)$ or $X^{-1}(B)$. Notice \sim induces the new probability space $(\mathbb{R}^m, \mathcal{B}_m, P)$, where \sim \sim

Now take $g : \mathbb{R}^m \to \mathbb{R}$ to be cts + hence measurable w.r.t. $\mathcal{B}_m + \mathcal{B}$. The composition $g \circ X = g(X)$ is of course measurable w.r.t. $\sim + \mathcal{B}$. This only requires g to be mbl w.r.t. $\mathcal{B}_m + \mathcal{B}$ (not necessarily cts).
Take a countably ∞ # of events A_1, A_2, \ldots We denote the event
\{an \infty \# of the A_i's occurs\} by $\{A_m \text{ i.o.}\}$ or just $A_m \text{ i.o.}$. It is also denoted by:

$$\lim \sup_{m=1}^\infty A_m = \bigcap_{m=1}^\infty \bigcup_{m=m}^\infty A_m$$

Boole-Cantelli

(a) $\sum_{m=1}^\infty P(A_m) < \infty \implies P(A_m \text{ i.o.}) = 0$

(b) $\sum_{m=1}^\infty P(A_m) = \infty \implies P(A_m \text{ i.o.}) = 1$

Proof

(a) $P(A_m \text{ i.o.}) = P\left(\bigcap_{m=m}^\infty \bigcup_{m=m}^\infty A_m\right)$

$$= P\left(\lim_{m \to \infty} \bigcup_{m=m}^\infty A_m\right)$$

$$= \lim_{m \to \infty} P\left(\bigcup_{m=m}^\infty A_m\right)$$

$$\leq \lim_{m \to \infty} \sum_{m=m}^\infty P(A_m) \quad \text{(Boole)}$$

$$= 0 \quad \text{(series converges)}$$
\[
\Pr(\{A_m \cap \cap c\}) = \Pr\left(\bigcap_{m=\infty}^{\infty} A_m^c\right)
\]

= \Pr(\lim_{m\to\infty} \bigcap_{m=\infty}^{\infty} A_m^c)

= \lim_{m\to\infty} \Pr(\bigcap_{m=\infty}^{\infty} A_m^c)

= \lim_{m\to\infty} \prod_{m=\infty}^{\infty} P(A_m^c)

= \lim_{m\to\infty} \prod_{m=\infty}^{\infty} [1 - P(A_m)]

\leq \lim_{m\to\infty} \prod_{m=\infty}^{\infty} e^{-P(A_m)}

= \lim_{m\to\infty} e^{-\sum_{m=\infty}^{\infty} P(A_m)} = 0

\quad \text{\textit{q.e.d.}}

Notice that the occurrence of \(\{ A_{n \in \mathbb{N}} \} \) does not depend on any finite # of the \(A_i \)'s. It is not a coincidence that \(P(A_{n \in \mathbb{N}}) \) is either 0 or 1 (in the independent case). This is an example of a \textbf{Zero-One Law}.

By the way, notice:

\[\text{eg } X = c \implies X^{-1}(B) = \{ \emptyset, \{ c \} \} \]

This would also be the case if \(X = c \) (that is, \(X^{-1}(B) \) would consist of events having prob 0 or 1."

\[\]
Look at a sequence of rv's
\[X_1, X_2, \ldots, X_m, X_{m+1}, \ldots \in \mathcal{X} \]
Look at all \(\bigcap \sigma(X_m, X_{m+1}, \ldots) \)
\[\subset \mathcal{F} \]
\[\bigcap \sigma(X_m, X_{m+1}, \ldots) = \text{Tail } \sigma\text{-field} \]
a \(\sigma\)-field
denoted as \text{Tail events}

\text{eg. Let } X_1, X_2, \ldots \text{ be i.i.d with mean } \mu \text{ and set }
\[\overline{X_m} = \frac{X_1 + \ldots + X_m}{m} \]

\text{let } A = \{ \overline{X_m} \text{ converges } \}
This is a tail event!