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The Bayes factor is commonly used for assessing the evidence for or against a
given hypothesis H0 : θ ∈ Θ0, where Θ0 is a subset of the parameter space.
In this paper we discuss the Bayes factor and various issues associated with
its use. A Bayes factor is seen to be intimately connected with a relative belief
ratio which provides a somewhat simpler approach to assessing the evidence in
favor of H0. It is noted that, when there is a parameter of interest generating
H0, then a Bayes factor for H0 can be defined as a limit and there is no need to
introduce a discrete prior mass for Θ0 or a prior within Θ0. It is further noted
that when a prior on Θ0 does not correspond to a conditional prior induced
by a parameter of interest generating H0, then there is an inconsistency in
prior assignments. This inconsistency can be avoided by choosing a parameter
of interest that generates the hypothesis. A natural choice of a parameter of
interest is given by a measure of distance of the model parameter from Θ0.

This leads to a Bayes factor for H0 that is comparing the concentration of the
posterior about Θ0 with the concentration of the prior about Θ0. The issue
of calibrating a Bayes factor is also discussed and is seen to be equivalent to
computing a posterior probability that measures the reliability of the evidence
provided by the Bayes factor.

Keywords: Bayes factor; relative belief ratio; inequalities; method of concen-
tration.

1. Introduction

Suppose we have the following ingredients available for a statistical problem:

a statistical model {fθ : θ ∈ Θ} given by a set of possible probability density

functions with respect to a support measure µ on a sample space X , a prior

probability density π with respect to a support measure ν on the parameter

space Θ, and the observed data x ∈ X which has been generated by one of

the distributions in the model. Further suppose that our goal is to assess
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the hypothesis H0 : θ ∈ Θ0 where Θ0 ⊂ Θ, namely, having observed x we

want to assess the evidence that the true value of θ is in Θ0.

A common way to approach this problem, based on the ingredients

provided, is to compute the Bayes factor in favour of H0. In fact we can

only do this when 0 < Π(Θ0) < 1 where Π is the prior probability measure.

In this case the Bayes factor is given by

BF (H0) =
Π(Θ0 |x)

1 − Π(Θ0 |x)
/

Π(Θ0)

1 − Π(Θ0)
(1)

where Π(· |x) is the posterior probability measure. So BF (H0) measures

the change from a priori to a posteriori in the odds in favour of H0. If

BF (H0) > 1, then the data have lead to an increase in our beliefs that

H0 is true and so we have evidence in favour of H0. If BF (H0) < 1, then

the data have lead to a decrease in our beliefs that H0 is true and we have

evidence against H0.

Several questions and issues arise with the use of (1). First we ask why

it is necessary to compare the odds in favour of H0 rather than comparing

the prior and posterior probabilities of H0? Since this seems like a very

natural way to make such a comparison we define the relative belief ratio

of H0 as

RB(H0) =
Π(Θ0 |x)

Π(Θ0)
(2)

whenever 0 < Π(Θ0). Also RB(H0) > 1 is evidence in favour of H0 while

RB(H0) < 1 is evidence against H0. Note that, as opposed to the Bayes fac-

tor, the relative belief ratio is defined when Π(Θ0) = 1 but we then have that

RB(H0) = 1 for every x and this is uninteresting. The relationship between

(1) and (2) is given by BF (H0) = (1−Π(Θ0))RB(H0)/(1−Π(Θ0)RB(H0))

so BF (H0) and RB(H0) are 1-1 increasing functions of each other for fixed

Π(Θ0) but otherwise are measuring change in belief on different scales.

This raises the second question associated with both (1) and (2). In par-

ticular, what do we do when Π(Θ0) = 0 simply because Θ0 is a lower dimen-

sional subset of Θ? Certainly we want to assess hypotheses that correspond

to lower dimensional subsets. The most common solution to this problem is

to follow Jeffreys12,13 and modify Π to be the mixture Πγ = γΠ0 +(1−γ)Π

where γ ∈ (0, 1) and Π0 is a probability measure concentrated on Θ0. We

then have that Πγ(Θ0) = γ and

BF (H0) = m0(x)/m(x) (3)

where m0 is the prior predictive density obtained from the model and Π0,

and m is the prior predictive density obtained from the model and Π.
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Also, we have that RB(H0) = m0(x)/(γm0(x)+ (1− γ)m(x)). While these

calculations are formally correct, it is natural to ask if this approach is

necessary as it does not seem reasonable that we should have to modify

the prior Π simply because our hypothesis has Π(Θ0) = 0. In fact we will

argue in Section 2 that this modification is often unnecessary as we can

unambiguously define BF (H0) and RB(H0) by replacing Θ0 on the right in

(1) and (2) by a sequence of sets Θǫ, where Π(Θǫ) > 0 and Θǫ ↓ Θ0 as ǫ ↓ 0,

and taking the limit. The limits obtained depend on how the sequence Θǫ is

chosen but this ambiguity disappears when H0 is generated by a parameter

of interest λ = Λ(θ) via Θ0 = Λ−1{λ0} for some λ0. In fact, when we have

such a Λ then, using the definition via limits, BF (H0) = RB(H0) and the

two approaches to measuring change in belief are equivalent. Furthermore,

if Π0 is taken to be the conditional prior of θ given Λ(θ) = λ0, then BF (H0)

defined as a limit equals (3) but this is not generally the case when Π0 is

chosen arbitrarily.

It is not always the case, however, that there is a parameter of interest

generating H0. In Section 3, we will argue that, in such a situation it is

better that we choose such a Λ, as the introduction of γ and Π0 can induce

an inconsistency into the analysis. This inconsistency arises due to the fact

that Π0 does not necessarily arise from Π via conditioning. A natural choice

is proposed in Section 3 where Λ is chosen so that Λ(θ) is a measure of the

distance of θ from Θ0. This is referred to as the method of concentration

as the Bayes factor and relative belief ratio are now comparing the concen-

tration of the posterior about Θ0 with the concentration of the prior about

Θ0. If the data have lead to a greater concentration of the posterior distri-

bution about Θ0 than the prior, then this is naturally evidence in favour of

H0. This is dependent on the choice of the distance measure but now the

conditional prior assignments on Θ0 come from the prior Π.

A third issue is concerned with the calibration of BF (H0) or

RB(H0), namely, when are these values large enough to provide convincing

evidence in favour of H0, or when are these values small enough to provide

convincing evidence against H0? In Section 4 we discuss some inequali-

ties that hold for these quantities. For example, inequality (12) supports

the interpretation that small values of RB(H0) provide evidence against

H0 while inequality (13) supports the interpretation that large values of

RB(H0) provide evidence in favour of H0. While these inequalities are a

priori, the a posteriori probability (14) is a measure of the reliability of the

evidence presented by RB(H0) given the specific data observed. In essence

(14) is quantifying the uncertainty in the evidence presented by RB(H0).
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For if (14) is small when RB(H0) is large, then there is a large posterior

probability that the true value of the parameter of interest has an even

larger relative belief ratio than the hypothesized value and so RB(H0) can-

not be taken to be reliable evidence in favour of H0 being true. On the other

hand if (14) is large when RB(H0) is large, then indeed we can take the

value RB(H0) as reliable evidence in favour of H0. When RB(H0) is small,

then a small value of (14) indicates that this is reliable evidence against H0

and conversely for a large value of (14), although inequality (15) shows that

this latter case is not possible. We also address the issue of when evidence

against H0 corresponds to practically meaningful evidence in the sense of

whether or not we have detected a meaningful deviation from H0. Similar

comments apply to BF (H0).

The Bayes factor has been extensively discussed in the statistical litera-

ture. For example, Kass and Raftery14 and Robert, Chopin, and Rousseau16

provide excellent surveys. Our attention here is restricted to the case where

the prior Π is proper. O’Hagan15 defines a fractional Bayes factor and

Berger and Perrichi2 define an intrinsic Bayes factor for the case of im-

proper priors.

Overall our purpose in this paper is to survey some recent results on the

Bayes factor, provide some new insights into the meaning and significance of

these results and illustrate their application through some simple examples.

References to much more involved applications to problems of practical

interest are also provided. Much of the technical detail is suppressed in this

paper and can be found in Baskurt and Evans1.

2. General Definition

Suppose that Π is discrete and that there is a parameter of interest λ = Λ(θ)

generating H0 via Θ0 = Λ−1{λ0} where 0 < Π(Θ0) < 1. We consider a

simple example to illustrate ideas.

Example 1. Discrete uniform prior on two points.

Suppose that {fθ : θ ∈ Θ} is a family of probability func-

tions where we have Θ = {1/4, 1/2}2, θ = (θ1, θ2) , f(θ1,θ2)(x, y) is the

Binomial(m, θ1)×Binomial(n, θ2) probability function, Π is uniform on

Θ, λ = Λ(θ) = θ1 − θ2 and we wish to assess the hypothesis Λ(θ) = λ0 = 0.

So Θ0 = Λ−1{λ0} = {(1/4, 1/4) , (1/2, 1/2)} = {(ω, ω) : ω ∈ {1/4, 1/2}}
and Π(Θ0) = 1/2.

Suppose we observe x = 2, y = 2, m = 4 and n = 5. Then Π(Θ0 |x, y) =

0.512, BF (H0) = (0.512)(0.5)/[(1 − 0.512)(0.5)] = 1.049 and RB(H0) =

2(0.512) = 1.024. So both the Bayes factor and the relative belief ratio
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provide marginal evidence in favour of H0 as beliefs have only increased

slightly after having seen the data.

When ΠΛ is discrete we can write RB(H0) = πΛ(λ0 |x)/πΛ(λ0) and

BF (H0) = πΛ(λ0 |x)(1 − πΛ(λ0))/[πΛ(λ0)(1 − πΛ(λ0 |x))] where πΛ and

πΛ(· |x) denote the prior and posterior probability functions of Λ. Also

note that, in the discrete case, the Bayes factor and relative belief ratio are

invariant to the choice of Λ generating H0 via Θ0 = Λ−1{λ0}. So, for exam-

ple, we could take Λ(θ) = IΘ0
(θ) where IΘ0

is the indicator function of Θ0.

When there is a particular Λ of interest generating H0 via Θ0 = Λ−1{λ0},
we will write BF (λ0) and RB(λ0) for the Bayes factor and relative belief

ratios for H0, respectively.

When Π(Θ0) = 0 a problem arises as BF (H0) and RB(H0) are not

defined. As discussed in Baskurt and Evans1, however, when there is a

parameter of interest generating H0 via Θ0 = Λ−1{λ0}, then sensible defi-

nitions are obtained via limits of sets shrinking to λ0. For this we need to

assume a bit more mathematical structure for the problem as described in

Baskurt and Evans1. With this, the marginal prior density of λ = Λ(θ) is

given by

πΛ(λ) =

∫

Λ−1{λ}

π(θ)JΛ(θ) νΛ−1{λ}(dθ) (4)

with respect to volume (Lebesgue) measure νΛ on the range of Λ, where

JΛ(θ) =
(

det(dΛ(θ))(dΛ(θ))t
)−1/2

, (5)

dΛ is the differential of Λ and νΛ−1{λ} is volume measure on Λ−1{λ}. Fur-

thermore, the conditional prior density of θ given Λ(θ) = λ is

π(θ |λ) = π(θ)JΛ(θ)/πΛ(λ) (6)

with respect to νΛ−1{λ}. The posterior density of λ = Λ(θ) is then given by

πΛ(λ |x) =

∫

Λ−1{λ}

π(θ)fθ(x)JΛ(θ) νΛ−1{λ}(dθ)/m(x). (7)

Note that in the discrete case the support measures are counting measure

and in the continuous case these are things like length, area, volume and

higher dimensional analogs.

Now suppose that Cǫ(λ0) is a sequence of neighborhoods shrinking

nicely to λ0 as ǫ → 0 with ΠΛ(Cǫ(λ0)) > 0 for each ǫ; see Rudin18 for

the technical definition of ‘shrinking nicely’. Then

RB(Cǫ(λ0)) → RB(λ0) = πΛ(λ0 |x)/πΛ(λ0)
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and

BF (Cǫ(λ0)) → BF (λ0) = πΛ(λ0 |x)/πΛ(λ0)

as ǫ → 0 where πΛ and πΛ(· |x) are now the prior and posterior densities

of Λ with respect to νΛ. Note that BF (λ0) = RB(λ0) when Π(Θ0) = 0.

So the Bayes factor and relative belief ratio of H0 are naturally defined as

limits. Note that the limiting relative belief ratio takes the same form in

the discrete and continuous case but this is not true for the Bayes factor.

An alternative expression for the limiting relative belief ratio is shown

in Baskurt and Evans1 to be

RB(λ0) = m(x |λ0)/m(x) (8)

where m(· |λ0) is the conditional prior predictive density of the data given

Λ(θ) = λ0. The equality

m(x |λ0)/m(x) = πΛ(λ0 |x)/πΛ(λ0) (9)

is the Savage-Dickey ratio result and this holds for discrete and continuous

models; see Dickey and Lientz4 and Dickey5. Note that (8) is not a Bayes

factor in the discrete case. We conclude that, when H0 arises from a param-

eter of interest via Θ0 = Λ−1{λ0}, there is no need to introduce a discrete

mass of prior probability on Θ0 to obtain the Bayes factor in favour of H0

and the conditional prior on Θ0 is unambiguously given by π(· |λ0).

We consider a simple application of this.

Example 2. Continuous prior with Λ specified.

Suppose {fθ : θ ∈ Θ} is the family of distributions where Θ = [0, 1]2, θ =

(θ1, θ2) , f(θ1,θ2)(x, y) is the Binomial(m, θ1)×Binomial(n, θ2) probability

function, Π is uniform on Θ, λ = Λ(θ) = θ1 − θ2 and we wish to assess

the hypothesis λ = λ0 = 0. So Θ0 = Λ−1{λ0} = {(θ, θ) : θ ∈ [0, 1]}
and Π(Θ0) = 0. Using (5) we have JΛ(θ) = 1/

√
2 and, since νΛ−1{λ} is

length measure on Λ−1{λ}, applying this to (4) gives πΛ(λ) = 1 − λ when

λ ≥ 0, πΛ(λ) = 1 + λ when λ ≤ 0 and πΛ(λ) = 0 otherwise. To compute

RB(λ) = πΛ(λ |x, y)/πΛ(λ) for a general Λ, we will typically have to sam-

ple from the prior to obtain πΛ but here we have an exact expression for

the prior. From (6) we see that the conditional prior density of θ given

λ = Λ(θ), with respect to length measure on {θ : λ = Λ(θ)}, is given by

π(θ |λ) = 1/
√

2(1 − λ) when λ ≥ 0 and by π(θ |λ) = 1/
√

2(1 + λ) when

λ ≤ 0. Therefore, the conditional prior is uniform.

The posterior distribution of θ is given by

(θ1, θ2) | (x, y) ∼ Beta (x + 1, m− x + 1) × Beta (y + 1, n − y + 1) .
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Fig. 1. Plot of estimate of the posterior density of λ = Λ(θ) in Example 2.

Fig. 2. Plot of estimate of the relative belief ratios of λ = Λ(θ) in Example 2.

Suppose we observe x = 2, y = 2, m = 4 and n = 5. In Figure 1 we present

a plot of the posterior density of λ = Λ(θ) and in Figure 2 a plot of the

relative belief ratio RB(λ) as a function of λ based on samples of 105 from

the prior and posterior. The maximum value of RB(λ) is 1.68 and this

occurs at λ̂ = 0.22, so RB(λ̂) = 1.68. The relative belief ratio in favour of

H0 is given by RB(0) = 1.47 and so we have evidence in favour of H0. This

evidence doesn’t seem overwhelming, although it does say that the data

has lead to an approximate 50% increase in the “probability” of Θ0.
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3. The Method of Concentration

It is a feature of many problems, however, that H0 does not arise from an

obvious parameter of interest λ = Λ(θ) and so appropriate definitions of

BF (H0) and RB(H0) are ambiguous when Π(Θ0) = 0.

Example 3. Continuous prior with Λ unspecified.

Suppose that the situation is identical to that described in Example

2 but now we do not declare that we want to make inference about λ =

Λ(θ) = θ1 − θ2. Rather it is simply specified that we wish to assess the

hypothesis Θ0 = {(ω, ω) : ω ∈ [0, 1]}, namely, we only specify that we are

interested in determining whether or not θ1 = θ2. Of course, Θ0 = Λ−1{0}
but there are many such Λ generating H0 and it is not clear, given the

statement of the problem, which we should use. It seems clear from (4)

and (5), however, that RB(H0) = RB(λ0) will depend on the Λ we use to

obtain the relative belief ratio.

It is common practice in such situations to follow Jeffreys and replace Π

by the prior Πγ = γΠ0 +(1− γ)Π to compute BF (H0) and RB(H0). From

(3) we see that, when Π0 corresponds to the conditional prior of λ = Λ(θ)

given that λ = λ0, then m0(x) = m(x |λ0) and (3) equals (8). Again there

is no need to introduce γ.

On the other hand, if Π0 is not equal to the conditional prior based

on Π for some Λ, then a fundamental inconsistency arises in the Bayesian

analysis, as the conditional beliefs on Θ0 do not arise from the prior Π. The

existence of such an inconsistency when Π is discrete is unacceptable and

there is no reason to allow this in the continuous case either.

Example 4. Discrete uniform prior on many points.

Consider the context of Example 1 where now Θ = {1/k, 2/k, . . . , (k −
2)/(k − 1)}2 for some positive integer k and Π is the uniform prior on this

set. Suppose again we want to assess the hypothesis Θ0 = {(ω, ω) : ω ∈
1/k, 2/k, . . . , (k − 2)/(k − 1)}}. The hypothesis being assessed is clearly

the assertion that θ1 = θ2. Note that in this case, however we choose Λ

generating H0, the relative belief ratio in favour of H0 is the same and

the conditional prior given Θ0 is unambiguously the uniform prior on Θ0.

Furthermore, when k is very large we can think of the continuous problem

in Example 3 as an approximation to this problem. Without specifying a

Λ in Example 3, however, we are not specifying how this approximation is

taking place.

Avoiding the inconsistency requires the choice of a suitable Λ that generates

H0 via Θ0 = Λ−1{λ0} and then using the relative belief ratio RB(λ0). Faced
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with the option of either choosing γ and Π0 or choosing a Λ that generates

H0, the latter seems preferable as it ensures that beliefs are being assigned

consistently in the problem.

The effect of the inconsistency can be seen directly via a generalization

of the Savage-Dickey ratio result (9) due to Verdinelli and Wasserman19

and that is also discussed in Baskurt and Evans1. This result was derived

to aid in the computation of (3) but in fact it relates the Bayes factor

obtained using the Jeffreys approach via γ and Π0 and that obtained via

the definition in Section 2 as a limit. This can be written in two ways as

m0(x)/m(x) = RB(λ0)EΠ0
(π(θ |λ0, x)/π(θ |λ0))

= RB(λ0)EΠ(· |λ0,x) (π0(θ)/π(θ |λ0)) . (10)

The first equality in (10) says that (3) equals the Bayes factor obtained

as a limit in Section 2, times the expected conditional relative belief ratio

of θ computed as a limit via Π(· |λ0), where the expectation is taken with

respect to the prior Π0 placed on Θ0. It is interesting to note that the

adjustment factor involves relative belief ratios. The second equality in (10)

says that (3) equals the Bayes factor obtained as a limit in Section 2, times

the expected ratio of the prior π0 evaluated at θ to the conditional prior

induced by Π evaluated at θ, given that λ0 = Λ(θ), where the expectation

is taken with respect to the conditional posterior induced by the prior Π,

given that λ0 = Λ(θ). So if π0 is very different from any conditional prior

π(· |λ0) induced by Π, then we can expect a big differences in the Bayes

factors obtained by the two approaches.

To avoid this inconsistency a natural choice of Λ in such a problem is

to take Λ = dΘ0
, where dΘ0

(θ) is a measure of the distance θ is from Θ0.

Therefore, dΘ0
(θ) = 0 if and only if θ ∈ Θ0 and Θ0 = Λ−1{0}. With this

choice the Bayes factor (and relative belief ratio) RB(0) is a comparison of

the concentration of the posterior distribution about Θ0 with the concen-

tration of the prior distribution about Θ0. If RB(0) > 1, then the posterior

distribution is concentrating more about Θ0 than the prior and we have

evidence in favour of H0. This seems quite natural as when H0 is true we

expect the posterior distribution to assign more of its mass near Θ0 than

the prior, otherwise the data is providing evidence against H0. Under weak

conditions RB(0) will converge to 0 when H0 is false and to ∞ when H0 is

true, as the amount of data increases.

Of course, there is still an arbitrariness as there are many possible

choices of distance measure. But this arbitrariness is in essence an unavoid-

able consequence of a problem that is not fully specified. The problem is
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similar to the Borel paradox in probability theory where, in general, there is

no unique conditional probability measure associated with conditioning on

a set of measure 0 even though this may make perfect sense as in Example

2. The way out of this is to specify a function that generates the set but

the conditional distribution depends on the function chosen. Our recom-

mendation is that we should address the problem in a way that guarantees

beliefs assigned in a consistent way and this effectively entails choosing a Λ

that generates H0. If we choose Λ in an intuitively satisfying way then this

adds greater support for this approach. Setting Λ = dΘ0
for some distance

measure dΘ0
satisfies these criteria.

In a number of problems, see the discussion in Section 5, we have cho-

sen dΘ0
to be squared Euclidean distance so we are effectively using least

squares. This choice often exhibits a very nice property as expressed in the

following result.

Proposition 1. RB(λ0) is the same for all Λ in the set {Λ : JΛ(θ) is

constant and nonzero for all θ ∈ Λ−1{λ0}}.
Proof: From (4) and (7) we have that

RB(λ0) =
πΛ(λ0 |x)

πΛ(λ0)
=

∫

Λ−1{λ0}
π(θ)fθ(x)JΛ(θ) νΛ−1{λ0}(dθ)/m(x)

∫

Λ−1{λ0}
π(θ)JΛ(θ) νΛ−1{λ0}(dθ)

=

∫

Θ0

π(θ)fθ(x) νΘ0
(dθ)/m(x)

∫

Θ0

π(θ) νΘ0
(dθ)

where the last equality follows from Θ0 = Λ−1{λ0} and νΛ−1{λ0} = νΘ0

since this measure is determined by the geometry of Θ0 alone. �

As already noted, Proposition 1 always holds when Π is discrete because

the parameter space is countable and with the discrete topology on Θ, all

functions are continuously differentiable with JΛ(θ) ≡ 1. Also, whenever

Θ0 = {θ0} for some θ0 ∈ Θ, then any Λ continuously differentiable at θ0

that generates Θ0 = {θ0} clearly satisfies the condition of Proposition 1.

When Θ0 = L(A) for some A ∈ Rk×m of rank m and Λ(θ) = dΘ0
(θ) =

||θ − (A′A)−1A′θ||2 is the squared Euclidean distance of θ from Θ0, then

JΛ(θ) = ||θ − (A′A)−1A′θ||−1/2 = Λ−1/2(θ)/2 and so if λ0 > 0 the condi-

tions of Proposition 1 are satisfied. When λ0 → 0 we have that

RB(λ0) → RB(0) =

∫

Θ0

π(θ)fθ(x) νΘ0
(dθ)/m(x)

∫

Θ0

π(θ) νΘ0
(dθ)

(11)

which is independent of Λ. So when Λ generating H0 satisfies the require-

ment of Proposition 1, we see that volume distortions induced by Λ, as

measured by JΛ(θ), do not affect the value of the relative belief ratio.
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We consider an example using squared Euclidean distance.

Example 5. Continuous prior using concentration.

Suppose the situation is as in Example 3. We take Λ∗(θ) = dΘ0
(θ) to

be the squared Euclidean distance of θ from Θ0 = {(ω, ω) : ω ∈ [0, 1]}. It is

clear that Λ∗(θ) = (θ1−θ2)
2/2, JΛ∗

(θ) = Λ
−1/2
∗ (θ)/2 and (11) applies. Now

notice that the Λ used in Example 2 also satisfies the conditions of Propo-

sition 1 and so limλ0→0 RB(λ0) = RB(0) must be the same as what we get

when using Λ∗ and (11). Therefore, for the data as recorded in Example 2

we also have RB(0) = 1.47 when using the method of concentration.

The outcome in Example 5 is characteristic of many situations when taking

dΘ0
(θ) to be the squared Euclidean distance of θ from Θ0.

4. Calibration

In Baskurt and Evans1 several a priori inequalities were derived that sup-

port the interpretations of BF (λ0) or RB(λ0) as evidence for or against H0.

These are generalizations to the Bayesian context of inequalities derived in

Royall17 for likelihood inferences. For example, it can be proved that

M (m(X |λ0)/m(X) ≤ RB(λ0) | λ0) ≤ RB(λ0) (12)

and

M(· |λ0) × ΠΛ (m(X |λ)/m(X) ≥ RB(λ0)) ≤ (RB(λ0))
−1

. (13)

In both inequalities we consider RB(λ0) as a fixed observed value of the

relative belief ratio and X ∼ M ( · | λ0) where M ( · | λ0) is the conditional

prior predictive measure given that Λ(θ) = λ0. So inequality (12) says that

the conditional prior probability, given that H0 is true, of obtaining a value

of the relative belief ratio (recall (9)) of H0 smaller than the observed value

is bounded above by RB(λ0). So if RB(λ0) is very small this probability

is also very small and we can consider a small value of RB(λ0) as evidence

against H0. In (13) λ ∼ ΠΛ independent of X and the inequality says that

the conditional prior probability, given that H0 is true, of obtaining a larger

value of the relative belief ratio at a value λ generated independently from

ΠΛ, is bounded above by (RB(λ0))
−1

. So if RB(λ0) is very large then, when

H0 is true, it is extremely unlikely that we would obtain a larger value of

RB(λ) at a value λ that is a priori reasonable. So we can consider large

values of RB(λ0) as evidence in favour of H0. Note that these inequalities

also apply to the Bayes factor in the continuous case and similar inequalities

can be derived for the Bayes factor in the discrete case.
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We now consider the reliability or the uncertainty in the evidence given

by RB(λ0). We will measure the reliability of this evidence by comparing

it to the evidence in favour of alternative values of λ. For, if RB(λ0) is very

large, so we have strong evidence in favour of H0, but RB(λ) is even larger

for values of λ 6= λ0, then this casts doubt on the reliability of the evidence

in favour of H0. The probabilities in (12) and (13) are a priori measures of

the reliability of the evidence given by RB(λ0). For inequality (12) tells us

that, when RB(λ0) is very small, there is little prior probability of getting

an even smaller value of this quantity when H0 is true. Similarly, (13) tells

us that, when RB(λ0) is very large, there is little prior probability of getting

an even larger value for RB(λ) for some λ when H0 is true. Based upon

fundamental considerations, however, we know that we need to measure the

reliability using posterior probabilities. Accordingly, we propose to use the

posterior tail probability

Π (RB(Λ(θ)) ≤ RB(λ0) |x) (14)

to measure the reliability, or equivalently quantify the uncertainty, in the

evidence given by RB(λ0). We see that (14) is the posterior probability of a

relative belief ratio (and Bayes factor in the continuous case) RB(λ) being

no larger than RB(λ0). If RB(λ0) is large and (14) is small (see Baskurt

and Evans1 for examples where this occurs), then evidence in favour of H0,

as expressed via RB(λ0), needs to be qualified by the fact that our posterior

beliefs are pointing to values of λ where the data have lead to an even bigger

increase in belief. In such a situation the evidence in favour of H0 does not

seem very reliable. If RB(λ0) is large and (14) is also large, then we have

reliable evidence in favour of H0. Similarly, if RB(λ0) is small and (14) is

small, then we have reliable evidence against H0, while a large value of (14)

suggests the evidence against H0, as expressed through RB(λ0), is not very

reliable. In fact, the a posteriori inequality

Π (RB(Λ(θ)) ≤ RB(λ0) |x) ≤ RB(λ0) (15)

is established in Baskurt and Evans1. Inequality (15) shows that a very

small value of RB(λ0) is always reliable evidence against H0.

We note that (14) is not interpreted like a P-value. The evidence for or

against H0 is expressed via RB(λ0) and (14) is a measure of the reliability of

this evidence. A similar inequality exists for the Bayes factor in the discrete

case.

It is a substantial advantage of the use of the Bayes factor and the

relative belief ratio that they can express evidence both for and against

hypotheses. A weakness of this approach is that somewhat arbitrary scales
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have been created for comparison purposes for the Bayes factor. For exam-

ple, according to such a scale a Bayes factor of 20 is considerable evidence

in favour of λ0. But, as shown in Baskurt and Evans1, it is possible that

there are other values of λ for which the Bayes factor is even larger and this

leads one to doubt the evidence in favour of λ0. If, however, such values

have only a small amount of posterior weight, then the evidence in favour

of λ0 seems more compelling. Assessing this is the role of (14).

As with the use of P-values, however, we need to also take into account

the concept of practical significance when assessing hypotheses. It is clear

that RB(λ0), even together with (14), doesn’t do this. For example, suppose

RB(λ0) is small and (14) is small so we have evidence against H0, or suppose

RB(λ0) is large while (14) is small or at least not large. In such a situation

it is natural to compute (λ̂, RB(λ̂)) where λ̂ = arg supRB(λ) as λ̂ is in a

sense the value of λ best supported by the data. If the difference between λ̂

and λ0 is not of practical significance, then it seems reasonable to proceed

as if H0 is true. So the approach discussed here can also take into account

the notion of practical significance.

We consider an example involving computing (14).

Example 6. Measuring the reliability of a Bayes factor.

Consider the context discussed in Example 2. We had λ = Λ(θ) = θ1−θ2

and we wished to assess the hypothesis Λ(θ) = λ0 = 0, so Θ0 = Λ−1{λ0} =

{(θ, θ) : θ ∈ [0, 1]}. For the data specified there, we obtained RB(0) = 1.47

and we have evidence in favour of H0 although not overwhelmingly strong.

Using simulation we computed (14) as equal to 0.42. This indicates that

the posterior probability of obtaining a larger value of the Bayes factor is

0.58 so the evidence in favour of H0 is not particularly reliable. Of course

we have very small samples here so this is not surprising.

The maximum value of RB(λ) is 1.68 and this occurs at λ̂ = 0.22, so

RB(λ̂) = 1.68. If in the particular application we also thought that λ̂ = 0.22

does not differ meaningfully from 0, then it seems reasonable to proceed as

if H0 is true.

5. Conclusions

This paper has shown that is possible to provide a sensible definition of a

Bayes factor in favour of a hypothesis H0 : θ ∈ Θ0, in contexts where Θ0

has prior probability 0 simply because it is a lower dimensional subset of Θ

and the prior Π is continuous on Θ. This is accomplished without the need

to introduce the mixture prior Πγ = γΠ0 + (1 − γ)Π which requires the

specification of γ and Π0, in addition to Π. Our approach avoids the need
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for the discrete mass γ but more importantly, when Π0 is not given by the

conditional prior of θ given that Λ(θ) = λ0 for some Λ generating H0, it

avoids an inconsistency in the assignment of prior beliefs. This provides a

unified approach to Bayesian inference as we no longer have to treat esti-

mation and hypothesis assessment problems separately, namely, we do not

have to modify an elicited prior Π just to deal with a hypothesis assessment.

In situations where H0 is not generated by a parameter of interest, then the

method of concentration is seen to be a natural approach to choosing such a

Λ. We have also discussed the calibration of a Bayes factor or relative belief

ratio and have shown that this is intimately connected with measuring the

reliability of the evidence presented by a Bayes factor or relative belief ra-

tio. Finally we have shown how a maximized Bayes factor or relative belief

ratio can be used to assess the practical significance of the evidence pre-

sented by these quantities. While we have illustrated these ideas via simple

examples in this paper much more substantive and practical applications

can be found in Evans, Gilula and Guttman6 and Evans, Gilula, Guttman

and Swartz,8 Cao, Evans and Guttman,3 Evans, Gilula and Guttman7 and

Baskurt and Evans.1

Other inferences are closely related to those discussed in this paper.

For example when we have a parameter of interest Λ, then the value

λ̂ maximizing RB(λ), referred to as the least relative surprise estimator

(LRSE), can be used to estimate λ. It is shown in Evans and Jang10 that

λ̂ is either a Bayes rule or a limit of Bayes rules where the losses are de-

rived from the prior. A γ-credible region for λ is given by Cγ(x) = {λ0 :

Π (RB(Λ(θ)) ≤ RB(λ0) |x) > 1 − γ} and is referred to as a γ-relative sur-

prise region. A variety of optimality properties have been established for

these regions, when compared to other rules for the construction of Bayesian

credible regions, in Evans, Guttman and Swartz9, and Evans and Shakha-

treh.11
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