Let X_{1}, X_{2} be ied X where $0<E\left(X^{2}\right)<\infty$.

$$
\frac{X_{1}+X_{2}}{\sqrt{2}} \stackrel{d}{=} X
$$

Show $X \sim N\left(0, \sigma^{2}\right)$.
2.
(i) Let a_{1}, a_{2}, \ldots be a sequence. We will denote it by either $\left\{a_{n}\right\}$ or just a_{n}. Define $a_{n} \rightarrow a$, as $n \rightarrow \infty$. When there is no confusion we will simply write $a_{n} \rightarrow a$ (or say that a_{n} converges to a).
(ii) If a_{n} is a sequence and $n_{1}<n_{2}<\ldots$ then $a_{n_{k}}$ is called a subsequence of a_{n}. Show $a_{n} \rightarrow a \Leftrightarrow$ every subsequece of a_{n} converges to a.
(ii) Suppose every subsequnce of a sequence a_{n} has a further subsequence which converges to a. Show $a_{n} \rightarrow a$.
3. It can be shown that $X_{n} \xrightarrow{p} X$ implies there exists a subsequence $X_{n_{k}}$ which convereges almost surely to X. Use this fact to prove what one might term a Probabilistic Dominated Convergence Theorem:
Suppose $X_{n} \xrightarrow{p} X$ and $\left|X_{n}\right| \leq W$ with $E(W)<\infty$. Show $E\left(X_{n}\right) \rightarrow E(X)$.

Let X_{1}, X_{2}, \cdots be ied, $\geqslant 0$ with continues di F which io strielly increasing on $x \geqslant 0$. We say that a nerd sens at time n_{n} if $X_{m}>\max \left\{X_{1}, \cdots X_{m-1}\right\}, n=2,3, \cdots$. Time $n=1$ will by convention be called the initial record time and X, the initial record value.
(a) Let $T=\min \{n: m>1$ and n is a record time $\}$ Calculate $P(T>t), P(T<\infty)$ and $E(T)$
(b) $\mathcal{L X} T_{y}=\min \left\{n: X_{m}>y\right\}$. Show that T_{y} is independent of $X_{T_{y}}$
(c) Calculate $E[N(t)]$ and $\operatorname{Var}[N(t)]$ where $N(t)=\#$ of records up to time t
5.

Let A_{1}, A_{2}, \ldots be a countably infinite \# of events and set

6. For the situation in \#5 suppose the sum of the probabilities of the A's is finite. Show $\mathrm{P}(\mathrm{Y}=\mathrm{oo})=0$. On the other hand, if the A's are independent and the sum is oo show $\mathrm{P}(\mathrm{Y}=\mathrm{oo})=1$. These two results form the Borel Cantelli Lemma.
7.

$$
\text { Suppose } X_{n} \rightarrow X \text {. Show } X_{n} \xrightarrow{p} X .
$$

8.

$$
\text { Let } X_{1}, X_{2}, \ldots \text { be iid uniform }(0,1) \text {. Show } n\left(1-X_{(n)}\right) \xrightarrow{d} \text { exponential }(1) \text {. }
$$

9. A positive rv X is ageless if $P(X>s+t \mid X>s)=P(X>t)$, for all $s, t>=0$. If X is ageless, and not a constant, show it must be exponential(l) for some $l>0$.

Remark: In 9 you may not assume X to be a cts rv with some pdf. If F is the df then you must show 1$\mathrm{F}(\mathrm{x})=\exp (-\mathrm{lx})$ for $\mathrm{x}>0$. Since 1- F is right continuous this will be the case if it's true for rational x 's .
3. $\frac{X_{1}+X_{2}}{\sqrt{2}} \xlongequal{d} \Rightarrow \frac{2 E(X)}{\sqrt{2}}=E(X) \Rightarrow E(X)=0$

If $c(t)=E\left(e^{i t X}\right)$, where $i=\sqrt{-1}$, then

$$
\begin{aligned}
& E\left(e^{i t x}\right)=E\left(e^{i \frac{t}{\sqrt{2}} x_{1}}\right) E\left(e^{i \frac{t}{\sqrt{2}} x_{2}}\right) \\
\Rightarrow & c(t)=\left[c\left(\frac{t}{\sqrt{2}}\right)\right]^{2} \\
\Rightarrow & c(t)=\left[\left(c\left(\frac{t}{\frac{\sqrt{2}}{\sqrt{2}}}\right)\right)^{2}\right]^{2}=\left[c\left(\frac{t}{(\sqrt{2})^{2}}\right)\right]^{2^{2}} \\
\vdots & c(t)=\left[c\left(\frac{t}{(\sqrt{2})^{n}}\right)\right]^{2^{n}}=\left[c\left(\frac{t}{2^{m / 2}}\right)\right]^{2^{n}} \\
\Rightarrow & \left(1-\frac{\sigma^{2}}{2!} \frac{t^{2}}{2^{n}}+o\left(\frac{t^{2}}{2^{m}}\right)\right)^{2^{n}}
\end{aligned}
$$

since $c^{\prime}(0)=i E(X)=0 \& c^{\prime \prime}(0)=-E\left(X^{2}\right)=-\sigma^{2}$.
Now let $n \rightarrow \infty$ to get $c(t)=e^{-\sigma^{2} t^{2} / 2}$ which is the of if a $N\left(0, \sigma^{2}\right)$.
Note: $\left[1+\frac{x}{N}+O\left(\frac{1}{N}\right)\right]^{N} \rightarrow e^{x}$ as $N \rightarrow \infty$
(a) We have

$$
T>n \Leftrightarrow X_{1}=\max \left\{X_{1}, \cdots, X_{n}\right\}
$$

so that $P(T>n)=\frac{1}{n}$. Since $P(=\infty)=\lim _{n \rightarrow \infty} P(T>n)=0$ we get $P(T<\infty)=1$.
Finally, $E(T)=\sum_{n=1}^{\infty} P(T>n)=\sum_{m=1}^{\infty} \frac{1}{m}=\infty$
(b) Let $T_{y}=$ time of the first recall value $>y$ and set $X T_{y}$ as the record value at time T_{y}.
Then

$$
\begin{aligned}
P\left(X T_{y}>x \mid T_{y}=m\right) & =P\left(X_{m}>x \mid X_{1}<y, \cdots, X_{n-1}<y, X_{m}>y\right) \\
& =P\left(X_{m}>x \mid X_{m}>y\right) \\
& =\left\{\begin{array}{lll}
1 & y<y \\
\frac{F(x)}{F(y)} & x & y>y
\end{array}\right.
\end{aligned}
$$

Since $\left.P\left(X T_{y}>x\right) T_{y}=n\right)$ does not depend on $n T_{y}$ is independent of $X T_{y}$.
(c) $\{$ record at time $n\}=\left\{X_{n}\right.$ is the largedif $\left.X_{1}, \ldots, X_{n}\right\}$ and so $P(\{$ record altimon $\})=1 / m$. Now

$$
\left.N(t)=\sum_{j=1}^{t} I_{\{\text {reed at time }}^{j}\right\}
$$

so that

$$
E(N(t))=\sum_{j=1}^{t} \frac{1}{j}+\operatorname{Var}(N(t))=\sum_{j=1}^{t} \frac{1}{j}\left(1-\frac{1}{j}\right)
$$

Solution to \#5

$$
Y=\infty \Leftrightarrow \text { an } \infty \text { \# if } A_{1}, A_{2}, \cdots \text { occur }
$$

$\Rightarrow \bigcup_{i=m}^{\infty} A_{i}$ occurs for each M

$$
\Rightarrow \underbrace{\bigcap_{m=1}^{\infty}\left(\bigcup_{i=m}^{\infty} A_{i}\right)}_{m=1}
$$

occurs

Now assume $\lim _{m \rightarrow \infty} \bigcup_{i=m}^{\infty} A_{i}$ recurs

$$
\begin{aligned}
& \Rightarrow \bigcap_{m=1}^{\infty}\left(\bigcup_{i=m}^{\infty} A_{i}\right) \quad \text { occurs } \\
& \Rightarrow \bigcup_{i=m}^{\infty} A_{i} \text { occurs } \forall m \\
& \Rightarrow \text { an } \infty \text { \# of } A_{1}, A_{2}, \cdots \text { occur } \Rightarrow Y=\infty \\
& \therefore \quad\{Y=\infty\}=\lim _{m \rightarrow \infty} \bigcup_{i=m}^{\infty} A_{i}
\end{aligned}
$$

Note $Y=\infty$ is shot for $\{Y=\infty\}$ occurs

$$
\begin{aligned}
x_{m} \xrightarrow{m g} X & \Rightarrow E\left(X_{m}-X\right)^{2} \rightarrow 0 \\
& \Rightarrow P\left(\left(X_{m}-X \mid \geqslant \epsilon\right) \leqslant \frac{E\left(X_{m}-X\right)^{2}}{\epsilon^{2}} \rightarrow 0\right. \\
& \Rightarrow X_{m} P \rightarrow X
\end{aligned}
$$

(c) Set $Y_{n}=m\left(1-X_{(n)}\right)$. Then for $y>0$,

$$
\begin{aligned}
P\left(Y_{m}>y\right) & =P\left(m\left(1-X_{(m)}\right)>y\right) \\
& =P\left(X_{(m)}<1-\frac{y}{m}\right) \\
& =P\left(X_{i}<1-\frac{y}{m} ; i=1, \cdots, m\right) \\
& =\left(1-\frac{y}{m}\right)^{n} \rightarrow e^{-y}
\end{aligned}
$$

$$
\therefore P\left(K_{m} \leq y\right) \rightarrow 1-e^{-y}, y>0 \quad(a \rightarrow 0, y \leq 0) \Rightarrow\left(\frac{d}{m} \operatorname{erponentul}(1)\right.
$$

1. Set $\bar{F}(x)=P(X>x)$. Then

$$
\begin{align*}
& P(X>s+t \mid X>s)=P(X>t) \\
\Rightarrow & P(X>s+t)=P(X>s) P(X>t) \\
\Rightarrow & \bar{F}(s+t)=\bar{F}(s) \bar{F}(t) \\
\Rightarrow & \bar{F}\left(t,+\cdots+t_{m}\right)=\bar{F}\left(t_{1}\right) \ldots \bar{F}\left(t_{m}\right) \quad \text {-induction } \\
\Rightarrow & \bar{F}(1)=\bar{F}\left(\frac{1}{m}\right) \ldots \bar{F}\left(\frac{1}{m}\right)=\left(\bar{F}\left(\frac{1}{m}\right)\right)^{m} \quad \text { (*) } \tag{*}
\end{align*}
$$

Since $F(0)=1$ and \bar{F} is right c ts we get $\bar{F}(1)>0$ (since $\bar{F}\left(\frac{1}{n}\right)$ is close to 1 for large n). Let $r=\frac{m}{m}$ be a ratimal >0. Then

$$
\begin{aligned}
& \bar{m} \\
& \bar{F}\left(\frac{m}{m}\right)= \bar{F}\left(\frac{1}{n}+\cdots+\frac{1}{m}\right)=\left(\bar{F}\left(\frac{1}{m}\right)\right)^{m} \\
& \uparrow \text { op these } \\
& \Rightarrow \bar{F}\left(\frac{m}{m}\right)= {[\bar{F}(1)]^{m / m}-b_{y}(*) \bar{F}\left(\frac{1}{m}\right)=\left[\bar{F}(1)^{1 / m}\right.}
\end{aligned}
$$

So $\bar{F}(r)=[\bar{F}(1)]^{r}$. If $x \geqslant 0 \in \mathbb{R}$ then

$$
\bar{F}(x)=\lim _{\Omega \downarrow x} \bar{F}(r)=\bar{F}(1)^{x} \quad \text {. Note } \bar{F}(1) \neq 1
$$

Set $\lambda=-\log [\bar{F}(1)]$. Then $\lambda>0$ and

$$
\bar{F}(x)=e^{-\lambda x}, x \geqslant 0
$$

$\Rightarrow X \sim$ exponential (λ)

