Problem Set #3 ex'd

(a) Let \(\{Y_x\} \) with \(Y_x \geq 0 \) be u.i. Show \(\sum_{x \geq 0} E(Y_x) < \infty \).

(b) Let \(\{X_x\} \) be u.i. Suppose \(X_x \geq 0 \). Show \(\sum_{x \geq 0} E(X_x) = E(X) + E(X_{X > 1}) \).

(c) Let \(X_m, X \rightarrow X \). Show \(\{X_m\} \) is u.i.

(d) Let \(X_m \in L_1 \), \(X_m \rightarrow X \) in \(L_1 \). Show \(\{X_m\} \) is u.i.

2(a) Let \(X_1, X_2, \ldots \) satisfy \(E(X_m | X_{m-1}) = 0 \), \(\forall m \geq 1 \), where \(X_k = (X_1, \ldots, X_k)' \) and \(X_0 = 0 \) for convenience.

Set \(S_m = X_1 + \cdots + X_m \). Show \(E(S_m | S_{m-1}) = S_m \).

For \(1 \leq m < n \) show \(E(S_n) = \sum_{k=1}^{n} \text{Var}(X_k) \).

(b) For the situation in 2(a) show \(\text{Var}(S_m) = \sum_{k=1}^{m} \text{Var}(X_k) \).

(c) If \(\{X_m\} \) and \(\{S_m\} \) are as in 2(a) and \(\{Y_m\} \)

is such that \(X_m = g(Y_m) \) and \(E(S_m | X_m) = S_m \)

for \(1 \leq m < n \) show \(E(S_n | S_{m-1}) = S_m \), \(1 \leq m < n \)

while \(E(X_m | X_{m-1}) = E(X_m | Y_{m-1}) = 0 \), \(\forall m \geq 1 \)

(\(X_0 = Y_0 = 0 \)).

Remark: \(\{S_m\} \) in 2(a) is a (zero mean) martingale.

- \(\{S_m\} \) in 2(b) is a martingale wrt \(\{Y_m\} \).

- \(\{c + S_m\} \) is a martingale with \(E(c + S_m) = c \).
3(a) Let \(W_1, W_2, \ldots \) be a sequence. \(f(\cdot; \theta) \) is a function of \(\theta \). Show, assuming reasonable conditions, that
\[
\left\{ \frac{d \log L_n(\theta)}{d \theta} \right\}
\]
is a martingale. Here, \(L_n(\theta) = f(W_n; \theta) \) is the likelihood function. In this context, it is usual to avoid the upper/lowercase notation for r.v.'s.

(b) Let \(X_1, X_2, \ldots \) be iid with \(E(X_i) = 0 \), \(\forall i \). Show \(\{ S_n \} \) is a martingale.

(c) Let \(\{ Z_m, m \geq 0 \} \) be a branching process with \(Z_0 = 1 \), offspring mean \(\mu \) and probability of ultimate extinction \(p \). Show \(\{ Z_n / E(Z_n) \} \) and \(\{ p^Z_m \} \) are both martingales wrt \(\{ Z_m \} \). Now add immigration in each generation with mean \(m \). Show \(\frac{1}{m^m} \left[Z_m - m \left(\frac{1 - \mu^m}{1 - \mu} \right) \right] \) is also a martingale (assume \(\mu \neq 1 \)).

(d) Let \(\{ Z_m \} \) be a Markov chain with state space \(\mathbb{R} \), satisfies \(P h = h \), where \(P \) is the transition matrix. Show \(\{ h(Z_m) \} \) is a martingale.