1.

Let X, X2 be id X where 0< E(X2)<0. Suppose $\frac{X_{,\tau}X_{z}}{\sqrt{z}} \stackrel{d}{=} X \quad .$ Show $X \sim N(0, \sigma^{2})$.

2. (i) Let $a_1, a_2, ...$ be a sequence. We will denote it by either $\{a_n\}$ or just a_n . Define $a_n \rightarrow a$, as $n \rightarrow \infty$. When there is no confusion we will simply write $a_n \rightarrow a$ (or say that a_n converges to a).

(ii) If a_n is a sequence and $n_1 < n_2 < ...$ then a_{n_k} is called a subsequence of a_n . Show $a_n \rightarrow a \Leftrightarrow$ every subsequece of a_n converges to a.

(ii) Suppose every subsequnce of a sequence a_n has a further subsequence which converges to a . Show $a_n \rightarrow a$.

3. It can be shown that $X_n \xrightarrow{p} X$ implies there exists a subsequence X_{n_k} which converges almost surely to X. Use this fact to prove what one might term a Probabilistic Dominated Convergence Theorem: Suppose $X_n \xrightarrow{p} X$ and $|X_n| \le W$ with $E(W) \le \infty$. Show $E(X_n) \rightarrow E(X)$.

. Let X, Xe, ... be iid, ? O with continuous de F which is strielly increasing in z? O. We say that a second occurs at time n if Xm> map {X, ... Xm-, 3, m= 2, 3, --Time m=1 will by convention be called the initial record time and X, the initial record value. (a) her T = min { m: m>1 and mis a record time ? Calenlate P(T>t), P(T<0) and E(T) (b) Ly Ty = min { min { x > y}. Show (c) Calculate E[N(2)] and Var [NC] where N(t) = # of records up to time t

4.

Let A_1, A_2 , ... be a countably infinite # of events and set

$$Y = \sum_{i} I_{A_{i}} \text{ . Show } \{Y = \infty\} = \lim_{n \to \infty} \bigcup_{i=n}^{\infty} A_{i} \text{ .}$$

6. For the situation in #5 suppose the sum of the probabilities of the A's is finite. Show P(Y=oo) = 0. On the other hand, if the A's are independent and the sum is oo show P(Y=oo) = 1. These two results form the Borel Cantelli Lemma.

7.

Suppose
$$X_n^{ms} \rightarrow X$$
. Show $X_n^{p} \rightarrow X$.

8.

Let
$$X_1, X_2, \dots$$
 be iid uniform(0,1). Show $n(1-X_{(n)}) \xrightarrow{d} exponential(1)$.

9. A positive rv X is ageless if P(X>s+t|X>s)=P(X>t), for all s,t>=0. If X is ageless, and not a constant, show it must be exponential(l) for some l>0.

<u>Remark</u>: In 9 you may not assume X to be a cts rv with some pdf. If F is the df then you must show 1- $F(x)=\exp(-lx)$ for x>0. Since 1-F is right continuous this will be the case if it's true for rational x's.

5.

3.
$$\frac{X_{i} + X_{z}}{\sqrt{z}} \stackrel{d}{=} X \implies \frac{2E(X)}{\sqrt{z}} = E(X) \implies E(X) = 0$$

$$4 \quad C(t) = E(e^{itX}), \text{ where } i = \sqrt{-i}, \text{ then}$$

$$E(e^{itX}) = E(e^{i\frac{t}{\sqrt{z}}}X_{i}) E(e^{i\frac{t}{\sqrt{z}}}X_{z})$$

$$\Rightarrow \quad C(t) = \left[C(\frac{t}{\sqrt{z}})\right]^{2}$$

$$\Rightarrow \quad C(t) = \left[\left(C(\frac{t}{\sqrt{z}})\right)^{2}\right]^{2} = \left[C(\frac{t}{\sqrt{yz}})^{2}\right]^{2}$$

$$\Rightarrow \quad C(t) = \left[C(\frac{t}{\sqrt{z}})\right]^{2} = \left[C(\frac{t}{\sqrt{z}})^{2}\right]^{2}$$

$$\Rightarrow \quad C(t) = \left[C(\frac{t}{\sqrt{z}})\right]^{2} = \left[C(\frac{t}{\sqrt{z}})^{2}\right]^{2}$$

Since $C'(0) = i E(X) = 0 + C''(0) = -E(X^2) = -\sigma^2$. Now let $m \to \infty$ to get $C(t) = e^{-\sigma^2 t^2/2}$ which is the of $f \neq A \ N(e, \sigma^2)$. Note: $\left[1 + \frac{x}{N} + o\left(\frac{1}{N}\right)\right]^N \to e^x$ as $N \to \infty$

(a) We have

$$T > M \Leftrightarrow X_{i} = map \{X_{i}, \dots, X_{n}\}$$

so that $P(T > m) = \pm M$. Since
 $P(T = o) = \lim_{m \to 0} P(T > m) = 0$ we get $P(T < o) = 1$.
Finally, $E(T) = \sum_{m=1}^{\infty} P(T > m) = \sum_{m=1}^{\infty} \pm m = \infty$
(b) but $T_{ij} = time of the first record value $2y$
and set XT_{ij} as the record value at time T_{j} .
Then
 $P(XT_{j} > x | T_{j} = m) = P(X_{m} > x | X_{j} < y_{j}, \dots, X_{m} < y_{j})$
 $= \prod_{i=1}^{\infty} (X_{ij} > x | T_{ij} = m) = P(X_{ij} > x | X_{ij} > y_{j})$
Since $P(XT_{ij} > x | T_{ij} = m)$ does not depend
on m T_{ij} is independent of XT_{ij} .
(c) $\{ record at time m\} = \{X_{m} is the largest of $X_{ij}, \dots, X_{m} \}$
and so $P(\{ record at time m\}) = [T_{ij} = m > N_{ij}] = M$. Now
 $N(t) = \sum_{i=1}^{t} T_{ij} = m > N_{ij} < N_{ij} = \frac{t}{i} = (1 - t_{ij})$$$

 $X_{n} \xrightarrow{\text{max}} X \implies E(X_{n} - X)^{2} \rightarrow 0$ $\Rightarrow P(|X_m - X|, \epsilon) \leq \frac{E(X - X)^2}{\frac{1}{2}} \rightarrow 0$ $\Rightarrow X_{\mathcal{M}} \xrightarrow{P} X$

(c) Set
$$Y_{n} = m(1-X_{(n)})$$
. Then for $y > 0$,
 $P(Y_{n} > y) = P(m(1-X_{(n)}) > y)$
 $= P(X_{(n)} < 1 - \frac{y}{M})$
 $= P(X_{i} < 1 - \frac{y}{M}) = P(X_{i} < 1 - \frac{y}{M})$
 $= (1 - \frac{y}{M})^{m} \rightarrow e^{-y}$
 $= (1 - \frac{y}{M})^{m} \rightarrow e^{-y}$

1. Set
$$F(x) = P(X > x)$$
. Then
 $P(X > A + t \mid X > S) = P(X > t)$
 $\Rightarrow P(X > A + t) = P(X > A) P(X > t)$
 $\Rightarrow F(A + t) = F(A) F(t)$
 $\Rightarrow F(t, + \dots + t_{m}) = F(t,) \dots F(t_{m})$ -induction
 $\Rightarrow F(t) = F(t_{m}) \dots F(t_{m}) = (F(t_{m}))^{m}$ (m)
Since $F(0) = 1$ and F is right ato we get
 $F(t) > 0$ (since $F(t_{m})$ is above to 1 for large m).
fet $n = m$ be a rational > 0. Then
 $F(m) = F(t_{m} + \dots + t_{m}) = (F(t_{m}))^{m}$
 $f(m) = F(t_{m} + \dots + t_{m}) = (F(t_{m}))^{m}$
 $f(t_{m}) = F(t_{m} + \dots + t_{m}) = (F(t_{m}))^{m}$
 $f(t_{m}) = F(t_{m}) = [F(t_{m})]^{m}$. If $x \ge 0 \in \mathbb{R}$ then
 $F(x) = \lim_{n \to \infty} F(n) = F(t)^{T}$. Noto $F(t_{m}) = \log[F(t_{m})] = n$
Set $\lambda = -\log[F(t_{m})]$. Then $\lambda > 0$ and
 $F(x) = e^{-\lambda x}$, $x \ge 0$
 $\Rightarrow X \sim exponential(1)$