p21\#5 du class we showed θ_{1}, θ_{i} to bo i id uniform $(0,2 \pi)$ To get the pay of X calculate its of i 4 then differentiate.
So, if $0<x<2 \pi$ then $P(X \leq x)=\left[\pi_{0}^{2}-\right.$ stadedaraa $] \frac{1}{4 \pi^{2}}$

The pdf for $0<x<2 \pi$ is

$$
\frac{2 \pi-x}{4 \pi^{2}}=
$$

+ for $-2 \pi<x<0$ a similar argument yields $\frac{2 \pi+x}{4 \pi^{2}}$ ar that tho pDf is $\frac{2 \pi-|x|}{4 \pi^{2}},-2 \pi<x<2 \pi$
P32\#7 On the basin of Y_{0}, \cdots, Y_{t} we wish to predict Y_{t+s} using an LLS estimate. It twos ont this is

$$
\widehat{Y}_{t+\Delta}=\mu+\beta^{\Delta}\left(Y_{t}-\mu\right)
$$

we need to calculate $V_{\sim}^{Y} \underset{\sim}{Y}=\operatorname{Var}(Y)$, where $\underset{\sim}{Y}=\left(\begin{array}{c}Y_{0} \\ \vdots \\ Y_{t}\end{array}\right)$ and $V_{\underset{Y}{ }} Y_{t+4}=\left(\begin{array}{cc}\operatorname{cov}\left(Y_{0},\right. & \left.Y_{t+s}\right) \\ \vdots & \\ \operatorname{cov}\left(Y_{t},\right. & \left.Y_{t+s}\right)\end{array}\right)$

Now

$$
\begin{aligned}
& {\underset{\sim}{V}}_{\underset{\sim}{V}}^{t+\infty},\left(\begin{array}{c}
\alpha \beta^{t+\infty} \\
\vdots \\
\beta^{\Delta}
\end{array}\right)=\alpha \beta^{\otimes}\left(\begin{array}{c}
\beta^{t} \\
\vdots \\
\beta^{0}=1
\end{array}\right)
\end{aligned}
$$

Set $a=\left(\begin{array}{l}0 \\ 0 \\ \vdots \\ \beta^{\Delta}\end{array}\right)$. Then the claim is $\widehat{v}_{t+\infty}-\mu=a^{\prime}(\underset{\sim}{r}-\mu \eta)$ and this will hold if

$$
\begin{equation*}
V_{\underset{\sim}{Y}} \underset{\sim}{a}=V_{\underline{Y}} Y_{t+\Delta} \tag{*}
\end{equation*}
$$

That (*) holds is obvious (mate multiphicetion) ot we are dome

Note

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & \beta & \beta^{2} \\
\beta & 1 & \beta \\
\beta^{2} & \beta & 1
\end{array}\right)^{-1}=\frac{1}{1-\beta^{2}}\left(\begin{array}{ccc}
1 & -\beta & 0 \\
-\beta & 1+\beta^{2}-\beta \\
0 & -\beta & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & \beta & \beta^{2} & \beta^{3} \\
\beta & 1 & \beta & \beta^{2} \\
\beta & \beta & 1 & \beta \\
\beta^{3} & \beta^{2} & \beta & 1
\end{array}\right)=\frac{1}{1-\beta^{2}}\left(\begin{array}{cccc}
1 & -\beta & 0 \\
-\beta & 1+\beta^{2} & -\beta^{2} \\
0 & -\beta & -\beta & 1
\end{array}\right)
\end{aligned}
$$

etc...
or thai $V_{Y Y} Y^{-1}$ exists t the sol'm is unique.
p^{38+14}

$$
\begin{aligned}
\frac{P}{P}(|\bar{Y}-\mu|>\epsilon) & =P\left((\bar{Y}-\mu)^{2}>\epsilon^{2}\right) \\
& \leq \frac{\left.E(\bar{Y}-\mu)^{2}\right]}{\epsilon^{2}}=\frac{\operatorname{Var}(\bar{Y})}{\epsilon^{2}}, \infty \mu=E(\bar{Y}) \\
& =\frac{\sigma^{2}}{m \epsilon^{2}} \rightarrow 0
\end{aligned}
$$

Hence $\bar{V} P_{P} \mu$
N.te This same appeal ts Marthov's' Inequalits showo that $X_{m} \rightarrow \mathrm{mg} X X_{m} \xrightarrow{\rightarrow} X \quad$ holdee in general.
p57\#2

$$
\begin{aligned}
&\binom{N}{r} p^{n}(1-p)^{N-n}=\frac{N!}{(N-n)!r!} p^{r}(1-p)^{N-n} \\
& \sim \frac{\sqrt{2 \pi} e^{-N} N^{N+\frac{1}{2}}}{r!\sqrt{2 \pi} e^{-N+n}(N-r)^{N-n+\frac{1}{2}} p^{n}(1-p)^{N-n}} \\
&=e^{-r}\left(\frac{N}{N-n}\right)^{N+\frac{1}{2}} \frac{(N-r)^{r} p^{n}(1-p)^{N-r}}{r!} \\
&=e^{-r} \frac{1}{\left(1-\frac{n}{N}\right)^{N+\frac{1}{2}}} \frac{(p N-n)^{n}}{r!}\left(1-\frac{p}{N}\right)^{N-r} \\
& \rightarrow e^{-r} \frac{1}{e^{-r}} \frac{p^{r}}{r!} e^{-p}=e^{-\beta} \frac{p}{r!}
\end{aligned}
$$

$p 60 \# 4$

$$
\begin{aligned}
X+Y \text { ind } \Rightarrow \operatorname{cov}(X, Y) & =E(X Y)-E(X) E(Y \\
& =E(X) E(Y)-E(X) E(Y)=0
\end{aligned}
$$

so that $X+Y$ are uncorrelated.
$\frac{p 60 \# 6}{}$
Condition on $X_{0}=x$. Then if $T=$ tern to the lot time he bests $X_{\text {. (ic his }}$. md record) then we have a geometric with

$$
P\left(T=m \mid X_{0}=x\right)=F(x)^{m-1}(1-F(x))
$$

Hence

$$
\begin{aligned}
P(T=m) & =\int_{0}^{\infty} P\left(T=m \mid X_{0}=x\right) f(x) d x \\
& =\int_{0}^{\infty} F(x)^{m-1}(1-F(x))^{1(x)} d x=\int_{0}^{1} u^{m-1}(1-u) d u,
\end{aligned}
$$

where we have set $u=F(x)$. This is jut $\frac{1}{M}-\frac{1}{M+1}$,
p65 \#: 1,2 done in STA $257+4$ dore in clam
p65\#3 $E\left[\left(S_{r}-r\right)^{(k)}\right]$ is obtained by differentiating tho poi of $S_{r}-r{ }_{k}$ times. The $p g$ if is

$$
\begin{aligned}
G(\Delta)=E\left(s^{S_{r}-n}\right) & =\frac{1}{s^{r}} E\left(x^{S_{r}}\right)=\frac{1}{\Delta^{r}} \frac{(p \Delta)^{n}}{(1-q \Delta)^{r}} \\
& =\frac{p^{2}}{\left(1-g^{n}\right)^{n}},|\Delta|<1 / q
\end{aligned}
$$

$p 65 \# 5$

We have

$$
\begin{aligned}
& N\left(A_{1}\right)=N\left(B_{1}\right)+N\left(B_{12}\right) \\
& N\left(A_{2}\right)=N\left(B_{2}\right)+N\left(B_{12}\right)
\end{aligned}
$$

where $A_{1}=B_{1} \cup B_{12}, A_{2}=B_{2} \cup B_{12}$ the B^{\prime} are dingoint. The joint pgp of $N\left(A_{1}\right) \times N\left(A_{2}\right)$ is

$$
\begin{aligned}
G\left(\Delta_{1}, \Delta_{2}\right) & =E\left[A_{1}^{N\left(A_{1}\right)} N\left(A_{2}\right)\right] \\
& =E\left(A_{1}^{N\left(B_{1}\right)} A_{2} N\left(B_{2}\right)\left(\Delta_{1} \Delta_{2}\right) N\left(B_{12}\right)\right) \\
& =E\left(\Delta_{1}^{\left.N\left(B_{1}\right)\right) E\left(\Delta_{2} N\left(B_{2}\right)\right) B\left[\left(\Delta_{1} A_{2}\right)^{\left.N\left(B_{12}\right)\right]}\right.}\right. \\
& \left.=e^{\rho\left|B_{1}\right|\left(\Delta_{1}-1\right)} e^{\rho\left|B_{2}\right|\left(\Delta_{2}-1\right)} e^{p\left|B_{12}\right|\left(\Delta_{1} A_{2}-1\right)}\right)
\end{aligned}
$$

where $|A|=$ "volume" $\mid A$. Now $\left|A_{1}\right|=\left|B_{1}\right|+\left|B_{12}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|+\left|B_{12}\right|$ ar that

$$
\begin{aligned}
& G\left(\Delta_{1}, A_{2}\right)=e^{\rho\left|A_{1}\right|\left(\Delta_{1}-1\right)} e^{\rho\left|A_{2}\right|\left(\Delta_{2}-1\right)} \\
& \quad x \operatorname{erp}\left[\rho\left|A_{1} A_{2}\right|\left(\Delta_{1}-1\right)-\rho\left|A_{1} A_{2}\right|\left(\Delta_{2}-1\right)+\rho\left|A_{1} A_{2}\right|\left(\Delta_{1} \Delta_{2}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =e^{p\left|A_{1}\right|\left(A_{1}-1\right)+p\left|A_{2}\right|\left(A_{2}-1\right)} \\
& \times \exp \{p\left|A_{1} A_{2}\right|[\underbrace{\left.\left.\frac{\left.\left(A_{1}-1-A_{2}-A_{1}\right)-\left(A_{2}-1\right)-A_{2}+1\right)}{}\right]\right\}}_{A_{1}\left(A_{2}-1\right)} \\
& =\exp \left[p\left|A_{1}\right|\left(A_{1}-1\right)+p\left|A_{2}\right|\left(A_{2}-1\right)+p\left|A_{1} A_{2}\right|\left(A_{1}-1\right)\left(A_{2}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cov}\left(N\left(A_{1}\right), N\left(A_{2}\right)\right) \\
& =\operatorname{cov}\left(N\left(B_{1}\right)+N\left(B_{12}\right), N\left(B_{2}\right)+N\left(B_{12}\right)\right) \\
& =\operatorname{cov}\left(N\left(B_{12}\right), N\left(B_{12}\right)\right)=\operatorname{Var}\left(N\left(B_{12}\right)\right)=p\left|A_{1} A_{2}\right|
\end{aligned}
$$

Note $\cos \left(\sum a_{i} x_{i}, \sum b_{j} Y_{j}\right)=\sum_{i, j} a_{i} b_{j} \operatorname{cov}\left(X_{i}, Y_{j}\right)$
02

$$
\begin{aligned}
& \operatorname{cov}\left(N\left(A_{1}\right), N\left(A_{2}\right)\right)=E\left(N\left(A_{1}\right) N\left(A_{2}\right)\right)-\underbrace{\left.E\left(N A_{1}\right)\right)}_{\rho\left|A_{1}\right|} \underbrace{E\left(N\left(A_{2}\right)\right)}_{\rho\left|A_{2}\right|} \\
& \left.\frac{\partial^{2} E\left(A_{1}\right.}{\partial \theta_{1} \partial A_{2}} A_{1}\right) A_{2}^{\left.N\left(A_{2}\right)\right)}=E\left[\left(A_{1}\right) N\left(A_{2}\right) A_{1}^{N\left(A_{1}\right)} A_{2}^{\left.N\left(A_{2}\right)\right]}\right.
\end{aligned}
$$

Now set $\otimes_{1}=x_{2}=1$ to get $E\left(N\left(A_{1}\right) N\left(A_{2}\right)\right)$

$$
\begin{aligned}
& \text { So in our cave } c \\
& \frac{\partial G}{\partial \Delta_{2}}=\left(\exp \left[\rho\left|A_{1}\right|\left(\Delta_{1}-1\right)+\rho\left|A_{2}\right|\left(\Delta_{2}-1\right)+\rho\left|A_{1} A_{2}\right|\left(\Delta_{1}-1\right)\left(A_{2}-1\right)\right]\right) \\
& x\left(p\left|A_{2}\right|+p\left|A_{1} A_{2}\right|\left(\Delta_{1}-1\right)\right) \\
& \frac{\partial^{2} G}{\partial \Delta_{1} \partial \Delta_{2}}=(\operatorname{erp}[c])\left(\rho\left|A_{1} A_{2}\right|\right) \\
&+(\operatorname{erp}[c])\left(p\left|A_{1}\right|+\rho\left|A_{1} A_{2}\right|\left(A_{2}-1\right)\right)\left(\rho\left|A_{2}\right|+p\left|A_{1} A_{2}\right|\right. \\
&\left.\times\left(\theta_{1}-1\right)\right) \\
& A_{1}=\Delta_{2}=1 \Rightarrow c= 0 \text { st that }
\end{aligned}
$$

y

$$
\begin{aligned}
& \left.\frac{\partial^{2} G}{\partial A_{1} J_{A_{2}}}\right|_{A_{1}, A_{2}=1}=p\left|A_{1} A_{2}\right|+p\left|A_{1}\right| \rho\left|A_{2}\right| \\
& 0 \quad E\left[N\left(A_{1}\right) N\left(A_{2}\right)\right]=p\left|A_{1} A_{2}\right|+p\left|A_{1}\right| \rho\left|A_{2}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{cov}\left(N\left(A_{1}\right), N\left(A_{2}\right)\right) & =\rho\left|A_{1} A_{2}\right|+\rho\left|A_{1}\right| \rho\left|A_{2}\right|-\rho\left|A_{1}\right| \rho\left|A_{2}\right| \\
& =\rho\left|A_{1} A_{2}\right|
\end{aligned}
$$

$p 65 \# 6$

$$
\begin{aligned}
& X=\Sigma_{j} N_{j} \\
& \Rightarrow G_{x}(\Delta)=E\left(\Sigma_{j} N_{j}\right) \\
&=\prod_{j} E\left(\Delta^{j} N_{j}\right) \\
&=\prod_{j} E\left[\left(\Delta^{j}\right)^{N_{j}}\right]=\prod_{j} e^{\lambda_{j}\left(\Delta^{j}-1\right)} \\
&=\operatorname{epp}\left[\sum_{j} \lambda_{j}\left(\Delta^{j}-1\right)\right]
\end{aligned}
$$

$\frac{P^{74 \# 1}}{\text { Let } X}$ be memorylass (agelese) $\&$ assume $X \in\{1,2, \ldots\}$. We have

$$
P(X=n+\Delta \mid X>n)=P(X=\Delta), \Delta=1,2, \cdots
$$

(this is the lach of momory prospents in dinerete time)
So

$$
\frac{P\left(X>r, \frac{X=r+s)}{P(x>n)}\right.}{}=P(X=\Delta)
$$

But $\{X>n, X=n+\Delta\}=\{X=n+\infty\}$ as

$$
\{X=n+\Delta\} \subset\{X>n\}
$$

Hence $P(X=r+\Delta)=P(X=\Delta) P(X>n), \forall n \geqslant 0, \Delta>0$ q

$$
\begin{align*}
& \Rightarrow \quad P(X=n+\Delta+k)=P(X=\Delta+k) P(X>n), k=1,2, \cdots \\
& \Rightarrow \quad \sum_{k=1}^{\infty} P(X=n+\Delta+k)=\sum_{k=1}^{\infty} P(X=\Delta+k) P(X>r) \\
& \Rightarrow \quad P(X>n+\Delta)=P(X>\Delta) P(X>r) \\
& \Rightarrow \quad \bar{F}(n+\Delta)=\bar{F}(\Delta) \bar{F}(n), \forall n, \Delta \geq 0 \tag{*}
\end{align*}
$$

where $\bar{F}(x)=P(X>x)=1-\underbrace{P(X \leq x)}_{d f}$

$$
\text { (*) } \begin{aligned}
& \Rightarrow \bar{F}(k)=(\underbrace{\bar{F}(1)}_{\alpha})^{k} \\
& \Rightarrow P(X=k)=P(X>k)-P(X>k-1)=\alpha^{k-1}(1-\alpha)
\end{aligned}
$$ which are tho geometric probalisities.

p78\#3 Let $X \sim \operatorname{gamma}(0,1)$. Then

$$
f(x)=\frac{\lambda^{n} e^{-\lambda x} x^{r-1}}{\Gamma(\Gamma)}, x>0
$$

where $\Gamma(r)=\int_{0}^{\infty} e^{-\lambda x} x^{r-1} d x, r>0$. (Note that $x \frac{d}{\lambda}$ where $z \sim \operatorname{gamma}(r)=\operatorname{gammaa}(r, 1)$ + d means haw th same did'm.) The moo is

$$
\begin{aligned}
\sum^{i}\left(e^{t x}\right) & =\int_{0}^{\infty} \frac{\lambda^{n} e^{-\lambda x} x}{\Gamma(r)} e^{t x} d x \\
& =\int_{0}^{\infty} \frac{\lambda^{n} e^{-x(\lambda-t)} x^{n-1}}{\Gamma(n)} d x \\
& =\frac{\lambda^{n}}{(\lambda-t)^{2}} \int_{0}^{\infty} \frac{(\lambda-t)^{n} e^{-x(\lambda-t)} x^{n-1}}{\Gamma(n)} d x \\
& =\left(\frac{\lambda}{\lambda-t}\right)^{n}, t<\lambda
\end{aligned}
$$

as the expression in \int_{0}^{∞} is tho gamma l $(r, \lambda-t)$ pdf
p78开4

$$
|A(r)|=K_{d} r^{d}
$$

so that

$$
\text { st that } \begin{aligned}
P\left(S_{1}>\Delta\right) & =P(\text { mo points in } A(\Delta)) \\
& =e^{-P A(s)} \\
\therefore \quad f(A) & =-\frac{d}{d s} P\left(S_{1}>\Delta\right) \\
& =e^{-P K_{d} s^{d}}\left(\beta K_{d} d\right) s^{d-1}, \Delta>0
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left|A\left(S_{1}\right)\right|=k_{d} S_{1}^{d} \\
\Rightarrow E\left(\left|A\left(S_{1}\right)\right|\right) & =\int_{d}^{\infty} k_{d} s^{d}\left(p k_{d} d\right) s^{d-1} e^{-p k_{d} d d} d d \\
u & =\frac{k_{d} d^{d}}{=} \int_{0}^{\infty} u p e^{-p u} d \omega=1 / p
\end{aligned}
$$

den fact $\left|A\left(S_{1}\right)\right|$ is expencential (ρ) as can be seen by evaluating, $\psi_{2}>0$,

$$
P\left(\left|A\left(S_{1}\right)\right|>\Delta_{1}\right)=P\left(K_{\alpha} S_{1}^{d}>\Delta_{1}\right)=P\left(S_{1}>\left(\frac{\Delta_{1}}{K_{d}}\right)^{\frac{1}{d}}\right)
$$

$$
\begin{gathered}
=\int^{\infty} \rho k_{d} d A^{d-1} e^{-\varphi k_{d} A^{d}} d \Delta \\
\left(\frac{\Delta_{1}}{k_{d}}\right)^{1 / d} \\
u=k_{d} A^{d} \\
=\int_{A_{1}}^{\infty} \rho e^{-\rho L^{1}} d \omega=e^{-\rho A_{1}}
\end{gathered}
$$

st that $\left|A\left(S_{1}\right)\right| \sim \operatorname{epponential}(p)$

$$
\text { 1. } \begin{aligned}
& E(Y \mid A)=E\left(Y I_{A}\right) / P(A) \\
&-E(| | A)=E\left(I_{A}\right) / R(A)=1 \\
&-Y>0 \Rightarrow Y \geqslant 0 \Rightarrow E\left(Y I_{A}\right) \geqslant 0 \Rightarrow E(Y \mid A) \geqslant 0 \\
&-E(C Y \mid A)=E\left(C Y I_{A}\right) / E\left(I_{A}\right)=C E\left(Y I_{A}\right) / E\left(I_{A}\right)=C E(Y / A) \\
&-E(X+Y \mid A)=\frac{E\left((X+Y) I_{A}\right)}{E\left(I_{A}\right)}=\frac{E\left(X I_{A}\right)}{E\left(I_{A}\right)}+\frac{E\left(Y B I_{A}\right)}{E\left(I_{A}\right)} \\
&=E(X \mid A)+E(Y / A) \\
&-Y_{m} \uparrow Y \Rightarrow Y_{m} I_{A} \tau Y I_{A} \Rightarrow \frac{E\left(Y_{m} I_{A}\right)}{E\left(I_{A}\right)} \rightarrow \frac{E\left(Y I_{A}\right)}{E\left(I_{A}\right)}
\end{aligned}
$$

oo that $E(Y / A)=\lim E\left(Y_{m} \mid A\right)$
\#5 $\quad X=\sum_{i=1}^{n} I_{i}$, where I_{i} ~Bermoulli $\left(\frac{1}{n}\right)$

$$
\Rightarrow E(X)=\sum_{i=1}^{m} E\left(I_{i}\right)=\sum_{i=1}^{n} \frac{1}{m}=1
$$

\#7

$$
N\left(t_{i+1}\right)=M\left(t_{i}\right)+\left[N\left(t_{i+1}\right)-N\left(t_{-}\right)\right]
$$

\Rightarrow conditional on $N\left(t_{c}\right)=m$

$$
\begin{aligned}
& N\left(t_{i+1}\right) \stackrel{d}{N}+\operatorname{Poisson}\left(\lambda\left(t_{i+1}-t_{i}\right)\right) r v \\
\Rightarrow & E\left(N\left(t_{i+1}\right) / N\left(t_{i}\right)=m\right)=m+\lambda\left(t_{i+1}-t_{i}\right) \\
\Rightarrow & E\left(N\left(t_{i+1}\right) / N\left(t_{i}\right)\right)=N\left(t_{i}\right)+\lambda\left(t_{i+1}-t_{i}\right)
\end{aligned}
$$

p54\#3
Let X_{1}, \cdots, X_{m} be ied uniform $(\{1, \cdots, M\})$. Let $U=X_{(m)}$, the largest order statistic. The probability

$$
\begin{aligned}
P\left(X_{(m)} \leqslant x\right) & =P\left(X_{1} \leq x, \cdots, X_{m} \leq x\right) \\
& =P\left(X_{1} \leq x\right) \cdots P\left(X_{m} \leq x\right) \\
& =\left[P\left(X_{1} \leq x\right)\right]^{m}
\end{aligned}
$$

is easy to calculate. [Aside $P\left(X_{(1)}>x\right)=\left[P\left(X_{1}>x\right)\right]^{m}$ is aldo simple. I In this problem we want ta
to calculate $P\left(X_{m i}=x\right), x=1, \cdots, M$. Thisis is juno

$$
\begin{aligned}
P\left(X_{(m)}=x\right) & =P\left(X_{(m)} \leq x\right)-P\left(X_{(m)} \leq x-1\right) \\
& =\left[P\left(X_{1} \leq x\right)\right]^{m}-\left[P\left(X_{1} \leq x-1\right)\right]^{M} \\
& =\left(\frac{x}{M}\right)^{m}-\left(\frac{x-1}{M}\right)^{n}, x=1, \cdots, M
\end{aligned}
$$

\#4 We will verify

$$
E[Y h(X)]=E[E(Y \mid X) h(X)]
$$

in tho cts cave. The discrete case is identical.

$$
\begin{aligned}
E[E(Y \mid X) h(X)] & =\int_{-\infty}^{\infty} E(Y \mid X=x) h(x) f(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(y \mid x) d y h(x) f(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(y \mid x) f(x) h(x) d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y h(x) f(x, y) d y d x \\
& =E[Y h(X)]
\end{aligned}
$$

Distribution of "the Range" in a Prison Process Let $\{N(t) \mid t \geqslant 0\}$ be a Poisson process of rate λ on $t \geqslant 0$. It is known that $N(T)=T_{N}$ and we wish to find the pf of $W=T_{N}-T_{1}$, where $T_{1}<T_{2}<\cdots<T_{N}$ are the N points in $[0, T]$.
Sol'm \#1 (appeal to order statistics)
It is known that T_{1}, \cdots, T_{N} have the same dist 'm and n the order statistics from a sample of sing N prom a uniform $([0, T])$. It thus follows that $\frac{T_{1}}{T}, \cdots, \frac{T_{N}}{T}$ are distibibided as the order statistics for a sample of N from the uniform $([0,1])$. SAt

$$
V=\frac{T_{N}}{T}-\frac{T_{1}}{T}=Y-X
$$

where $Y=T_{N} / T$ and $X=T_{1} / T$. Now derive the joint pf $\cap X Y Y$ as before. This yields

$$
\begin{aligned}
& f(x, y)=N(N-1)(y-x)^{N-2}, 0 \leq x<y \leq 1 \\
& \bar{F}(v)=P(V>v)
\end{aligned}
$$

Let $v \in[0,1)$ and consider $F_{v}(v)=P(V>v)$

We have

$$
\bar{F}_{V}(v)=\iint_{/ / /} f(x, y) d x d y,
$$

where III is as in the picture

Consider

The area of \III $\approx(1-u) d u$ and in $||\mid$

$$
f(x, y) \approx N(N-1) u^{N-2}
$$

Hence

$$
\bar{F}_{v}(v)=\int_{v}^{1} N(N-1) u^{N-2}(1-u) d u
$$

so that

$$
f_{v}(v)=-\bar{F}_{v}^{\prime}(v)=\frac{d}{d v} \int_{1}^{v} N(N-1) u^{N-2}(1-u) d u
$$

$$
\begin{aligned}
\therefore \quad f_{v}(v) & =N(N-1) v^{N-2}(1-v) & & , 0<v<1 \\
& =0 & & \text {, ow }
\end{aligned}
$$

Now $W=T V$ so that

$$
\begin{array}{rlrl}
f_{w}(w) & =\frac{N(N-1)}{T}\left(\frac{w}{T}\right)^{N-2}\left(1-\frac{w}{T}\right) & , 0<w<T \\
& =0 & & , 0 w
\end{array}
$$

Selim\#? The joint pf of $T_{1}+T_{N}$, conditional on $N(T)=N$, satisfies

$$
\begin{aligned}
& f\left(t_{1}, t_{N}\right) d t, d t_{N} \approx P\left(T_{1} \in\left(t_{1}, t_{1}+d t_{1}\right), T_{N} \in\left(t_{N}, t_{N}+d t_{N}\right)\right)
\end{aligned}
$$

Now use the Poisson process properties to reduce this to

$$
\left.\begin{array}{l}
\frac{\left(e^{-\lambda t_{1}}\right)\left(e^{-\lambda d t_{1}} \lambda d t_{1}\right)}{\left(\frac{e^{-\lambda\left(t_{N} t_{1}-d t_{1}\right)} \lambda\left(\lambda\left(t_{1} t_{1} d t_{1}\right)\right]^{N-2}}{(N-2)!}\right)\left(e^{-\lambda d t_{N}} \lambda d t_{N}\right)\left(e^{-\lambda\left(T-t_{N}-d t_{1}\right)}\right)} \\
e^{-\lambda T}(\lambda T)^{N} / N!
\end{array}\right)
$$

and so

$$
\begin{aligned}
f\left(t_{1}, t_{N}\right) & =\frac{N(N-1)}{T^{2}}\left(\frac{t_{N}-t_{1}}{T}\right)^{N-2} & , 0 \leq t_{1}<t_{N} \leq T \\
& =0 & , 0 w
\end{aligned}
$$

Now set $X=\frac{T_{1}}{T}, Y=\frac{T_{N}}{T}$ to gel the

$$
\begin{array}{rlrl}
\text { nt pdf of } X+Y \text { as } & \\
\begin{array}{rlr}
f(x, y)=N(N-1)(y-x)^{N-2} & , 0 \leq x<y \leq 1 \\
& =0 & \text { ow }
\end{array}
\end{array}
$$ joint pay of $X+Y$ as

The derivation of $V=Y-X$ 'A pol r that of $W=T V$ then is as in Selim \#1

