binomial

iid Bernoulli trials yielding

\[X_1 \sim \text{iid } X, \quad X_2 \sim \text{iid } X, \ldots, \quad X_N \sim \text{iid } X \]

Note possible values of \(X \) are \(\binom{0}{0} \) or \(\binom{1}{0} \)

The pdf of the components of \(X \) is just the

The pdf of \(X \)

\[G_X(z) = E(z^X) = E(z_1^{1st \text{ comp of } X} z_2^{2nd \text{ comp of } X}) \]

\[= z_1 p_1 + z_2 p_2 \]

\[= p_1 z_1 + p_2 z_2 \]

= pgf of a "vector Bernoulli"

Now set

\[Y = X_1 + \ldots + X_N \]

\[\Rightarrow G_Y(z) = (p_1 z_1 + p_2 z_2)^N = \sum_{y_1, y_2 = 1}^N (y_1, y_2)^N p_1^{y_1} p_2^{y_2} z_1^{y_1} z_2^{y_2} \]

\[\Rightarrow p(Y = y) = \binom{N}{y_1, y_2} p_1^{y_1} p_2^{y_2} \]
Note \(z_2 = 1 \Rightarrow (p, z_1 + z_2)^N \) is the pgf of the 1st component of \(X \) (this is the binomial\((N, p)\) as you knew it).

Extend to the multinomial

\[
\begin{align*}
X_1, X_2, \ldots, X_M & \overset{iid}{\sim} X \\
Mx1 & \quad Mx1
\end{align*}
\]

\(X \) has one component \(= 1 \) + the rest \(0 \). The probability that the \(1 \) is in the \(i \)th place we call \(p_i \) \((i=1, \ldots, M)\). The pgf \(G \) of \(X \) is

\[
(p, z_1 + z_2 + \cdots + z_M)
\]

Letting

\[
Y = X_1 + \cdots + X_M
\]

we get

\[
G(Y) = (p, z_1 + \cdots + z_M)^N
\]

\[
\Rightarrow \quad P(Y = y) = \binom{N}{y_1, \ldots, y_M} p_1^{y_1} \cdots p_M^{y_M}
\]

\[
\binom{N}{y_1, \ldots, y_M}
\]
\[\frac{d^2}{dz_1 dz_2} G(z) = E(Y, z_1^{-1} z_2 z_2^{-1} z_3^{-1} \ldots) \] works for all counting vectors.

Can use to get the \(\text{cov}(X_i, Y_j) \) for counting vectors \(Y \).

Properties of covariances

\[\text{cov}(X, Y) = E(XY) - E(X)E(Y) \]

\[
\begin{align*}
\text{cov}(X, X) &= \text{Var}(X) \\
\text{cov}(X+c, Y+d) &= \text{cov}(X, Y) \\
\text{cov}(aX, bY) &= ab \text{cov}(X, Y) \\
\text{cov}(\sum_{i} X_i, \sum_{j} Y_j) &= \sum_{i,j} \text{cov}(X_i, Y_j)
\end{align*}
\]

eg \(X_1 \sim \text{Poisson}(\lambda_1), X_2 \sim \text{Poisson}(\lambda_2), X_3 \sim \text{Poisson}(\lambda_3) \)

\[U = X_1 + X_2 \quad \text{easy to get the pdf} \]

\[V = X_2 + X_3 \]

\[E(z_1^r z_2^s) \]

\[= E(z_1^{X_1+X_2} z_2^{X_2+X_3}) \]
\[E \left(z_1 X_1 \left(z_2 z_2 \right)^2 z_2 \right) \]
\[= E \left(z_1 X_1 \right) E \left(z_2 z_2 \right)^2 E \left(z_2 \right) \]
\[= e \left(z_1 \right) e \left(z_2 \right)^2 e \left(z_2 \right) \]
\[= e \left(z_1 \right) e \left(z_2 \right)^2 e \left(z_2 \right) \]

- Use this to get \(E(2UV) \) — imp \(\}
 15 minutes

and then get \(\text{cov}(U,V) \)

Another way
\[
\text{cov}(U,V) = \text{cov}(X_1 + X_2, X_2 + X_3) \\
= \text{cov}(X_1, X_2) + \text{cov}(X_1, X_3) + \text{cov}(X_2, X_2) + \text{cov}(X_2, X_3) \\
= \text{cov}(X_2, X_2) = \text{Var}(X_2) = \lambda_2
\]

Note: \(X, Y \) ind \(\Rightarrow \) \(E(XY) = E(X)E(Y) \) \(\Rightarrow \text{cov}(X,Y) = 0 \)

\(\exists Z \sim N(0,1) \). Let \(X = Z \), \(Y = Z^2 \). Then \(X \& Y \) are dependent

\[
E(XY) = E(ZZ^2) = E(Z^3) = 0
\]

\(\therefore X \& Y \) are uncorrelated.
Spatial Poisson process

Background. A rv is uniform on a set if its PDF is constant there.

Throw N points onto V in a uniform way.

everything oriented A_1, \ldots, A_{M-1}

$\{A_1, \ldots, A_{M-1}, A_{M}\}$ is a partition of V.

Let $N(A) = \#$ of pts in a set $A \subset V$.

\sim binomial $(N, |A|/|V|)$

Also $N(A_1), \ldots, N(A_M)$ is the multinomial with $p_i = |A_i|/|V|$

The PDF is

$$(p_1^Z, \ldots, p_{M-1}^Z_{M-1}, p_M^Z_{M})^N$$
In the limit you get a Poisson point process on \mathbb{R}^d of "rate" ρ.

Poisson spatial process, Poisson counting process, Poisson process.

Why is it called Poisson?
\[(*) \quad \left[P_1(z_{i-1}) + \cdots + P_{M-1}(z_{M-1}) + 1 \right]_N \]

\[P_i = \frac{|A_i|}{|V|} = \frac{|A_i|}{N} \cdot \frac{N}{|V|} = \frac{\rho |A_i|}{N} \]

so that \((*)\) is

\[\left[1 + \frac{\rho |A_1|(z_{i-1}) + \rho |A_2|(z_{i-1}) + \cdots + \rho |A_{M-1}|(z_{M-1})}{N} \right]^N \]

\[
\lim_{N \to \infty} \rho |A_1|(z_{i-1}) + \cdots + \rho |A_{M-1}|(z_{M-1})
\]

\[\Rightarrow \mathcal{C} \]

\[= \text{PDF of } M-1 \text{ independent Poisson } \]

\[\text{with means } \rho |A_1|, \ldots, \rho |A_{M-1}| \]

Note: For a Poisson process, the \#'s in disjoint regions are independent Poisson, \(\lambda + \) the \# in a set \(A \) is Poisson with mean \(\frac{\rho \cdot \lambda}{\text{usual}} \)
Special case: Poisson process of rate λ on $t \geq 0$.

$$\begin{array}{c}
| 0 | t_1 | t_2 | t_3 | \ldots | \text{time} \\
\hline
\end{array}$$

$\forall t_0 < t_1 < t_2 < \ldots \quad N(t) = \# \text{ of points in } [0, t]$.

Then $N(t_i) - N(t_{i-1}) = \# \text{ of pts in } (t_{i-1}, t_i]$, $i = 1, 2, \ldots$.

$\{N(t) : t \geq 0\}$ is a Poisson counting process of rate λ on $t \geq 0$.

Note that the $N(t_i) - N(t_{i-1})$ are independent (independent increments).

Times between pts are \textit{i.i.d.} \{\text{want to study}\}

Time to the nth pt is a \textit{rv}
Let \(S_n \) = time to the \(n \)th pt. +
\(X_1, X_2, \ldots \) be the times between pts
\(\uparrow \) time from 1st pt to 2nd
\(\uparrow \) time from 0 to the 1st pt

dist'n of \(X_1 \)

Let \(F(x) = P(X_1 \leq x) \) = def of \(X_1 \)
\(F(x) = P(X_1 > x) \) = Tail probability

Assume \(F \) (or \(1 - F \)) determine the dist'n
(which it does but hard to prove).

Here
\(F(x) = 0 \) unless \(x > 0 \)

Let \(x > 0 \). Then
\(1 - F(x) = P(X_1 > x) = P(N(x) = 0) \)

But \(N(x) \sim \text{Poisson}(\lambda x) \)

\(\Rightarrow P(N(x) = 0) = e^{-\lambda x} \)
\[F(x) = e^{-\lambda x}, \quad x > 0 \]

\[F(x) = 1, \quad x \leq 0 \]

Notice \(F'(x) = -\lambda e^{-\lambda x}, \quad x > 0 \)

\[F'(x) = \lambda e^{-\lambda x}, \quad x > 0 \]

which is the exponential (1) pdf. So \(X \sim \text{exponential}(\lambda) \)

\[\text{N/t. If a pdf exists then } F'(x) = -\frac{1}{f(x)}. \]

The exponential(1) distr'n, by def'n, has pdf

\[f(x) = \lambda e^{-\lambda x}, \quad x > 0 \]

\[\text{mean} = \frac{1}{\lambda} \]

\[= 0, \quad \text{otherwise} \]

If \(F'(x) \) is a pdf then we are dealing with an absolutely cont' a distr'n.

\[\text{For } S_n = \text{time to } n \text{th point} \]

\[\overline{F}(x) = P(S_n > x) \]
Let $x > 0$ then
\[
\bar{F}_n(x) = P(S_n > x) = P(N(x) \leq n - 1)
\]
\[
= \sum_{k=0}^{n-1} e^{-\lambda x} \frac{(\lambda x)^k}{k!}
\]

Now calculate $\bar{F}_n'(x)$ to get the pdf of a gamma (check this).

Extra material (basic conditioning, a review)

Def'm if $P(A) > 0$ define $E(Y|A) = \frac{E[XY|A]}{E[I(A)]]}$

It is easily seen that, for fixed A, $E(\cdot | I(A))$ satisfies the Axioms for E (verify this).

Def'm $P(B|A) = E(I(B)|A)$

Of course $P(B|A) = P(AB)/P(A)$ as before
If X is discrete then we set
\[r(x) = E(Y | X = x) \]
and
\[E(Y | X) = r(X) \]
If Y is also discrete then it is easily verified
\[E(Y) = E[E(Y | X)] \]
and
\[E(Y | X_1) = E[E(Y | X_1, X_2) | X_1] \]
A further property is
\[E[Y g(X)] = E[E(Y | X) g(X)] \]
"A" real g.

These last three properties are true in general and are easily verified when (\tilde{Y})
is its with $pdf \ \tilde{f}(y, x').$

Finally, it can be shown that $E(Y | X)$
satisfies (see Th 5.3.1)
\[E(Y - E(Y | X))^2 = \min_{h} E(Y - h(X))^2 \]
Application of the uniform + Bernoulli / Indicator

N - towns ≥ at most 1 road between m - roads ≥ any 2 towns

\[\frac{2}{3} \text{ of roads go into to dotted collection} \]

In fact there is always at collection of towns ≥ at least half of roads lead into it.

Sol'n Go to each town + toss a fair coin. If H put town into a collection S. S is a random collection of towns. Note that there are \(2^N \) possible "values" that S can be. Let \(X = \# \) of roads leading into S from outside. We need to show there is
a possible value of \(X \geq m/2 \). Since \(X \) is a (positive) counting rv this will hold if \(E(X) > m/2 \). Now, let

\[I_j = I(\{ \text{road } j \text{ leads into } S \}) \]

Then

\[X = \sum_{j=1}^{m} I_j \]

and

\[E(X) = m \cdot E(I_i) = m \cdot P(\text{road } i \text{ leads into } S) \]

\[= m \cdot P(\text{one } H \text{ and one } T \text{ for the } 2 \text{ tosses}) \]

\[= m/2 \]

Let \(\{ N(t) : t > 0 \} \) be a Poisson process of rate \(\lambda \) on \(t > 0 \).

Suppose you know \(N(t_0) = m \). Call the times of the points \(T_1 < T_2 < \ldots < T_m \)
We want the pdf of T_r.

Approach

Use def F so $\overline{F} = 1 - F$

Aside

$F(x) = P(X \leq x), \forall x \in \mathbb{R}$

For a cts rv X

$$F(x) = \int_{-\infty}^{x} f(t) \, dt$$

\Rightarrow at continuity pts

$$F'(x) = f(x)$$

In fact we could take F' to be an equivalent pdf.

$$F(b) - F(a) = P(a < X \leq b)$$

$$\Rightarrow \quad \underbrace{P(X \leq a)}_{F(a)} + P(a < X \leq b) = P(X \leq b)$$

$$= \int_{a}^{b} F'(t) \, dt \quad [\text{FLAC}]$$
Remark, if \(F \) is cts it is possible \(F' = f \). For \(f \) it is almost every \(x \) for \(F'(x) = 0 \) for almost every \(x \) (places where not true have length 0).

So in that case \(\int_{-\infty}^{\infty} F'(x) \, dx = 0 \).

\(F'(x) = -f(x) \). So knowing \(F \) \(\Rightarrow \) knowing the distribution.

By the way,
\(x_1 < x_2 \Rightarrow \mathbb{P}(X \leq x_1) \leq \mathbb{P}(X \leq x_2) \)
\(\Rightarrow \{ X \leq x_1 \} \Rightarrow \{ X \leq x_2 \} \)

\(\Rightarrow F \) is increasing.
\(\forall x_n \downarrow a \Rightarrow \{ X \leq x_n \} \downarrow \{ X \leq a \} \)
\(\Rightarrow \mathbb{P}(X \leq x_n) \rightarrow \mathbb{P}(X \leq a) \)
(continuity property of \(\mathbb{P} \))

\(\Rightarrow F \) is right cts.
\[x \nearrow \infty \Rightarrow \{X \leq x\} \uparrow \{X < \infty\} \]
\[\Rightarrow F(x_m) \to P(X < \infty) = 1 \]

\[x \searrow \infty \Rightarrow F(x) \to 1 \]
\[F(\infty) = 1 \]

\[x \downarrow -\infty \Rightarrow \exists \{X \leq x\} \downarrow \emptyset \]
\[\Rightarrow F(x_m) \to 0 \]

\[x \searrow -\infty \Rightarrow F(x) \to 0 \]
\[F(-\infty) = 0 \]

Notation:
\[x_m \uparrow a \Rightarrow \{X \leq x_m\} \uparrow \{X < a\} \]

\[\lim_{x \uparrow a} F(x) = P(X < a) \neq F(a) \]

\[P(X = a) = F(a) - \lim_{x \uparrow a} F(x) \]

Knowing \(F \) implies knowing \(P(a \leq X < b) \)

Knowing the distribution function \(F \) implies knowing the distribution function \(F \).
Back to our Poisson process.

\[F_{(m)}(x) = P(T_m \leq x) \]

\[= P(T_m \leq x \mid N(t_o) = m) \]

\[= P(N((x, t_o]) = 0 \mid N(t_o) = m) \]

\[= P(N((x, t_o]) = 0, N(t_o) = m) \]

\[\frac{P(N(t_o) = m)}{P(N(t_o) = m)} \]

\[= P(N(x) = m, N((x, t_o]) = 0) \]

\[\frac{P(N(t_o) = m)}{P(N(t_o) = m)} \]

\[= \frac{P(N(x) = m) P(N((x, t_o]) = 0)}{P(N(t_o) = m)} \]
\[= P(N(x) = n) \cdot P(N((x, \infty]) = 0) \]
\[P(N(t_0) = m) \]
\[= e^{-\lambda x} \left(\frac{dx}{m!} \right)^m \cdot e^{-\lambda (t_0 - x)} \]
\[e^{-\lambda t_0} \cdot \frac{\left(\lambda t_0 \right)^m}{m!} \]
\[= \left(\frac{2c}{t_0} \right)^m \]

Conditional \(m \mid N(t_0) = m \),
\[F_{(m)}(x) = \left(\frac{2c}{t_0} \right)^m \]
\[0 \leq x \leq t_0 \]
\[= 1 \quad , \quad x > t_0 \]
\[= 0 \quad , \quad 0 \leq x \leq t_0 \]

\[\therefore \]
\[
\hat{f}(x) = \frac{m}{t_0} \left(\frac{2x}{t_0} \right)^{m-1}, \quad 0 \leq x \leq t_0
\]
\[
= 0, \quad \text{otherwise}
\]

If \(t_0 = 1 \) then
\[
\hat{f}(x) = m \cdot x^{m-1}, \quad 0 \leq x \leq 1
\]
\[
= 0, \quad \text{otherwise}
\]

Remark

\[
E(Y|X=x) = \sum_y y \cdot f(y|x)
\]
\[
\sum_y f(y|x)
\]
discrete

E(Y|X) = \mu(X)

\[
E\left[E(Y|X) \right] = E(Y)
\]

\[
E\left[E(z|X) \right] = E(z)
\]

\[
\mu(x) = E(Y|X=x) = \int_0^\infty y \cdot f(y|x) \, dy
\]

\[
\text{cond pdf}
\]