Lecture 5

Apples into barrels

\[\square \square \square \ldots \square \]

M barrels
N apples
Apples "identical"

2 cases < all different

\[\rightarrow \quad M^N \quad \leftarrow \]

Fewer
N “points” into M cells
If done uniformly and independently then
\[P(Y_1 = k_1, \ldots, Y_M = k_M) = \binom{N}{k_1, \ldots, k_M} \cdot \frac{1}{M^N} \]
which is the multinomial \((N; \frac{1}{M}, \ldots, \frac{1}{M})\) or Maxwell-Boltzmann distribution (occupancy statistics).

Remark
(i) If the points are indistinguishable then the number of arrangements of the points in the cells is
\[\sum_{k_1, \ldots, k_M} \binom{N}{k_1, \ldots, k_M} = (1 + \ldots + 1)^N = M^N \]
Of course different arrangements may lead to the same counts.
(ii) \(Y_i \sim \text{binomial}(N, \frac{1}{M}) \Rightarrow \text{Poisson}(\mu)\)
\[\text{if } \frac{N}{M} \approx \mu + N \text{ is large.} \]
If the points are indistinguishable then the \# of arrangements will be fewer. We can count them as follows:

\[
\begin{array}{cccc}
\text{x} & \text{x} & \text{x} & \text{x} \\
\end{array}
\]

\[N-x's\]

\[M-1 = \text{froze longer than the end lines}\]

As we move the 1's + x's around we obtain the different ways of putting the N points into the M cells (we are only keeping track of the counts in each cell). This is identical to moving M-1 1's + N 0's around in N+M-1 cells and asking for the \# of arrangements! So we obtain

\[(N+M-1)_{N} \times (N+M-1)_{M-1}\]

Notice that each arrangement corresponds to counts in each of the M cells! If equal probability is assigned to each then we have the "Bose-Einstein statistics"
In particular
\[P(Y_i = k_i) = \binom{N-k_i+M-2}{M-2} / \binom{N+M-1}{M-1} \]
Let $x > 0$ then

$$F_n(x) = P(S_n > x) = P(N(x) \leq n - 1)$$

$$= \sum_{k=0}^{n-1} e^{-\lambda x} \frac{(\lambda x)^k}{k!}$$

Now calculate $F_n'(x)$ to get the pdf of a gamma (check this).

Extra material (basic conditioning, a review)

Def'n If $P(A) > 0$ define $E(Y|A) = \frac{E[Y I(A)]}{E[I(A)]]}.$

It is easily seen that, for fixed A, $E(\cdot | I(A))$ satisfies the Axioms for E (verify this).

Def'n $P(B|A) = E(I(B) | I(A))$

Of course $P(B|A) = P(BA) / P(A)$ as before.
If \(X \) is discrete then we set
\[
\eta(x) = E(Y|X = x)
\]
and
\[
E(Y|X) = \eta(X)
\]
If \(Y \) is also discrete then it is easily verified
\[
E(Y) = E[E(Y|X)]
\]
and
\[
E(Y|X_1) = E[E(Y|X_1, X_2)|X_1]
\]
A further property is
\[
E[Y g(X)] = E[E(Y|X) g(X)], \quad \forall \text{ real } g
\]
These last three properties are true in general and are easily verified when \((Y, X)\)
is its with PDF \(f(y, x) \).

Finally, it can be shown that \(E(Y|X) \) satisfies (see Th 5.3.1)
\[
E(Y - E(Y|X))^2 = \min_{h \in \mathcal{H}} E(Y - h(X))^2
\]
Application of the uniform + Bernoulli / Indicator

N - towns, at most 1 road between them, roads of any 2 towns

In fact, there is always a collection of towns, at least half of roads lead into it.

Solve: Go to each town and toss a fair coin. If H put town into a collection S. S is a random collection of towns. Note that there are 2^N possible "values" that S can be. Let $X = \#$ of roads leading into S from outside. We need to show there is

\[\frac{2}{3} \text{ of roads go into the dotted collection} \]
a possible value of $X \geq m/2$. Since X is a (positive) counting rv this will hold if $E(X) \geq m/2$. Now, let

$$I_j = I(\{\text{road } j \text{ leads into } S\})$$

Then

$$X = \sum_{j=1}^{m} I_j$$

and

$$E(X) = \sum_{j=1}^{m} E(I_j) = m \cdot P(\text{road } 1 \text{ leads into } S)$$

$$= m \cdot P(\text{one } H \text{ and one } T \text{ for the } 2 \text{ tosses})$$

$$= m/2$$

Let $\{N(t) : t \geq 0\}$ be a Poisson process of rate λ on $t \geq 0$. Suppose you know $N(t_0) = m$. Call the times of the points $T_1 < T_2 < \cdots < T_m$
We want the pdf \(f_X \).

Approach
Use def \(F \) or \(F = 1 - F \)

Aside

\[
F(x) = P(X \leq x), \quad \forall x \in \mathbb{R}
\]

For a cts rv \(X \)

\[
F(x) = \int_{-\infty}^{x} f(t) \, dt
\]

\[=\] at continuity pts

\[
F'(x) = f(x)
\]

In fact we could take \(F' \) to be an equivalent pdf.

\[
P(b) - P(a) = P(a < X \leq b)
\]

\[
\begin{align*}
F(a) & \quad \Rightarrow \quad F(a) = P(X \leq a) + P(a < X \leq b) = P(X \leq b) - P(a < X \leq b) = \int_{a}^{b} f'(t) \, dt \quad \boxed{FLAC} \\
& \quad \Rightarrow \quad F(b) - F(a) = P(a < X \leq b)
\end{align*}
\]
Remark. If \(F \) is cts it is possible for \(F'(x) = 0 \) for almost every \(x \) (places where not true have length 0), so in that case \(\int_{-\infty}^{\infty} F'(x) \, dx = 0 \).

\(F'(x) = -f(x) \). So knowing \(F \Rightarrow \) know the dist \(\mu \).

By the way,

\[x_1 < x_2 \Rightarrow P(X \leq x_1) \leq P(X \leq x_2) \]

\[\therefore \{X \leq x_1\} \Rightarrow \{X \leq x_2\} \]

\[\therefore F \text{ is increasing.} \]

\[\therefore x_n \downarrow a \Rightarrow \{X \leq x_n\} \downarrow \{X \leq a\} \]

\[\Rightarrow P(X \leq x_n) \to P(X \leq a) \]

(Continuity property of \(P \)).

\(\therefore F \text{ is right cts} \)
$$x_n \uparrow \infty \Rightarrow \{X \leq x_n\} \uparrow \{X < \infty\}$$
$$\Rightarrow F(x_m) \to P(X < \infty) = 1$$

$$x \to \infty \Rightarrow F(x) \to 1$$
$$F(\infty) = 1$$

$$x_n \downarrow -\infty \Rightarrow \exists X \leq x_n \exists \downarrow \emptyset$$
$$\Rightarrow F(x_m) \to 0$$

$$x \to -\infty \Rightarrow F(x) \to 0$$
$$F(-\infty) = 0$$

Note: $x_n \uparrow a \Rightarrow \{X \leq x_n\} \uparrow \{X < a\}$

$$\Rightarrow \lim_{x \uparrow a} F(x) = P(X < a) \neq F(a)$$

$$P(X = a) = F(a) - \lim_{x \uparrow a} F(x)$$

(2) Knowing $F \Rightarrow$ know $P(a \leq X \leq b)$

(2) Knowing $F \Rightarrow$ know the distribution
Back to our Poisson process.

\[F_m(x) = P(T_m \leq x) = P(T_m \leq x | N(x, t_0) = m) \]

\[= P(N((x, t_0]) = 0 | N(t_0) = m) \]

\[= P(N((x, t_0]) = 0, N(t_0) = m) \]

\[\frac{P(N(t_0) = m)}{P(N(t_0) = m)} \]

\[= \frac{P(N(x) = m, N((x, t_0]) = 0)}{P(N(t_0) = m)} \]

\[= \frac{P(N(x) = m) P(N((x, t_0]) = 0)}{P(N(t_0) = m)} \]
\[= P(N(x) = m) \frac{P(N(t_0) = 0)}{P(N(t_0) = m)} \]
\[= e^{-\lambda x} \frac{(dx)^m}{m!} e^{-\lambda(t_0-x)} \]
\[= \frac{e^{-\lambda t_0} \frac{(\lambda t_0)^m}{m!}}{m!} \]
\[= \left(\frac{2x}{t_0} \right)^m \]

\[\text{ conditional on } N(t_0) = m, \]
\[F_{(m)}(x) = \left(\frac{2x}{t_0} \right)^m, \quad 0 \leq x \leq t_0 \]
\[= 1, \quad x > t_0 \]
\[= 0, \quad \text{otherwise} \]
\[f(m) = \frac{n}{t_0} \left(\frac{x}{t_0} \right)^{m-1}, \quad 0 \leq x \leq t_0 \]

\[= 0, \quad \text{otherwise} \]

If \(t_0 = 1 \) then
\[f(x) = n \cdot x^{m-1}, \quad 0 \leq x \leq 1 \]
\[= 0, \quad \text{otherwise} \]

\[\text{Remark: } \quad \mathbb{E}(Y \mid X = x) = \sum_y y \frac{f(y \mid x)}{f(x)} \]
\[= \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)} \]
\[\text{discrete} \]

\[\mathbb{E}(Y \mid X) = \mathbb{E}(X) \]

\[\mathbb{E}[\mathbb{E}(Y \mid X)] = \mathbb{E}(X) \]

\[\mathbb{E}[\mathbb{E}(Y \mid X)] = \mathbb{E}(Y) \]

\[\mathbb{E}(X \mid X = x) = \mathbb{E}(X) = \int_{-\infty}^{\infty} y f(y \mid x) \, dy \]

\[\text{cond pdf} \]
stochastic process = collection of random elements

Gaussian process = collection of rv's whose dist'ns are normal

Markov property
{X_t : t \in T}

For each t_0 \in T,

\[g(\{X_t : t > t_0\} | \{X_t : t \leq t_0\}) \]

stationary process:
(\(X_{t_1}, \ldots\)) \distr (\(X_{t_1+\Delta}, \ldots\)), \(\Delta\) a

toeplitz matrix

\[\begin{pmatrix} 0 & 0 & \cdots \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \]

elements on 0 same square

\(\cdots\)}
Poisson processes & order stats

Sample X_1, \ldots, X_m

Order stats $X_{(1)} < \cdots < X_{(m)}$

(assume cts)

Poisson process

- throw points \rightarrow Poisson process
- have process \rightarrow some other way to condition \rightarrow throw pts!

So

Let $\{ N(t) : t \geq 0 \}$ be a Poisson process of rate λ on $t \geq 0$.

Suppose you know $N(t_0) = m$. Call the times of the points $T_1 < T_2 < \cdots < T_m$

\[
\begin{array}{cccccccc}
0 & T_1 & T_2 & \cdots & T_m & t_0 \\
\end{array}
\]
We want the pdf of T_n.

Approach

Use the definition F or $ar{F} = 1 - F$

Aside

$F(x) = P(X \leq x), \forall x \in \mathbb{R}$

For a cts rv X

$$F(x) = \int_{-\infty}^{x} f(t) \, dt$$

\Rightarrow at continuity pts

$$F'(x) = f(x)$$

In fact we could take F' to be an equivalent pdf.

$$F(b) - F(a) = P(a < X \leq b)$$

$$\leq P(X \leq a) + P(a < X \leq b) = P(X \leq b)$$

$$= \int_{a}^{b} F'(t) \, dt$$

FLAC
Back to our Poisson process.

$$F_{(m)}(x) = P(T_m \leq x) \{ = P(T_m \leq x \mid N(X) = m)}$$

\[m \times \frac{T_m}{X} \leq x \leq T_0 \]

\[F_{(m)}(x) = \left(\frac{2c}{t_0} \right)^m \quad , \quad 0 \leq x \leq t_0 \]

= 1 \quad , \quad x > t_0 \]

= 0 \quad , \quad o.w.

Q. so
\[f(m)(x) = \frac{m}{\tau_0} \left(\frac{x}{\tau_0} \right)^{m-1}, \quad 0 \leq x \leq \tau_0 \]

\[= 0, \quad \text{otherwise} \]

If \(\tau_0 = 1 \) then
\[f(m)(x) = m \cdot x^{m-1}, \quad 0 \leq x \leq 1 \]

\[= 0, \quad \text{otherwise} \]

As we will see this is what we get when looking at the order statistics from a uniform.

First interarrival times ind?

Conditional pdf/ pf/mgf/ pgf/df = unconditional

\[\implies \text{ind} \]
eg. Poisson process, rate λ on $t > 0$

We know $X_i \sim \text{exponential}(\lambda)$

Look at

$$P(X_2 > x_2 \mid X_1 = x_1)$$

$$= P\left(N\left((x_1, x_1 + x_2)\right) = 0 \mid X_1 = x_1\right)$$

= $\text{e}^{-\lambda x_2}$

which is the tail probability of an
\[\text{exponential}(1). \]

\[X, X_2 \text{ are independent } \Rightarrow \text{ unconditional tail probability if } n \text{ is as above. That is, } X, X_2 \text{ are iid exponential}(1). \text{ Continue to get} \]

\[X, X_2, \ldots \text{ iid exponential} \]

\[\text{Order Statistics} \]

\[X, X_2, \ldots, X_n \text{ iid pdf } f \]

\[X^{(1)} < \ldots < X^{(n)} \text{ order stats} \]

pdf of \(X^{(2)} \)

\[\int \frac{(x) \, dx}{(m - 2)} \]

\[\sim \mathbb{P}\left(\frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n+1} (m-2) \right) \]
\[
F(x) \sim f(x) dx \sim \overline{F}(x)
\]

\[
\Gamma \left(\frac{m}{n-1}, 1, m-n \right) F(x)^{n-1} f(x) dx \overline{F}(x)^m
\]

\[
f(n)(x) = \binom{m}{n-1} \Gamma \left(\frac{m}{n-1}, 1, m-n \right) F(x)^{n-1} f(x) \overline{F}(x)^m
\]

For a uniform \((0, 1)\)

\[
f(m)(x) = mx^{m-1}, \quad 0 < x < 1
\]