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ABSTRACT

We consider the problem of deriving Bayesian inference procedures via the con-
cept of relative surprise. The mathematical concept of surprise has been devel-
oped by I.J. Good in a long sequence of papers. We make a modiÞcation to this
development that permits the avoidance of a serious defect; namely, the change
of variable problem. We apply relative surprise to the development of estima-
tion, hypothesis testing and model checking procedures. Important advantages
of the relative surprise approach to inference include the lack of dependence
on a particular loss function and complete freedom to the statistician in the
choice of prior for hypothesis testing problems. Links are established with com-
mon Bayesian inference procedures such as highest posterior density regions,
modal estimates and Bayes factors. From a practical perspective new inference
procedures arise that possess good properties.

1. INTRODUCTION

The mathematical concept of surprise has its origins in Weaver (1948, 1963)
and in a sequence of papers by Good (1953, 1955, 1956, 1971, 1981, 1982a,
1982b, 1983a, 1983b, 1985, 1988, 1989). Further references to this concept can
be found in Bartlett (1952), Kvalseth (1987) and Redheffer (1951). Also Box
(1980) discussed the use of this concept in Bayesian model checking contexts.
A primary thesis of this paper is that a modiÞed version of surprise serves
as a logical foundation for developing a range of estimation, hypothesis testing,
model checking and model selection procedures within the context of a Bayesian
model.
Before developing this modiÞed version of surprise we establish some nota-

tion for the remainder of the paper. A probability model is denoted by (X ,A, P )
where P has density f with respect to support measure µ. A Bayesian statistical
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model will be comprised of a basic statistical model (X ,A, {Pθ|θ ∈ Ω}), where
Pθ has density fθ with respect to support measure µ, and a prior probability
model (Ω,B,Π), where Π has density π with respect to support measure ν. We
denote the posterior probability measure given x0 by Π(·|x0) and the posterior
density with respect to support measure ν by π(θ|x0) = fθ(x0)π(θ)/m(x0) where
m(x) =

R
fθ(x)π(θ)ν(dθ) is the density, with respect to µ, of the marginal mea-

sureM of the data. If T : (Ω,B)→ (T , C) then we will denote the marginal prior
and posterior measures induced on (T , C) by ΠT and ΠT (· | x0) respectively and
the marginal prior and posterior densities, with respect to some support mea-
sure νT , by πT and πT (· | x0) respectively. Typically the function T arises as
some marginal parameter that we wish to make inferences about.
We have given formal measure-theoretic deÞnitions of the basic ingredients

of the problems we will discuss. Our only purpose in doing this is to emphasize
the dependence of the densities on the particular choices of support measures.
This is an important part of some of our discussion and in particular when we
are dealing with the change of variable problem. Thus we want to acknowledge
this dependence explicitly. No measure theory is used in the paper, however.
The basic ideas behind the developments here are simple to state. Suppose

that we observe data x0 from a statistical model and that we have a prior dis-
tribution on the parameter of the model. Consider a set T of possible values for
some quantity T (θ) depending on the parameter of the model. We totally order
the elements of T as follows: t1 is strictly preferred to t2 if the relative increase
in belief for t1, from a priori to a posteriori, is greater than the corresponding
increase for t2. We translate this mathematically into strictly prefering t1 to t2
whenever

πT (t1|x0)

πT (t1)
>
πT (t2|x0)

πT (t2)
. (1)

We use this preference ordering to determine inferences.
In an estimation context, where we are required to select a value from T as

an estimate, this leads to selecting a value in T that has the greatest relative
increase in belief from a priori to a posteriori; i.e. select a value of t maximiz-
ing πT (t|x0)/πT (t). This estimator is computed by maximizing this ratio as a
function of t. We call such an estimate a least relative surprise estimate and
justify this terminology below.
In hypothesis testing contexts we have an hypothesized true value t0 ∈ T

for T (θ) and are required to assess this hypothesis using the evidence provided
by the data. The above preference ordering leads to comparing the relative
increase in belief for t0, from a priori to a posteriori, with this increase for each
of the other possible values in T . If the increase for t0 is small compared to the
other increases then the data suggests that t0 is surprising and we have evidence
against the hypothesis. There are numerous ways in which this comparison can
be made, generalizing ideas found in Good�s papers, but we will use the posterior
probability of obtaining a relative increase larger than that observed for t0 and
refer to this as the observed relative surprise hereafter. Therefore the observed
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relative surprise at t0 is given by

ΠT

µ
πT (t|x0)

πT (t)
>
πT (t0|x0)

πT (t0)
|x0

¶
. (2)

Notice that the value of t0 minimizing (2) is the least relative surprise estimate.
It is the value most supported by the data, and so least surprising, when the
relative change in degree of belief from a priori to a posteriori is our criterion
for assessing this. This motivates our choice of terminology.
The hypothesis testing approach via observed relative surprise can be in-

verted in a standard way to give relative surprise regions for the unknown true
value in T . An α−relative surprise region for T (θ) is given by

Cα(x0) = {t0 ∈ T | ΠT

µ
πT (t|x0)

πT (t)
>
πT (t0|x0)

πT (t0)
|x0

¶
≤ α}. (3)

This is the set of values in T whose observed relative surprise is no greater than
α. For example, if T ⊂ R then we compute an α-relative surprise interval for
T (θ) by tabulating (2) as a function of t0. Then when T (θ) is continuous we
compute the interval (t1, t2) such that taking t0 = t1 and t0 = t2 makes (2)
equal to α. When the parameter is discrete this procedure requires some obvi-
ous modiÞcations as we are not guaranteed to get an exact α-relative surprise
interval.
We now present two simple examples where this approach is seen to lead to

inference procedures different from those obtained by some standard Bayesian
and non-Bayesian approaches and which possess some good properties.

Example 1. Estimating a sum of squared means.
Efron in his discussion of Dawid, Stone and Zidek (1973) considered the

following as showing that Bayesian inference with proper priors can lead to
what he regards as a poor inference. Suppose we observe x = (x1, . . . , xn)
where xi ∼ N(θi, 1) and x1, . . . , xn are statistically independent and θ1, . . . , θn
are given independent N(0, σ2) prior distributions with σ2 large and known.
Suppose further that our interest is in estimating τ2 =

Pn
i=1 θ

2
i . Notice that

the prior distribution of τ2 is σ2Chisquare(n, 0) and the posterior distribution
of τ2 is (1 + 1

σ2 )
−1Chisquare(n, (1+ 1

σ2 )
−1||x||2) where Chisquare(n, δ) denotes

the Chisquare distribution with n degrees of freedom and noncentrality δ. So to
compute the the least relative surprise estimate we must maximize the ratio of
these densities or equivalently, which is what we do here, Þnd the value where
the observed relative surprise is smallest.
For convenience we will consider the limiting case as σ2 →∞ as this makes

no difference when considering Efron�s point. Then the limiting Bayes estimate
of τ2, when the loss function is squared error, is given by ||x||2 + n with MSE
given by 4τ2 + 2n + 4n2. The UMVU estimator by contrast is ||x||2 − n with
MSE given by 4τ2+2n. Several other estimators are possible. For example, the
plug-in MLE is ||x||2 with MSE equal to 4τ2 + 2n + n2 and this is equivalent
to using the limiting posterior mode as a plug-in estimate. Observing that the
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τ2 n UMVU (UMVU)+ MLE Bayes MPME LRSE
0 5 10.00 6.59 35.00 110.00 61.88 8.30
1 5 14.00 9.64 39.00 114.00 65.25 11.86
2 5 18.00 13.36 43.00 118.00 68.75 15.96
5 5 30.00 26.33 55.00 130.00 79.76 29.57
10 5 50.00 48.54 75.00 150.00 98.99 51.50
100 5 410.00 406.19 435.00 510.00 454.50 407.18
0 20 40.00 22.91 440.00 1640.00 1430.20 25.21
1 20 44.00 25.96 444.00 1644.00 1432.34 28.48
2 20 48.00 29.73 448.00 1648.00 1435.21 32.49
5 20 60.00 44.10 460.00 1660.00 1444.24 47.43
10 20 80.00 71.12 480.00 1680.00 1460.56 74.95
100 20 440.00 441.00 840.00 2040.00 1799.22 442.24

Table 1: MSE�s of estimators of τ2 in Example 1.

UMVU estimator can be negative we could truncate this using (||x||2 − n)+.
The MSE of the truncated UMVU estimator cannot be obtained in closed form.
Alternatively we could use the mode of the limiting posterior distribution of
τ2 and we refer to this as the marginal posterior mode estimate (MPME). The
MPME cannot be obtained in closed form. In Table 1 we present the results of
a simulation study for these estimators together with the least relative surprise
estimate (LRSE) described above. For the cases where the MSE cannot be
calculated exactly the reported values are felt to be accurate with a relative
error not exceeding 1%. We see immediately the generally poor performance
of all the Bayesian estimates except for the LRSE. The LRSE has performance
comparable to the UMVU or truncated UMVU. Further the LRSE is always
nonnegative.
The LRSE in this example is equivalent to the estimator derived in Saxena

and Alam (1982) and referred to there as the MLE although it would only be
the maximum likelihood estimator when the observed data is ||x||2. That paper
proves that (UMVU)+ is uniformly better than the LRSE with respect to MSE
and this is reßected in our table. We note again, however, that the LRSE has
performance roughly comparable with (UMVU)+. For example, from Table 1
we see that the largest relative error between the MSE of the LRSE and that
of (UMVU)+ is approximately 26% when τ2 = 0 and n = 5 and for most of the
remaining cases it is considerably less. The estimation of τ2 is also discussed in
Perlman and Rasmussen (1975).

Example 2. Interval for the sum of squared means
We consider an example discussed in Stein (1959) concerning a strong con-

tradiction between a frequency approach to the construction of intervals for a
parameter and a Þducial approach. The Þducial interval in question also arises
from a Bayesian analysis and it is in this context that we consider it here.
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The ingredients of this example are basically the same as those given in Ex-
ample 1 but we are now concerned with constructing an interval to contain τ2

with high probability. An exact α−conÞdence interval for τ2 is given by the
set {τ2|(1 − α)/2 ≤ Fτ2,n(||x||

2) ≤ (1 + α)/2} where Fτ2,n is the distribution
function of the Chi-square(τ2, n) distribution. This conÞdence interval has the
unnatural property, however, of equaling the null set with positive probability
for all parameter values. Bayesian intervals can be formed from the limiting
marginal posterior of τ2 either by using the highest posterior density (HPD) in-
terval or by discarding (1−α)/2 of the probability from each tail of the marginal
posterior. We will refer to this latter interval as a Bayesian conÞdence interval
(BCI). Finally we consider the relative surprise interval (RSI) described above.
The RSI is computed, as earlier described, by tabulating the observed relative
surprise using the prior and posterior distributions for τ2 described in Example
1. Table 2 gives the result of a simulation of the coverage probabilities of these
intervals based on 104 samples. Clearly the HPD and BCI perform very poorly
in certain situations with respect to coverage. In particular in some cases the
coverage of these intervals is virtually 0 while the posterior probability content
is close to 1. This is what we mean by a strong contradiction. We note that
the RSI interval, which is always Þnite and never null in this example, avoids
the strong contradiction. The RSI does this by correcting for the extreme skew-
ness in the posterior distribution of τ2. In fact the right-hand end-points of
the RSI intervals tend to be smaller than those of the other Bayesian intervals
and the left-hand end-points are closer to 0. In the cases where the differences
between the coverages are substantial there is typically a big difference in the
left-hand end-points of the RSI and the other Bayesian intervals. We note that
the coverage of the RSI interval is not always equal to the nominal posterior
probability but in all the examples we have looked at, the error is always on the
conservative side.

We further discuss the motivation for the various deÞnitions associated with
relative surprise and provide additional examples in section 2. In section 3
inference for prediction and the model checking procedures of Box (1980) are
developed using relative surprise. The extensions are similar in spirit to those
underlying cross-validation and the prequential inference of Dawid (1984). In
section 4 we draw some conclusions and point to future research on this topic.
We note that the development here speciÞcally excludes the inclusion of a

loss function. In doing this we are not asserting the superiority of this approach
to inference over a decision-theoretic one. Rather we are simply developing an
approach to inference based on what we perceive to be an appealing concept:
inferences are determined by how our beliefs change from a priori to a posteri-
ori. The value in this approach can be measured by the appeal of this idea, the
lack of the need to specify a loss function when this is not feasible and, most
importantly, the properties of the inferences it generates. For other discussions
of hypothesis testing and related problems in Bayesian inference see, for ex-
ample, Aitkin (1991), Berger and Delampady (1987), Berger and Selke (1987)
and Kass and Raftery (1995). Quantitative approaches to surprise also appear
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τ2 n α HPD BCI RSI
0 5 .95 0.0000 0.0000 1.0000
1 5 .95 0.4421 0.0324 1.0000
100 5 .95 0.9427 0.9369 0.9824
0 20 .95 0.0000 0.0000 1.0000
1 20 .95 0.0000 0.0000 1.0000
100 20 .95 0.6085 0.7722 1.0000
0 5 .99 0.0000 0.0000 1.0000
1 5 .99 0.7980 0.4941 1.0000
100 5 .99 0.9887 0.9894 0.9979
0 20 .99 0.0000 0.0000 0.9999
1 20 .99 0.0000 0.0000 1.0000
100 20 .99 0.8266 0.8232 1.0000

Table 2: Coverages of intervals for τ2 in Example 2.

in the work of Levi (1972) and Shackle (1949) but these appear to have little
relevance to our treatment.

2. SURPRISE, RELATIVE SURPRISE AND BAYESIAN
INFERENCE

The intuitive idea behind the concept of surprise can be most easily expressed
when all probability measures are discrete. Initially suppose then that we have
a single probability model and that µ is counting measure. The basic idea is
that the occurrence x0 ∈ X is surprising if the value of f(x0) = P ({x0}) is
small when compared to all the other possible values for f(x). If we conclude
that a surprising value has occurred then we have evidence against the validity
of the probability model. Therefore an observation is not surprising simply
because it has a small probability of occurence but it must also have a probability
of occurrence that is small when compared to all the other probabilities of
occurrence.
We want a numerical measure of surprise and there have been several pro-

posed. For example, Weaver (1948) proposed using the surprise index

λ1 =
EP [f ]

f(x0)
=

R
f2(x)µ(dx)

f(x0)
. (4)

The larger λ1 is, the more surprising is the observation x0. Good (1953) gener-

alized this to a class of indices given by λr = (EP [f
r])1/r/f(x0), when r > 0,

and λ0 = exp (EP [log f ])/f(x0).
There are several problems with surprise indices. For example, for some

models they may be identically inÞnite. More signiÞcantly we have no idea of
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how large a surprise index has to be to conclude that a surprising event has
occurred. As a perhaps more natural measure of how relatively small f(x0) is
we deÞne the observed surprise as

P (f(X) > f(x0)) . (5)

The observed surprise is simply the probability of observing an event whose
probability of occurrence is greater than the probability of the event that has
occurred. If this is large; i.e. close to 1, then a surprising event has occurred. We
note that the observed surprise is a probability and hence we have a very natural
scale on which to calibrate it. For example, as in hypothesis testing, we could
choose a cut-off such as .95 to determine when a surprising event has occurred.
We can interpret the observed surprise as a measure of the evidence against
P provided by the observation just as we interpret a P-value. A suggestion
virtually equivalent to using the observed surprise to assess surprise is made in
Good (1988).
If we are required to predict a value in X , given the probability model, then

Good (1988) has suggested choosing the least surprising value and called this
the principle of least surprise. When we choose the observed surprise as our
measure this leads to using the value x0 ∈ X that minimizes (5) or equivalently,
maximizes f .
For the general situation we deÞne the surprise index and the observed sur-

prise as in (4) and (5) respectively. The interpretation is now somewhat am-
biguous, however, as it is clear that the value of these quantities depends on the
choice we have made for µ and in general there is not a natural choice as in the
discrete case. It might be argued that in many contexts we should take µ to
be Lebesgue measure as a canonical support measure. This does not avoid the
difficulty, however. For if we make a change of variable, and still insist on having
our densities be relative to µ, then the surprise indices and the observed surprise
will generally change due to the Jacobian factor. We refer to this dependence on
µ as the change of variable problem. As a simple example suppose that X has
density fX(x) = 2x on [0, 1] and we make the transformation Y = X4. Then
Y has density fY (y) = y−1/2/2 on [0, 1]. From this we see that x0 = 0 has
observed surprise 1 under X and observed surprise 0 under Y while x0 = 1 has
observed surprise 0 under X and observed surprise 1 under Y .
One possible approach to avoiding the change of variable problem is to re-

quire that the statistician initially make a speciÞc choice of µ and then interpret
the value f(x) as a relative probability of occurrence. By this we mean that if
f(x1) > f(x2) then the probability of x1 occurring is greater than the proba-
bility of x2 occurring. Provided the density is smooth then this interpretation
seems appropriate. This induces a total ordering on the elements of X . This
kind of ordering is certainly the way in which densities are commonly inter-
preted when they are expressed with respect to Lebesgue measure. In fact some
Bayesian inference procedures, such as highest posterior density regions and es-
timation via the posterior mode, depend implicitly on such an interpretation of
a density. Then to keep the total ordering invariant under a change of variable,
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the Jacobian factor must be allocated with µ to create a new support measure
µ∗. With this qualiÞcation the change of variable problem has been partially
resolved as the observed surprise is now invariant under a change of variable.
There still remains, however, a signiÞcant problem. Our previous discus-

sion has been based on comparing the probability of occurrence of x0 with the
probability of occurrence of any other x ∈ X . Here we are thinking of X as
representing a basic set of possible observations. It is often very natural, how-
ever, to base our evaluation on the value of T (x0) for some T : X → T . The
obvious way to do this in the discrete context is to compute the observed sur-
prise P (P ({T (X)}) > P ({T (x0)})). If we have determined a canonical support
measure on X it is not clear, however, what support measure we should use on
T . Intuitively such a support measure on T should be related to the support
measure we placed on X and which determined the total orderings on the basic
possible observations. If T is 1-1 then we can proceed as above but in general
it is not obvious how to go about this even in discrete contexts.
The various surprise indices, the observed surprise and the principle of least

surprise can all be applied in the Bayesian context to yield inferences. For exam-
ple, the principle of least surprise yields the mode of πT (· | x0) as the estimate of
T (θ). The observed surprise for testing H0 = {t0}; i.e. we hypothesize T (θ) =
t0, is equivalent to the Bayesian P−value ΠT (πT (t | x0) > π(t0 | x0) | x0).
Inverting the observed surprise to form α−surprise intervals gives HPD inter-
vals. So applying surprise to the Bayesian model yields some standard inference
techniques; see for example, Box and Tiao (1973). We note, however, that the
difficulties for surprise associated with the change of variable problem apply to
all of these methods.
These problems can be avoided in the Bayesian context, however, by using

the observed relative surprise, as deÞned in (2), for hypothesis testing, con-
structing α−relative surprise regions and least relative surprise estimates. It is
immediate that these inferences are free of the change of variable problem as the
Jacobian factor occurs in both the numerator and denominator of the density
ratios and hence cancels. Thus the observed relative surprise is invariant under
a change of variable, or equivalently, choice of support measure. For a given
T a support measure always exists for the deÞnition of the observed relative
surprise; e.g. νT = ΠT +ΠT (· | x0).
We note that the observed relative surprise is not just an arbitrary adjust-

ment of the observed surprise to correct for the change of variable problem.
Rather it arises in a natural inferential way when we ask about the relative
change in our belief in t0, from a priori to a posteriori, when compared to this
change for other possible values for T . The observed relative surprise is the
posterior probability of this change in relative belief being greater than that
observed for the hypothesized value. The value t0 is surprising when this pos-
terior probability is large as this says that our current belief is that the relative
increase in support for t0 is not large when compared to that of other values.
If the posterior degree of belief in t0 is smaller than the prior degree of belief
in t0 then the data is providing evidence against the truth of t0 and conversely.
The size of the increase or decrease in the degree of belief is not sufficient in-
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formation to base a conclusion concerning what the data is saying about t0.
We have to take into account the changes in the degree of belief for the other
possible values of T as well. For suppose the degree of belief in t0 increases. If
the relative increase in the degree of belief is greater for a large proportion of
the elements of T than it is for t0 then we have no grounds for concluding that
the data supports t0 over the other possibilities.
The ultimate test of the relative surprise approach is through examples. We

recall here the signiÞcant improvements in Bayesian inferences noted in Exam-
ples 1 and 2 at least when relative frequency considerations are raised. We will
present a number of additional examples where the relative surprise approach
leads to inferences in a Bayesian context that possess good properties again from
the frequency point of view. We focus initially on Bayesian hypothesis testing.

Example 3. Testing H0 versus Hc
0

Suppose we wish to test the hypothesis that the true value of θ is in H0 ⊆ Ω
versus θ is in Hc

0. Further suppose that Π(H0) 6= 0 and Π(Hc
0) 6= 0. This is

equivalent to testing T (θ) = 1 versus T (θ) = 0 where T is the indicator function
for H0. It is easy to show then that the observed relative surprise at t0 = 1
is equal to Π(Hc

0 |x0), whenever the Bayes factor against H0 is greater than 1;
i.e. when the ratio of the posterior odds against H0 to the prior odds against
H0 is greater than 1, and the observed relative surprise is equal to 0 otherwise.
Thus the relative surprise approach produces the usual Bayesian answer in this
problem with the natural adjustment that we have no evidence against H0
whatsoever; i.e. the observed relative surprise is 0, when the data has not
produced a relative increase in our belief in Hc

0 greater than the corresponding
relative increase for H0. This is a combination of the Bayes factor approach and
just using the posterior probability Π(Hc

0 | x0) to assess the evidence against
an hypothesis. See Kass and Raftery (1995) for an extensive discussion of the
Bayes factor approach to hypothesis testing.

In example 3 we have required that H0 and H
c
0 be non-null with respect to

the prior. If Π(H0) = 0 then Π(H0|x0) = 0 for every x0 ∈ X and the posterior
probability approach for assessing the evidence against H0 would always reject
while the Bayes factor is not deÞned. This phenomenon will occur, in spite of
the fact that the prior density may be indicating a relatively high degree of belief
in H0, whenever H0 is a lower dimensional subset of the parameter space. While
the context where Π(H0) = 0 is clearly a problem, this is only an extreme case
of the situation where the prior assigns a small amount of probability to a set
simply because it is a small set or assigns a large amount of probability to a set
simply because it is a large set. For example, in testing the validity of a scientiÞc
theory H0 it may be perfectly reasonable, and in fact preferable, to have a fairly
diffuse prior that does not assign a signiÞcant amount of probability to H0 to
allow the data to dominate the inference. In such a situation we may require
an inordinately large data set to conclude that H0 is true using Π(H0|x0), even
when H0 holds.
One approach to avoiding this problem is commonly advocated; namely mod-

ify the prior so that H0 receives a sizeable amount p of prior probability. In
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many cases it may be appropriate to do this; i.e. the statistician truly believes
that H0 deserves p of the prior probability. But in general this requires modi-
Þcation of what may be a perfectly reasonable prior reßecting the statistician�s
degrees of belief concerning the parameter. So a method of assessing the evi-
dence against H0, that allows the null hypothesis to have 0 prior probability,
is necessary in our view. A further difficulty for the approach of requiring a
positive prior probability for H0 is exempliÞed by the following example.

Example 4. Lindley�s Paradox
Suppose that x0 = (x1, . . . , xn) is a sample from a N(θ, 1) distribution where

θ ∈ R1 is unknown and we want to test the hypothesis θ ∈ H0 = {0}. As a
possible prior for θ we could use the N(0, σ2) distribution which we denote by
Π1. Taking σ very large reßects diffuse prior knowledge concerning the true
value of θ. We note that we cannot use Π1 if we want to proceed as in Example
3. So, following the above discussion, we also consider the prior Π2 that places
a positive mass at 0 obtained by mixing Π1 with a degenerate distribution at 0
to obtain Π2 = pδ0+(1−p)Π1. Then under Π1 the posterior distribution of θ is
N((n + 1/σ2)−1nx̄0, (n + 1/σ

2)−1). Under Π2 the posterior is a mixture of
Π1(·|x0) with the distribution degenerate at 0 with probability (1−p)m(x0)/(pf(x0)+
(1− p)m(x0)) where f is the marginal density of the data when H0 holds and
m is the marginal density of the data when Hc

0 holds.
Using the prior Π2 the Bayes factor against H0 equals

BF = (nσ2 + 1)−1/2 exp
©
n2σ2(nσ2 + 1)−1x̄20

ª
and Π2(H0|x0) = (1 + 1−p

p BF)
−1. Now suppose that we Þx

√
nx̄0 and let

σ → ∞. Then BF → 0, Π2(H0|x0) → 1 and, by Example 3, the observed
relative surprise goes to 0. Thus by choosing σ very large we can virtually
guarantee that we will accept H0 by any of these three approaches to hypothesis
testing. If, however,

√
nx̄0 = 3 then the classical Z-test will categorically reject

H0 but the Bayesian tests will accept when σ is large. As we expect the classical
and Bayesian approaches to be similar under a diffuse prior, this conßict between
the two approaches to inference is known as Lindley�s paradox ; see Lindley
(1957). There are various points of view concerning this paradox and some
argue strongly in favour of the Bayesian approaches; see for example Berger and
Delampady (1987) and Berger and Selke (1987). There have also been suggested
resolutions, see Aitkin (1991) and Robert (1993), but these lie outside proper
Bayesian inference and for this reason they are not satisfying. Sometimes the
complaint is made that it is artiÞcial to allow σ →∞. The paradox also applies,
however, as n→∞.
We now consider the application of relative surprise to this problem when

we use the prior Π1 and take T (θ) = θ with t0 = 0. In this case the observed
relative surprise equals

P

µ
χ21(

x̄20
σ2(nσ2 + 1)

) < x̄20(n+ 1/σ
2)

¶
(6)
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where χ21(δ) is distributed Chisquare(δ, 1). If we Þx
√
nx̄0 and let σ →∞ then

we see that (6) converges to the observed level of signiÞcance of the classical
two-sided Z-test. Also as n → ∞ the same limiting observed relative surprise
is obtained. Therefore the test of H0 via the observed relative surprise agrees
with the classical test asymptotically.

It cannot be claimed that the resolution of the paradox occurs because of the
use of the observed relative surprise. As noted in Casella and Berger (1987) the
paradox is caused by the discrete prior mass at 0. Other measures of evidence
which avoid the need forH0 to have positive prior probability may also avoid the
paradox. For example, it is easy to show that using the observed surprise with
Π1 also leads to the classical Z-test as σ

2 →∞ or n→∞. We recall, however,
that the observed surprise suffers from the change of variable problem. The
question then is what is an appropriate measure of the evidence in a Bayesian
hypothesis testing problem? Of course we are suggesting that the observed
relative surprise is a good candidate. It is satisfying that the observed relative
surprise avoids the paradox, allows complete freedom to the statistician in the
choice of prior and essentially reproduces the standard Bayesian answer when
H0 does have positive prior mass.
We note an additional difference between the two tests of hypothesis dis-

cussed in Example 4. For when using Π2, and proceeding as in Example 4, we
are comparing the evidence for H0 with the evidence for Hc

0 . On the other hand
when using Π1 and T we are comparing the evidence for t0 with the evidence
for each of the other possible values for T . While it is sometimes argued that
we must carry out the hypothesis testing problem using the binary partition
{H0,Hc

0}, in many problems H0 arises as the speciÞcation of the value t0 of a
particular function T of interest. In such a situation it seems natural to us to
evaluate the evidence by comparing what the data says about t0 with what it
says about each of the other possible values. Of course we are not suggesting
that one should never use the binary partition, as there are contexts where it
is appropriate, but it seems too restrictive to us to limit Bayesian hypothesis
testing procedures to only using this approach.
It is sometimes claimed that it is not appropriate to use point null hypothe-

ses as we never really believe that this holds exactly but rather only that the
true value is in some small interval about the hypothesized point. The follow-
ing example shows that the observed relative surprise approach has a satisying
property with respect to this consideration.

Example 5. D− partitions
Suppose that Ω = R1, D > 0 and H0

i = [θ0 + (i− 1/2)D, θ0 + (i+ 1/2)D] for
i ∈ Z. DeÞne T 0 : Ω → Z by T 0(θ) = i when θ ∈ H0

i . Further suppose that
Π(H0

i ) > 0 for all i and D > 0. If t0 = 0 then the observed relative surprise at
t0 equals Π (∪i∈Z!H0

i | x0) where

Z0 =

½
i :
Π(H0

i |x0)

Π(H0
i )

>
Π(H0

0|x0)

Π(H0
0)

¾
.

Then, provided that π(θ | x0)/π(θ) is continuous in θ it can be shown that
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Π (∪i∈Z!H0
i | x0) converges to (2), with T (θ) ≡ θ, as D → 0. Therefore the

test of the null hypothesis H0 = {θ0}, via the observed relative surprise, can
be thought of as an approximation to some particular discrete partition of the
parameter space into small intervals.

Example 5 can be straight-forwardly generalized to a much wider class of
models. It illustrates that there is no fundamental conßict in the relative surprise
approach between hypothesis testing via point null hypotheses or via quantiza-
tions into non-overlapping subsets. The point null approach will typically have
the advantage, however, of being somewhat simpler computationally. As with
most uses of continuous probability the observed relative surprise for a point
null can be thought of as an approximation to a discrete reality.
We conclude this section with an example of the application of the principle

of least relative surprise to a Bayesian inference problem.

Example 6. Estimating cell probabilities
Suppose we observe (f1, . . . , fk) ∼Multinomial(n, p1, . . . , pk) and (p1, . . . , pk)

has prior given by a Dirichlet(1, . . . , 1) distribution. Also suppose that we are in-
terested in estimating p1. Then the posterior distribution of p1 is Dirichlet(f1+
1, f2+ . . .+fk+k−1). The posterior mean of p1 is given by (f1+1)/(n+k) and
the marginal posterior mode is f1/(n+k− 2). Both of these estimates have the
property of depending on the number of classes k. As such, when k is very large
these estimates will be very biased. The least relative surprise estimate, how-
ever, is given by f1/n, and this is the UMVU estimate of p1. Thus the relative
surprise approach leads to the standard frequentist estimate without having to
modify the prior. For situations where the statistician does not want prior be-
liefs to strongly inßuence the estimate this seems like an appropriate inference.
An improper prior

Qk
i=1 p

−1
i is needed for the posterior mean to produce f1/n

as the estimate.

3. PREDICTION AND MODEL CHECKING

In Box (1980) it was suggested that the validity of the Bayesian model could
be checked by comparing the observed value R(x0) to the distribution of R(X)
when X ∼ M for various functions R : (X ,A) → (R,D). Further this paper
suggested using something equivalent to the observed surprise, at least in the
continuous case, to determine whether or not the data x0 contradict the Bayesian
model. The observed surprise, when R is the identity, is given by

M (m(X) > m(x0)) . (7)

In Box (1980) the support measure is always taken to be Lebesgue measure so
for a general R we simply replace m in (7) by the density of R with respect
to Lebesgue measure on the appropriate space. Notice that (7) can be used
for prior prediction as well; namely before observing data the principle of least
surprise leads to choosing a value x0 that minimizes (7) as our prediction. As we
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discussed earlier these inferences all suffer from the change of variable problem.
In many problems, under appropriate changes of variable, (7) can take any value
between 0 and 1. So this problem cannot be ignored.
To avoid the change of variable problem we could approach the problem just

as in Section 2. The basic idea again is to compare the relative change in the
prior degree of belief in R(x0) = r0 to the posterior degree of belief in r0, relative
to changes in the degree of belief for any other possible value R(x) = r. For this
let fθR be the density of R(X) with respect to some support measure µR on R
when X ∼ fθ. Then mR(r) =

R
fθR(r)π(θ)ν(dθ) is the prior predictive density

of R(X) at r with respect to µR. The posterior predictive density of R(X) at
r with respect to µR is given by mR(r|x0) =

R
fθR(r)π(θ|x0)ν(dθ). We then

measure the relative change in the degree of belief in r by mR(r|x0)/mR(r).
Thus the observed relative surprise at r0 is equal to

MR

µ
mR(r|x0)

mR(r)
>
mR(r0|x0)

mR(r0)
|x0

¶
. (8)

As before this is completely independent of any choices we have made for support
measures and the change of variable problem is resolved. Further we can use
(8) for prediction of a future value of R by an application of the principle of
least relative surprise.
Unfortunately (8) suffers from a defect if it is to be used for model check-

ing. For because mR(·|x0) is based on the data x0, the value of mR(R(x0) |
x0)/mR(R(x0)) is often high or even maximal, particularly when prior beliefs
are diffuse. Thus in many contexts (8) is identically 0 so that we never would
conclude that the data provide evidence against the model. This is not always
the case but it is difficult to characterize the situations where (8) will be useful
for model checking. This phenomenon has also been observed for Box�s approach
to model crticism; see Geisser (1993) and example 7 below.
One approach that corrects for this defect is to use cross-validation. For this

we suppose that we have a 1-1 transformation (R,S) : (X ,A)→ (R×S,D×E)
where R and S are statistically independent for every θ and the marginal model
for S is indexed by the parameter θ. This ensures that a posterior for θ can
be determined from the value S(x0) and that there is no information about
R(x0) in the observation S(x0). For example, if x corresponds to an i.i.d.
sample x = (x1, . . . , xn) then we could take R(x) = (xn∗+1, . . . , xn) and S(x) =
(x1, . . . , xn∗) for n∗ < n but more general splits are possible. We then calculate
the posterior density π(· | S(x0)) for θ using the prior for θ and the marginal
model for S, calculate the prior predictive densitymR(·) using the prior for θ and
the marginal model for R and Þnally calculate the posterior predictive density
mR(r | S(x0)) =

R
Ω fθR(r)π(θ | S(x0))ν(dθ). These densities can be calculated

using any support measures provided the same support measure is always used
on a particular space. The cross-validational observed relative surprise is then
given by

MR

µ
mR(r|S(x0))

mR(r)
>
mR(r0|S(x0))

mR(r0)
|S(x0)

¶
(9)
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and, with the above proviso for the choice of support measures, it is free of the
change of variable problem.
We consider several applications of this.

Example 7. Checking a Bernoulli model
Suppose that x = (x1, . . . , xn) is a sample from a Bernoulli(p) and p ∼

U(0, 1) is the prior. We have that the density of x with respect to counting
measure is

m(x) =

·
(n+ 1)

µ
nPn
i=1 xi

¶¸−1
.

Then (7) leads to the seemingly anomalous result that samples with values of
R(x) =

Pn
i=1 xi near 0 or n are less surprising than samples with values of R(x)

near n/2. If instead we use R(x) to assess the model then the density with
respect to counting measure on {0, . . . , n} is mR(r) = 1/(n+1) and, as pointed
out in Geisser (1993), (7) is useless for model criticism as the observed surprise
is identically 0; i.e. we never reject the model. Although not quite as easy to
see it turns out that (8) is also not useful for this purpose here. In simulation
studies it leads to very low values for the observed relative surprise even with
very extreme data sets.
Following the cross-validation approach, however, with S(x) = (x1, . . . , xn∗)

and R(x) = (xn∗+1, . . . , n), the cross-validational observed relative surprise
gives sensible answers. For example if n = 100, n∗ = 50 and the Þrst 50 observa-
tions has 35 heads while the second 50 has 20 heads then the cross-validational
observed relative surprise equals 1.00 so the test rejects the model. If the second
50 observations had 29 heads the observed relative surprise is .800, while with
35 heads it is 0, with 41 heads it is .828 and with 45 heads it is .988.

Example 8. Checking a linear model
Suppose that y = Xβ + σe where we observe y ∈ Rn, X ∈ Rn×k is known,

(β, σ) ∈ Rk × R+ is unknown and e ∼ Nn(0, I). We take a conjugate prior
structure for the parameter; namely β|σ ∼ Nk(0, τσ2) and σ−2 ∼ Gamma(α, η).
For convenience we will consider limiting inferences as the hyperparameters τ
and η go to inÞnity to reßect diffuse knowledge about the parameters. Under
these conditions the limiting posterior distribution of the parameters is given by
β|σ ∼ Nk(bX , σ(X 0X)−1) and σ−2 ∼ Gamma(n−k2 + α, 2||y −XbX ||−2) where
bX = (X

0X)−1X0y. Taking α = 2, which we will do hereafter, gives a posterior
equivalent to that obtained via Jeffreys prior.
For the cross-validation we let S(y) denote some subset of n∗ observa-

tions and R(y) denote the remaining n∗∗ = n − n∗ observations. Let X∗ and
X∗∗ denote the corresponding n∗ and n∗∗ rows of X respectively. The lim-
iting posterior predictive distribution of R|S(y) is then given by R|S(y), σ ∼
Nn∗∗(X∗∗bX∗ , σ

2(I +X∗∗(X
0
∗X∗)

−1X 0
∗∗)) and σ

−2 ∼ Gamma(n∗−k2 + 2, 2||y∗ −
X∗bX∗ ||

−2). This gives a simple prescription for simulating from the limiting
posterior predictive distribution. If we put d(n∗, n∗∗) = (

n∗∗−k
2 + 2)/(n−k2 + 2)
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and

ψ(R) = d(n∗, n∗∗) log

½
||R−X∗∗b∗∗||2

||S(y)−X∗bX∗ ||
2

¾
−

log

½
1 +

(R−X∗∗bX∗)
0(I +X∗∗(X

0
∗X∗)

−1X0
∗∗)

−1(R−X∗∗bX∗)

||S(y)−X∗bX∗ ||
2

¾
then it is easy to show that the limiting cross-validational observed relative
surprise is given by MR(ψ(R) > ψ(R(y)) | S(y)) and this can be calculated
via simulation. Notice that the observed surprise is carrying out a somewhat
complicated comparison of the residuals R(y)−X∗∗bX∗∗ and R(y)−X∗∗bX∗ .
In Rice (1995, problem 14.35) twenty-one (x, y) values are given where x

denotes the volume of a ßuid in kiloliters in a tank, which also contains a
variety of mechanical devices, and y denotes pressure in pascals. The data are
plotted in Figure 1. While the data look remarkably linear a plot of the residuals
reveals some systematic variation beyond the linear term; e.g. see the solutions
in Rice. As a test of the above methodology we Þt the model with an intercept
and linear term to the Þrst 15 observations, ordered by x, and used the last 6
observations as R(y). The cross-validational observed relative surprise is plotted
as a function of ψ(R(y)) in Figure 2. For this particular data set we obtained
the value ψ(R(y)) = .11 and the observed relative surprise is 1.00. Thus this
approach rejects the possibility that the linear model Þts.

Example 9. Estimating hyperparameters
In a given problem the prior may depend on hyperparameters as in example 4

where the prior Π1 depended on σ. Often it is difficult to specify a value for this
precisely and various non-Bayesian devices are used to make sensible choices.
For example, one possibility is to maximize the marginal density of the observed
data x0 as a function of the hyperparameter. This is sometimes called Type II
maximum likelihood, see for example Good (1965). This is equivalent to esti-
mating the hyperparameter using the LRSE whenever the hyperparameter has
a prior distribution. Another possibility, to avoid the possibility of over-Þtting
to the data, is to select the value of the hyperparameter as an application of
the principle of least relative surprise applied to the cross-validational observed
relative surprise used for model checking. The selected prior is informative to
the extent that the speciÞc class used expresses information about the unknown
value of the model parameter.

It is not entirely clear how we should choose (R,S) in a particular problem.
This will rely on the statistician�s judgement as to what deviations might be
expected. We note that there are some decidely poor choices forR. For example,
if R is ancillary then (9) is identically 0. The important point is that the
cross-validational observed relative surprise is a useful inferential tool for the
statistician in checking the validity of the model. Finally we note that there are
many other problems to which this approach can be applied that we have not
discussed here; e.g. model choice, outlier detection, etc.
There is some recent work in the literature that has some relationship with

what we are proposing in this section. Model checking based on the posterior
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predictive distribution of a statistic is discussed in Gelman, Meng and Stern
(1995). The use of cross-validational predictive densities for model selection is
discussed in Gelfand and Dey (1994).

4. Conclusions

There is still much work to be done on the application of the concept of
relative surprise to problems of Bayesian inference. For example, there are some
difficult computational issues that will need to be addressed as in general we
require the values of densities. For many traditional problems, however, these
densities can be evaluated in closed form. In such a context there are typically
no special computational difficulties in the relative surprise approach. General
approximation techniques are a current research problem.
This paper has shown that the relative surprise approach offers additional

insight and ßexibility to the Bayesian statistician. What might seem to be
artiÞcial restrictions in the choice of prior for hypothesis testing problems are
removed. Further we have shown, via a number of examples, that the relative
surprise approach leads to inferences that have some satisfying properties not
possessed by other Bayesian techniques in contexts where prior beliefs are felt
to be diffuse.
It is possible in a problem that there is no obvious function T to use for

testing a hypothesis H0 of interest. Of course we could just use the binary
partition but this may require us to modify our prior and, in general, this is not
satisfying to us. There is, however, an approach to generating a sensible T in
many such problems that does not require the modiÞcation of the prior. This is
discussed in Evans, Gilula and Guttman (1993) and is based on measuring the
extent to which the posterior distribution concentrates around the hypothesis
H0 and comparing this with the concentration of the prior about this hypothesis.
The addition of the observed relative surprise to this approach gives an objective
way of comparing these concentrations.
We are not claiming here that inference via the observed relative surprise, or

even Bayesian inference itself, is the way to do inference. We do claim, however,
that the motivation provided in this paper and the examples demonstrate, that
relative surprise is a valuable addition to the set of statistical inference tools.
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