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Abstract

Relative surprise inferences are based on how beliefs change from a
priori to a posteriori. These inferences can be seen to be based on the
posterior distribution of the integrated likelihood and, as such, are in-
variant under relabellings of the parameter of interest. In this paper we
demonstrate that relative surprise inferences possess an optimality prop-
erty. Further, computational techniques are developed for implementing
these inferences that are applicable whenever we have algorithms to sam-
ple from the prior and posterior distributions.

1 Introduction

Suppose we observe data x0 from a statistical model {fθ : θ ∈ Ω} , where fθ is
a density with respect to support measure µ on the sample space X , and that
we have a proper prior density π on θ, with respect to support measure υ on
Ω. Consider a set T of possible values for some quantity of interest τ = Υ(θ)
depending on the parameter of the model.
With these ingredients we have available the joint distribution of (x, θ), as

given by the density fθ (x)π (θ) with respect to support measure µ × ν, and
the observed value x0. A basic axiom of inference then says that probability
statements about τ should be based on the conditional distribution of τ given
the data x0, otherwise known as the posterior distribution of τ and here denoted
by the posterior density πΥ(· |x0) with respect to some support measure υT on
T . This is a particular application of conditional probability in a two-stage
system where we observe the outcome from the second stage and want to make
an inference about the concealed outcome from the Þrst stage. This application
is commonly referred to as Bayes theorem. We note, however, that the decision
to use conditional probability is not compelled by a theorem, although there may
be many theorems that suggest it is the appropriate thing to do, but rather it
is an axiom that many agree is appropriate for inference in such a context.
This application of conditional probability could be viewed as the key step in

what distinguishes a Bayesian analysis. The question remains, however, given
the posterior distribution of τ , how should we use this to make inferences about
the true unknown value of τ . It seems clear that Bayes theorem only says
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that any probability statements we make about τ must be calculated using the
posterior distribution. For example, if we wish to quote a set C ⊂ T that has
a .95 probability of containing the true τ , then Bayes theorem does not tell us
how to obtain the set C only that C must satisfy

R
C πΥ(τ |x0) υT (dτ) = .95

and typically there are many such sets.
One possible response to this ambiguity is simply to say that the posterior

distribution of τ is the outcome of the Bayesian inference process, namely, that
one only needs to report this and it can be used as the user wishes. This seems
somewhat inadequate, however, when we require a speciÞc value of τ for further
work, together with an assessment of the accuracy of this estimate, or wish to
assess the plausibility of a hypothesized value τ0 of τ as prescribed by some
theory.
Another response is to say that the user needs to specify a set of inferences or

actions A and a loss function L deÞned on A×T and then choose the inference
a ∈ A that minimizes the posterior expected loss. While this has some appeal,
in many applications it is difficult to specify L in a completely satisfactory way.
Considerations such as these have lead some to consider the possibility of

stating a principle or axiom that would allow a statistician to determine the
inferences by application of the principle to the ingredients of the problem,
namely, the joint distribution of (x, θ) and the observed value x0. To be Bayesian
inferences, at least as we will use this terminology, these must only conform
to the Þrst principle, namely, that any probabilities quoted must be posterior
probabilities.
So we ask what characteristics we would want such a principle to have beyond

the restriction that the inferences produced be Bayesian. A general discussion of
this problem is not our intent here, but we note that standard inferences about
parameters could be taken to be estimation, together with the related problem
of assessing the uncertainty in a quoted estimate, and testing problems. As
such we might consider principles that lead, for any joint distribution, data and
parameter of interest, to a class of regions Cγ (x0) ⊂ T for γ ∈ [0, 1] with the
property that Z

Cγ(x0)

πΥ(τ |x0)υT (dτ) ≥ γ (1)

and such that Cγ1 (x0) ⊂ Cγ2 (x0) whenever γ1 ≤ γ2. Typically we will require
that there is an equality in (1) but in some cases this will not be possible. The
nesting property seems quite natural as we could then take τ (x0) ∈ C0 (x0)
as an estimate of τ with the full set of regions Cγ (x0) , together with their
posterior probabilities, serving as the quantiÞcation of uncertainty concerning
the accuracy of τ (x0) . Further, assessing a hypothesized value τ0 can be carried
out by computing the Bayesian P-value 1− inf {γ : τ0 ∈ Cγ (x0)} .
There are many such principles with at least one in common use. We call this

the hpd principle (highest posterior density principle) where a γ-hpd is given
by Cγ (x0) =

©
τ : πΥ(τ |x0) ≥ πΥ(τ∗γ |x0)

ª
and τ∗γ is determined so that (1) is

satisÞed. This leads to an estimate being a mode of πΥ(· |x0).While this seems
to lead to satisfactory inferences in many contexts, there is at least one concern
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in the case when the posterior distribution of τ is continuous. For under a 1-1
reparameterization ψ = Ψ (τ) we do not have that hpd regions for τ transform
to the corresponding hpd regions for ψ.We note that likelihood inferences about
the full parameter θ satisfy the invariance property and it is generally required
that likelihood-based inferences about marginal parameters should also possess
this property.
We might look then for a general principle in the Bayesian context that

possesses the invariance property. For example, when τ is real-valued we could
consider taking Cγ (x0) = (τα(1−γ), τ1−(1−α)(1−γ)) where τp is the p-th quan-
tile of the posterior distribution of τ and α is Þxed in [0, 1] . We see that this
prescribes an α-th quantile as an estimate of τ . Perhaps it is natural to take
α = 1/2 although this requires some justiÞcation as other choices are possible.
We note, however, that this approach depends on τ being real-valued to be im-
plemented and even then may seem unnatural when the posterior distribution is
multimodal, as then we might like to discard other values of τ rather than just
the tails. Also it is not at all clear how this should be generalized to situations
where τ is not real-valued.
In Evans (1997) a principle of inference was stated, in the sense that a class

of regions Cγ (x0) were speciÞed with the appropriate properties, that generated
Bayesian inferences possessing the invariance property. These inferences were
referred to as relative surprise inferences as they were derived based on sur-
prise as discussed in Good(1988, 1989). At least one implementation of Good�s
approach leads to hpd inferences which, as just noted, do note possess the in-
variance property and relative surprise inferences were devised as a method for
recovering this.
We discuss relative surprise inferences in Section 2 and derive an optimality

property for these inferences. In fact we show that relative surprise inferences
are a particular example of what we call hpd-like inferences and in some ways
are the most natural of these. Further we relate relative surprise inferences to
likelihood inferences and the use of Bayes factors. We are not arguing here
that the relative surprise principle is the way to determine inferences only that
it is an intuitively reasonable way and the inferences possess some compelling
properties.
Implementing relative surprise inferences requires that we be able to compute

both the marginal prior and posterior densities for τ . In Section 3 we develop
algorithms for implementing relative surprise inferences in situations where we
may not have closed-form expressions for these quantities. The approach taken
there shows that relative surprise inferences have some computational advan-
tages over other hpd-like inferences as we can take advantage of the invariance
to transform the parameter of interest to a compact parameter space. In Section
4 we consider some examples where these algorithms are used.
We note that the formulation of a Bayesian inference problem as stated here

does not allow the prior π to be improper. This is because relative surprise
inferences require the marginal prior for τ and, in general, an improper prior on
θ does not marginalize in any obvious way to induce a prior on τ . For example,
if θ = (θ1, θ2) ∈ R2 with τ = θ2 and we put a ßat prior on θ, then we cannot
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simply integrate out θ1 to get the marginal for τ . It seems highly desirable
that whenever we start with a prior on the full parameter θ that we be able to
examine what these prior beliefs say about the parameter of interest τ. Further,
we cannot apply conditional probability as a principle when π is improper as
the joint distribution is not a probability distribution so some other justiÞcation
is needed for this step. Other objections have been raised about the use of
improper priors, for example, Dawid, Stone and Zidek (1973).
It is the case, however, that relative surprise inferences under improper priors

can be obtained as the limit of relative surprise inferences under a sequence of
proper priors which in some sense converge to the improper prior. Under these
circumstances we can apply conditional probability and can consider the effect
of the prior π on τ at each step in the sequence. Examples of this approach can
be found in Evans (1997). Of course, much needs to be said about what are
appropriate sequences, as in Berger and Bernardo (1992), but this is not our
concern here.

2 Relative Surprise Inferences

Consider now the inference problem presented in Section 1. The relative surprise
principle makes use of the following preference ordering on the possible values
of τ . We totally order the elements of T so that τ1 is strictly preferred to τ2
if the relative increase in belief for τ1, from a priori to a posteriori, is greater
than the corresponding increase for τ2. We translate this mathematically into
strictly preferring τ1 to τ2 whenever

πΥ(τ1 |x0)

πΥ(τ1)
>
πΥ(τ2 |x0)

πΥ(τ2)
(2)

where πΥ is the marginal prior density of τ , deÞned with respect to the sup-
port measure υT on T . Note that we can take the support measure to be the
prior measure ΠΥ, so requiring densities is not a restriction. Notice also that
the preference ordering given by (2) is precisely that speciÞed by the function
πΥ(· |x0)/πΥ(·) and referred to as the integrated likelihood in Kalbßeisch and
Sprott (1970). Berger, Liseo and Wolpert (1999) argue for the use of integrated
likelihood rather than other forms, such as proÞle likelihood, when making in-
ferences about marginal parameters.
We use the preference ordering given by (2) to determine inferences. Note

that (2) is invariant under smooth transformations of τ , i.e., if τ1 is preferred
to τ2, then ψ1 = Ψ (τ1) is preferred to ψ2 = Ψ (τ2) for any smooth Ψ, as the
Jacobian factor cancels in both the ratios involved.
In an estimation context, where we are required to select a value from T as

an estimate, this ordering leads to selecting a value in T that has the greatest
relative increase in belief from a priori to a posteriori, i.e., select a value of
τ maximizing πΥ(· |x0)/πΥ(·). This estimator is computed by maximizing this
ratio as a function of τ . We call such an estimate a least relative surprise (LRSE)
estimate.
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In hypothesis testing contexts we have an hypothesized true value τ0 ∈ T for
Υ(θ) and we are required to assess this hypothesis using the evidence provided
by the data. The above preference ordering leads to comparing the relative
increase in belief for τ0, from a priori to a posteriori, with this increase for each
of the other possible values in T . If the increase for τ0 is small compared to
the other increases, then the data suggests that τ0 is surprising and we have
evidence against the hypothesis. We use the posterior probability of obtaining a
relative increase larger than that observed for τ0 and refer to this as the observed
relative surprise (ORS). Therefore the observed relative surprise at τ0 is given
by

Π

µ
πΥ(τ |x0)

πΥ(τ)
>
πΥ(τ0 |x0)

πΥ(τ0)

¯̄̄̄
x0

¶
(3)

where Π (· |x0) is the posterior probability measure. Notice that the value of τ0
minimizing (3) is the LRSE as in this case the ORS is 0. It is the value most
supported by the data, and so least surprising from the point of view of the
data, when the relative change in degree of belief from a priori to a posteriori
is our criterion for assessing this.
The hypothesis testing approach via observed relative surprise can be in-

verted in a standard way to give relative surprise regions for the unknown true
value in T . A γ-relative surprise region for τ is given by

Cγ(x0) =

½
τ0 ∈ T : Π

µ
πΥ(τ |x0)

πΥ(τ)
>
πΥ(τ0 |x0)

πΥ(τ0)

¯̄̄̄
x0

¶
≤ γ

¾
. (4)

This is the set of values in T whose observed relative surprise is no greater than
γ. Note that we could have equivalently proceeded by Þrst deÞning the regions
Cγ(x0) as in (4) and then determining the estimates and Bayesian P-value as
described in Section 1. The approach taken here proceeds from taking (3) as an
appropriate measure of surprise for the hypothesized value τ0.
While relative surprise inferences may seem unusual, they are determined

in a very familiar way. In fact, noting that πΥ(· |x0)/πΥ(·) is a proper density
function for the posterior distribution with the support measure taken to be
the prior, we see that Cγ(x0) in (4) is a γ-hpd region using this density. Of
course, hpd regions are usually calculated using densities taken with respect to
volume measure and, in such circumstances, we know that a γ-hpd region has
the smallest volume among all regions having posterior probability content equal
to γ. Corollary 4 below establishes a similar optimality result for a γ-relative
surprise region and as such can be seen as a key justiÞcation for the use of such
inferences.
We prove a general version of this optimality result for inferences determined

by the ratio πΥ(· |x0)/λ(·) where λ is a nonnegative function that determines
a σ-Þnite measure Λ (C) =

R
C
λ(τ)υT on T . We refer to such inferences as

hpd-like. We deÞne the γ-credible regions Bγ(x0) generated from Λ by

Bγ(x0) =

½
τ0 ∈ T : Π

µ
πΥ(τ |x0)

λ(τ)
>
πΥ(τ0 |x0)

λ(τ0)

¯̄̄̄
x0

¶
≤ γ

¾
.
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We have the following result where ΠΥ (· |x0) is the posterior induced by Υ.

Lemma 1. ΠΥ (Bγ(x0) |x0) ≥ γ with equality whenever the posterior distribu-
tion of πΥ(· |x0)/λ(·) has no atoms.
Proof : See the Appendix.

The optimality of the regions Bγ(x0) is as stated in the next theorem.

Theorem 2. The set Bγ(x0) minimizes Λ (C) among all measurable sets C ⊂ T
satisfying ΠΥ (C |x0) ≥ ΠΥ (Bγ(x0) |x0) .
Proof : See the Appendix.

Combining Lemma 1 and Theorem 2 we have the following corollary.

Corollary 3. When the posterior distribution of πΥ(· |x0)/λ(·) has no atoms,
then Bγ(x0) minimizes Λ (C) among all measurable sets C ⊂ T satisfying
ΠΥ (C |x0) ≥ γ.

Taking λ = πΥ gives the result for relative surprise regions.

Corollary 4. The γ-relative surprise region Cγ(x0) has smallest prior measure
among all measurable sets C ⊂ T satisfying ΠΥ (C |x0) ≥ ΠΥ (Cγ(x0) |x0) and
ΠΥ (Cγ(x0) |x0) = γ whenever the posterior distribution of πΥ(·|x0)/λ(·) has
no atoms.

Note that, in the case that T is Euclidean and taking Λ to be volume measure,
Theorem 2 gives the optimality of hpd inferences.
One might ask why we should put Λ = ΠΥ. Consider, however, the general

context where T is an arbitrary set, not necessarily Euclidean, e.g., inÞnite
dimensional. In such a situation it may not be at all clear what to use as an
appropriate measure Λ on T . Also, suppose T is Euclidean and we take Λ to
be volume measure. If ψ = Ψ (τ) where Ψ : T → T is a 1-1, onto, smooth
transformation then do we use the measure Λ when determining inferences for
ψ or do we use Λ ◦Ψ−1? If minimizing volume is important then we must use
Λ and we lose the invariance property. In general there does not seem to be
a good reason to use Λ ◦ Ψ−1 so that the invariance property is retained. On
the other hand if we take Λ to be the prior ΠΥ on τ then the appropriate prior
on ψ is ΠΥ ◦Ψ−1. This is the essential reason why relative surprise inferences
are invariant. In many ways the prior is the most natural choice of the measure
Λ used to determine hpd-like inferences as it transforms appropriately under
reparameterizations.
We can also interpret Corollary 4 in terms of hypothesis assessment. For

suppose we choose to reject H0 : τ = τ0 whenever the ORS is greater than
γ. This is equivalent to rejecting H0 whenever τ0 ∈ Ccγ(x0). This test has an
optimal property when we consider other rejection regions D ⊂ T .

Corollary 5. Among rejection regions D ⊂ T of H0 : τ = τ0 that satisfy
ΠΥ (D |x0) ≤ ΠΥ

¡
Ccγ(x0) |x0

¢
the relative surprise test region Ccγ(x0) maxi-

mizes ΠΥ (D) .

Note that this result does not say that the region Ccγ(x0) maximizes the prior
probability of rejecting H0, only that the region C

c
γ(x0) is the largest possible

test region with posterior probability content no greater than 1− γ, where the
size of a set is measured using the prior probability measure.
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When τ = θ the prior cancels in πΥ(· |x0)/πΥ(·) and the norming con-
stant for the posterior cancels on both sides of the inequality in (3). Therefore
Cγ(x0) = {θ0 : Π (f(x0 | θ) > f(x0 | θ0)) |x0) ≤ γ} and relative surprise regions
are likelihood regions. Corollary 4 then takes the following form.

Corollary 6. The likelihood region Cγ(x0) for θ minimizes Π (C) among all
measurable sets C ⊂ Ω satisfying Π (C |x0) ≥ Π (Cγ(x0) |x0) .

This result seems surprising because there is no connection between the prior
and the likelihood. We note, however, that the link here is given by the choice
of the posterior probability content of the set.
In Evans and Zou (2002) results were developed that show an increased ro-

bustness for (3) to the choice of prior when compared to computing the Bayesian
P-value based on hpd regions. Certainly the fact that relative surprise regions
for θ correspond to likelihood regions points to such a result. Similarly Wasser-
man (1989) develops robustness results for likelihood regions for θ showing that
the posterior content of such regions are relatively insensitive to contaminations
of the prior.
The following establishes a link between Bayes factors and relative surprise.

Example 1. Bayes factors and the ORS
Suppose we wish to assess the hypothesis that θ ∈ H0 ⊂ ΩwhereΠ (H0) > 0.

So here we have that τ = Υ (θ) = H0 when θ ∈ H0, τ = Υ (θ) = Hc
0 when θ /∈ H0

and τ0 = H0. Then (3) is equal to

Π

µ
πΥ (Υ (θ) |x)

πΥ (Υ (θ))
>
Π (H0 |x0)

Π (H0)

¯̄̄̄
x0

¶
=

½
0 if BFH0 ≥ 1
Π (Hc

0 |x0) if BFH0 < 1
(5)

where

BFH0 =
Π (H0 |x0)

1−Π (H0 |x0)
/
Π (H0)

1−Π (H0)
(6)

is the Bayes factor in favor of H0. This is close to the usual recommendation of
saying that we have evidence against H0 when Π (H

c
0 |x) is small.

Sometimes just the Bayes factor is recommended in hypothesis testing with
small values of (6) treated as evidence against H0. Various calibrations have
been suggested for the value of a Bayes factor but perhaps the most direct
method is to compute the posterior probability of obtaining a value larger than
(6) with large values of this probability indicating that H0 is surprising. If we
do this, we see that Π

¡
BFΥ(θ) > BFH0

¯̄
x0
¢
agrees exactly with the ORS. So

in a sense we can think of the ORS as a generalization of the Bayes factor when
we choose to calibrate the value of a Bayes factor using the tail probability.
Now suppose we have a sequence Hn

0 where Π (H
n
0 ) > 0 for all n, and the

Hn
0 converge nicely to H0 with Π (H0) = 0. Typically such a structure will

arise when we have a continuous parameter τ, we want to assess H0 = {τ0}
and the Hn

0 are shrinking neighborhoods of τ0. Then it is easy to show that
BFHn

0
→ πΥ (τ0 |x) /πΥ (τ0) as n → ∞. So it is very natural to think of the

ORS as a generalization of the Bayes factor approach. The ORS is comparing
the limiting Bayes factor in favor of τ0 with the limiting Bayes factors in favor
of each of the other possible values of τ .
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One might compare relative surprise inferences to the hpd inferences. As we
increase the amount of data the posterior density will, under suitable conditions,
concentrate at the true value of the parameter. If the region where the posterior
concentrates is small enough then the prior will typically look ßat there and so,
using Theorem 2, the γ-hdp regions and γ-relative surprise regions will be very
similar. Notice, however, that this is not independent of the parameterization.
In other words in some parameterizations the regions may be very similar but in
other parameterizations, with the same data, the regions will be quite different.
A simple example illustrates this.

Example 2. Bernoulli
Suppose we have a sample of n from a Bernoulli(θ) with θ ∼ Uniform(0, 1) .

Then it is easy to see that the LRSE and the posterior mode (the estimates
obtained via relative surprise and hpd respectively) are both equal to x/n where
x equals the number of 1�s in the sample. Now consider the reparameterization
ψ = θp where p ≤ 1. The LRSE of ψ is (x/n)p while the posterior mode of ψ is
((x+ 1− p) / (n+ 1− p))p . When n is large enough then indeed the estimates
of ψ will be similar, but how large n has to be to achieve a difference in the
estimates of a given size, depends on p (and x). A comparison of the estimates
when x = 0 is particularly informative in this regard. For example, when
n = 5, x = 0, p = .1 then the LRSE is 0 and the posterior mode estimate of ψ is
.828 and when n = 100 the posterior mode is .624!

The departure between relative surprise inferences and hpd inferences can
be much more radical as documented in Evans (1997). For example, suppose
we observe x = (x1, . . . , xn) where xi ∼ N(θi, 1), with x1, . . . , xn statistically
independent and θ1, . . . , θn having independentN(0, σ

2
0) prior distributions with

σ20 large and known. Suppose further that our interest is in estimating τ
2 =Pn

i=1 θ
2
i . In this example the LRSE and the posterior mode differ substantially

with the LRSE exhibiting much better repeated sampling behavior. This, and
other examples, are more thoroughly discussed in Evans (1997).

3 Computations

Implementing relative surprise inferences requires that we be able to evaluate
both πΥ(τ) and πΥ(τ |x0) at many values of τ to obtain πΥ(· |x0)/πΥ (·) .When
we do not have closed-form expressions for these functions we must use numerical
techniques.
We note that this problem become more difficult as the dimension of τ

rises unless the problem is such that closed-form expressions can be obtained.
Fortunately, however, the parameter of interest τ is typically 1-dimensional.
Accordingly, we develop a computational approach suitable for such problems.
While we require τ to be 1-dimensional, no restriction is placed on the dimen-

sionality of the full parameter θ. The only requirement is that we have sampling
algorithms for both the prior and posterior distributions of θ so that we have
the almost sure convergence of relative frequencies for intervals for τ . Obviously
this will hold, via the strong law of large numbers, whenever we have algorithms
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for generating i.i.d. samples from these distributions. More generally we can
use MCMC algorithms and use the associated ergodic theorems to justify our
results.
Given that inferences for τ are invariant under smooth reparameterization,

we will assume in this section that we have transformed so that τ ∈ [0, 1] . Our
computational methods can then be developed for this case and relative surprise
inferences for the original parameter of interest obtained by applying the inverse
of the transformation. Note that this is a distinct computational advantage for
relative surprise over hpd inferences. For the computations for hpd inferences
must be carried out in the original parameterization and it is much more difficult
to deal with unbounded T .
We denote the prior distribution function of τ by FΥ and the posterior

distribution function by FΥ(· |x0). We use a sampling algorithm to generate a
sample (exact or approximate) τ1, . . . , τN1

from the prior distribution of τ and

construct the estimate �FΥ (τ) = N
−1
1

PN1

i=1 I(−∞,τ ] (τ i) . Similarly, we generate
a sample (exact or approximate) τ∗1, . . . , τ

∗
N2
from the posterior distribution of

τ and construct the estimate �FΥ (τ |x0) = N
−1
2

PN2

i=1 I(−∞,τ ] (τ
∗
i ) .

Now choose a grid of values 0 = �τ1 < · · · < �τN3 = 1. Then, when FΥ (�τ i+1)−
FΥ (�τ i) > 0, we have that,

�FΥ (�τ i+1 |x0)− �FΥ (�τ i |x0)
�FΥ (�τ i+1)− �FΥ (�τ i)

→
FΥ (�τ i+1 |x0)− FΥ (�τ i |x0)

FΥ (�τ i+1)− FΥ (�τ i)
(7)

almost surely as N1, N2 →∞. Now put

R (τ0) =

½
�τ j+1 :

FΥ (�τj+1 |x0)− FΥ (�τ j |x0)

FΥ (�τ j+1)− FΥ (�τ j)
>
FΥ (�τ i+1 |x0)− FΥ (�τ i |x0)

FΥ (�τ i+1)− FΥ (�τ i)

¾
where i = i(N3) is such that τ0 ∈ (�τ i, �τ i+1] . We have the following result.

Theorem 7. Suppose that πΥ(τ0 |x0)/πΥ(τ0) is a continuity point of the
posterior distribution of πΥ(τ |x0)/πΥ(τ) and every open interval about
πΥ(τ0 |x0)/πΥ(τ0) has positive posterior probability. If the grids 0 = �τ1 < · · · <
�τN3 = 1 are chosen so that sup {�τ i+1 − �τ i : i = 1, . . . , N3}→ 0 asN3 →∞, thenX

�τj+1∈R(τ0)

(FΥ (�τj+1 |x0)− FΥ (�τ j |x0)) (8)

converges to (3) as N3 →∞.
Proof : See the Appendix.

Theorem 7 and (7) suggest that we approximate (3) byX
�τj+1∈ �R(τ0)

³
�FΥ (�τj+1 |x0)− �FΥ (�τ j |x0)

´
(9)

where

�R (τ0) =

 �τj+1 :
�FΥ(�τj+1 |x0)− �FΥ(�τj |x0)

�FΥ(�τj+1)− �FΥ(�τj)
>

�FΥ(�τi+1 |x0)− �FΥ(�τi |x0)
�FΥ(�τ i+1)− �FΥ(�τi)

 .
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We have the following result.

Theorem 8. Suppose that B > 0 is given. Then, under the hypotheses of
Theorem 7, there exist N1, N2, and N3 so that, for all larger values of these
quantities, (9) differs from (8) by at most B almost surely.
Proof : See the Appendix.

Therefore, to approximate the ORS we choose the grid of points �τ1 < · · · <
�τN3 , generate the samples from the prior and posterior, and Þnally compute
(9). We can use the values ( �FΥ (�τ i+1 |x0)− �FΥ (�τ i |x0))/( �FΥ (�τ i+1)− �FΥ (�τ i))
to compute the value �τ = �τ i+1 that maximizes this ratio, as an approximation
to the LRSE. Once we have obtained the approximate value of the ORS at
each value �τ i+1 we can use this to calculate an approximate γ-relative surprise
interval as in (4).

4 Examples

Many examples of relative surprise inferences in contexts where we have expres-
sions for the prior and posterior densities can be found in Evans (1997). We now
consider several examples where we need the computational approach discussed
in Section 3.

Example 3. Stress-strength reliability
This example is concerned with making inferences about the probability τ =

P (Y2 > Y1), where Y1 and Y2 are independent random variables. Here the Y �s
are measurements of a variable that measures the strength of a system and the
different Y �s correspond to different conditions under which this measurement is
taken. The parameter τ is called the stress-strength reliability as it corresponds
to the probability that the system has greater strength under condition 2 than
under condition 1. Inferences for τ are discussed in Birnbaum (1956), Simonoff,
Hochberg and Reiser (1986), Guttman, Johnson, Bhattacharayya and Reiser
(1988), Reiser and Guttman (1989), and Guttman and Papandonatos (1997).
In Guttman and Papandonatos (1997) it was assumed that the statisti-

cian has available the independent observations y1 ∼ Nn1
¡
X1β1, σ

2
1In1×n1

¢
and y2 ∼ Nn2

¡
X2β2, σ

2
2In2×n2

¢
, where X1 ∈ Rn1×p1 ,X2 ∈ Rn2×p2 are both

of full rank, and Jeffreys prior was placed on the parameters β1 ∈ R
p1 , β2 ∈

Rp2 , σ21 > 0, σ22 > 0. The posterior distribution of τ was approximated when
Y1 ∼ N(vt1β1, σ

2
1) and Y2 ∼ N(vt2β2, σ

2
2) are future observations at poten-

tially new values of the covariates. We assume this structure here so θ =¡
β1, β2, σ

2
1, σ

2
2

¢
.

We note that it is not at all clear what Jeffreys prior on θ implies about the
prior distribution of τ . This is because Jeffreys prior is improper, and as such, a
marginal prior for τ does not exist, at least as a probability distribution. Also,
as noted in Section 1 we need to have a proper prior in order to implement
relative surprise inferences although we can still derive limiting relative surprise
inferences as a sequence of proper priors converges to an improper prior.
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For illustration purposes we assume the following conjugate prior structure

β1 |β2, σ
2
1, σ

2
2 ∼ Np1(β10, σ

2
1Λ1), β2 |σ

2
1, σ

2
2 ∼ Np2(β20, σ

2
2Λ2),

σ−21 |σ22 ∼ Gamma(α1, η1), σ−22 ∼ Gamma(α2, η2), (12)

where β10 ∈ R
p1 , β20 ∈ R

p2 , Λ1 ∈ Rp1×p1 ,Λ2 ∈ Rp2×p2 , α1 > 0, η1 > 0, α2 > 0,
η2 > 0 are Þxed hyperparameters and the Gamma(α, η) density is given by
η−αΓ−1 (α)xα−1 exp (−x/η) for x > 0.
For the marginal prior distribution of τ we note that τ = Pθ (Y2 − Y1 > 0)

and, writing Yi = v
t
iβi + zi with zi ∼ N(0, σ

2
i ), we have that Y2 − Y1 =

(vt2β2 − v
t
1β1) + (z2 − z1) ∼ N(v

t
2β2 − v

t
1β1, σ

2
1 + σ

2
2). Therefore we can write

τ = Pθ (Y2 − Y1 > 0) = Φ (δ) . (13)

where δ = (vt2β2 − v
t
1β1) /

¡
σ21 + σ

2
2

¢1/2
. The prior distribution of τ is then

obtained from (13) using (12). For relative surprise inferences we need to obtain
the prior density of τ and this would appear to be a non-trivial computation
as the prior distribution of δ is non-standard. It is easily shown, however, that
δ |σ21, σ

2
2 ∼ N(µδ

¡
σ21, σ

2
2

¢
, σ2δ

¡
σ21, σ

2
2

¢
) where

µδ
¡
σ21, σ

2
2

¢
=
vt2β20 − v

t
1β10p

σ21 + σ
2
2

, σ2δ
¡
σ21, σ

2
2

¢
=
σ21v

t
1Λ1v1 + σ

2
2v
t
2Λ2v2

σ21 + σ
2
2

and this helps to simplify the simulation.
The posterior distribution of θ is like (12) but with different choices of the

parameters. We have provided this in the Appendix. Again the posterior distri-
bution of δ is nonstandard and this prevents the computation of the posterior
density of τ in a simple closed form.
We note that in this problem there is some structure that allows us to im-

prove on the computational approach discussed in Section 3. Notice that if¡
σ211, σ

2
21

¢
, . . . ,

¡
σ21N1

, σ22N1

¢
is a sample from the prior distribution Π, then

ÿFΥN1 (τ0) =
PN1

i=1Π
¡
τ ≤ τ0 |σ21i, σ

2
2i

¢
=
PN1

i=1Π
¡
δ ≤ Φ−1 (τ0) |σ21i, σ

2
2i

¢
=PN1

i=1Φ((Φ
−1 (τ0) − µδ

¡
σ21i, σ

2
2i

¢
)/σδ

¡
σ21i, σ

2
2i

¢
) → FΥ (τ0) almost surely as

N1 → ∞. Accordingly we can substitute ÿFΥN1 (τ0) for
�FΥ (�τj) and a similar

result holds for the posterior distribution function. It is easy to see that The-
orems 7 and 8 also apply to this approximation. We refer to this hereafter as
the Rao-Blackwellized approach.
We now implement our approach using simulated data with p1 = p2 = 2,

β11 = 1, β12 = 0, σ1 = 1, β21 = 2, β22 = 1, σ2 = 1,

and X1 = X2 ∈ R20×2 with the Þrst column entries all equal to 1 and second
column equal to (1, 2, . . . , 20) . We generated n1 = 20 values z11, . . . , z1n1 from
the N(0, 1) distribution, putting y1i = 1 + z1i and generated n2 = 20 values
z21, . . . , z2n2 from the N(0, 1) distribution, putting y2i = 2 + i + z2i. Then we

11



let vt1 = v
t
2 = (1, 1) so that the exact value is τ = Φ((3 − 1)/

√
2) = Φ

¡√
2
¢
=

0.921348. We selected a diffuse prior given by

β110 = β120 = 0, Λ1 = diag (2, 2) , β210 = β220 = 0, Λ2 = diag (2, 2) ,

α1 = 2, η1 = 1, α22 = 2, η2 = 1.

In Figure 1 the solid line is the exact value of πΥ(· |x0)/λ (·) . Based on
N1 = N2 = 5 × 103 (taking 34 seconds of computing time on a Sun work-
station) the Rao-Blackwellized estimate is also plotted on this graph and, to
the accuracy of the plotting, coincides with the exact value. The direct algo-
rithm with N1 = N2 = 10

5 (taking 10 seconds of computing time), and where
we have smoothed the prior and posterior cdf estimates by averaging a point
with 2 points on both sides, is plotted in the dashed curve and we see that
this also provides a reasonable approximation. With the same smoothing and
N1 = N2 = 5 × 105 (taking 3 minutes of computing time), this estimate be-
comes somewhat smoother but we see, in any case, that the methods of Section
3 provide acceptable approximations.

tau
1.00.80.60.40.20.0

6

5

4

3

2

1

0

Figure 1: Plot of ratio of posterior to prior densities in Example 3 where the solid line

denotes the exact ratio and the Rao-Blackwell estimate, and the dashed line denotes

the brute force estimate based on N1 = N2 = 10
5.

For this data, the LRSE of τ is given by 0.861 and the .95-relative surprise
interval for τ is given by (0.598, 0.972) . This compares with a posterior mode
of 0.897 and a .95-HPD interval of (0.625, 0.984) .We note that these inferences
are very similar and both intervals contain the true value. The HPD interval is
always shortest but Corollary 4 tells us that the relative surprise interval is the
smallest with respect to the prior and is also invariant.
The following data was analyzed in Guttman and Papandonatos (1997) and

gives the results of measuring shear strength of spot welds for two different
gauges of steel.

y1 350 380 385 450 465 185 535 555 590 605
x1 380 155 160 165 175 165 195 185 195 210
y2 680 800 780 885 875 1025 1100 1030 1175 1300
x2 190 200 209 215 215 215 230 250 265 250

The normal simple linear regression model is used for both Y1 and Y2, i.e.
p1 = p2 = 2, measuring the shear strength of the two types of steel respectively,

12



and where X1,X2 are the same predictor, namely, weld diameter. Suppose now
we want to compute τ when X1 = X2 = 200. For the prior we put

β110 = β120 = 0, Λ1 = diag (2, 2) , β210 = β220 = 0, Λ2 = diag (2, 2) ,

α1 = 10−1, η1 = 10
−1, α2 = 10

−1, η2 = 10
−1.

In Figure 2 we have plotted the prior and posterior densities for τ . We note
the concentration of this prior about 0 and 1 and the high concentration of
the posterior near 1. This prior is not only dependent on the choice of prior
for the basic parameters, but also is dependent on the value of the predictors
X1 = X2 = 200. For this prior the LRSE is 0.994 and the .95-relative surprise
interval is (0.936, 1.000) while the posterior mode is 0.999 and the .95-HPD
interval is (0.946, 1.000) .

tau
1.000.750.500.250.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

1.000.750.500.250.00

100

80

60

40

20

0

prior posterior

Figure 2: Plot of prior and posterior distribution of τ in Example 2.

The more diffuse we made the prior on the full parameter the more the
marginal prior on τ concentrated about 0 and 1. Actually a fairly wide class
of priors on τ is available based on how we choose the hyperparameters. For
example, it is easy to see that the choices

β110 = β120 = 0, Λ1 = diag
¡
2.5× 10−5, 2.5× 10−5

¢
,

β210 = β220 = 0, Λ2 = diag
¡
2.5× 10−5, 2.5× 10−5

¢
,

α1 = 1, η1 = 10
−4, α2 = 1, η2 = 10

−4,

produce a uniform prior distribution for τ , for which the hpd and relative sur-
prise inferences are identical. For this choice the LRSE is 0.935 and the .95-
relative surprise interval is (0.779, 0.989). The point estimates are close to what
the previous prior gave but we note the much wider intervals. We are not ad-
vocating necessarily the uniform prior for τ . Our point here is simply that we
should look at the implications of any prior assignment for the full parameter on
the parameter of interest. We note that this necessitates using proper priors or,
when improper priors are to be used, considering a sequence of proper prior dis-
tributions that converge to the improper prior. Ultimately the correct method
for the selection of prior distributions is through elicitation and this has nothing
to do with the methods used to make inferences about model components. For
further discussion on this point see O�Hagan (2005).

13



In the following example we do not have exact algorithms for generating
from the prior and posterior but must use MCMC methods. See, for example,
Evans and Swartz (2000) for a discussion of these algorithms. The point of this
example is to show that success in implementing the computational methods of
Section 3 is largely dependent on good sampling algorithms for the full model
parameter and, when this is the case, the dimensionality of the problem is not
an issue.

Example 4. Variance components
In Gelfand, Hills, Racine-Poon and Smith (1990) a variance component

model was considered of the form Yij = θi + eij where i = 1, . . . , I and
j = 1, . . . , J. The sampling distribution is given by eij |σ2e ∼ N(0, σ2e) inde-
pendent of θi |µ, σ2θ ∼ N(µ,σ

2
θ). The prior structure is given by µ ∼ N(µ0, σ

2
0),

σ−2θ ∼ Gamma(a1, b1), σ−2e ∼ Gamma(a2, b2) where µ, σ2θ and σ
2
e are mutually

independent. Suppose our interest is in making inference about the intraclass
correlation coefficient given by τ = σ2θ/

¡
σ2θ + σ

2
e

¢
.

In this situation it is simple to simulate directly from the prior distribution
of τ by generating σ2θ and σ

2
e. The posterior distribution, however, requires that

we integrate over (θ1, . . . , θI) , µ, σ2θ and σ
2
e, which has dimension I +3, and we

cannot generate sample directly from the posterior. Gelfand, Hills, Racine-Poon
and Smith (1990)record the full conditional distributions of these parameters,
and so we can implement a Gibbs sampler for this problem.
To assess the viability of the method recorded in Section 3 we generated data

yij with I = 30, J = 5 with µ = 0, σ2θ = 2 and σ
2
e = 1 so the true value of the

parameter of interest is τ = 2/3. For the prior we used the values similar to those
used in Gelfand et. al. (1990), namely, µ0 = 0, σ20 = 1012, a1 = 0.5, b1 = 1.0,
and a2 = 0.1, b2 = 0.1. Then, setting N1 = N2 = 2 × 104 and N3 = 5 × 102

(taking 40 seconds of computing time) and smoothing the prior and posterior
density estimates, we obtained the plot of πΥ(· |x0)/πΥ(· ) as in Figure 3. The
graph obtained when N1 = N2 = 2 × 105 is almost coincident with although
somewhat smoother.

tau
1.00.80.60.40.20.0

20

15

10

5

0

Figure 3: Plot of ratio of posterior to prior densities in Example 4.

The LRSE of τ is given by 0.706 while the posterior mode is given by 0.708. A
.95-relative surprise interval for τ is given by (.558, .813) while a .95-hpd interval
is given by (.567, .822) so the inferences are very similar and both intervals
contain the true value.
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5 Conclusions

We have shown that relative surprise inferences arise as optimal inferences when
the optimality criterion is the minimization of the prior content of a credible
region. They are particular examples of hpd-like inferences that arise when we
determine credible regions by the minimization of some measure of size of the
region. In many ways, the prior is the most natural measure to use for this.
In particular, this choice leads to inferences that are invariant over all possible
smooth reparameterizations and this is an important property for inferences
to possess. Relative surprise inferences are also strongly related to likelihood
inferences and to the use of Bayes factors. Relative surprise inferences can be
seen to be based on how the data changes beliefs from a priori to a posteriori
and this emphasis on the data seems very natural in many applications. Further
implementing relative surprise inferences has some computational advantages as
we are completely free to choose the parameterization and this is not the case for
hpd inferences. This enables us to transform so that the parameter of interest
ranges over a compact interval in this situation we get the convergence results
provided by Theorems 7 and 8.
We feel that one should choose inferences based on a principle or axiom.

Choosing inferences on an ad hoc or arbitrary basis doesn�t seem satisfactory,
as we need a consistent scientiÞc rationale for the selections made to provide
support that they are sensible. The relative surprise principle is just one pos-
sibility and, as with any axiom we cannot ultimately claim that it is the way
to do this. We do feel, however, that the properties relative surprise inferences
possess, and their relationship with likelihood inferences, provide strong support
for their use in Bayesian inference problems.
Another aspect of this paper has been the computations necessary to imple-

ment relative surprise inferences. This requires the calculation of both the prior
and posterior densities of the parameter of interest. The computational strate-
gies developed here have been shown to be feasible in several problems where
the parameter of interest is 1-dimensional and we do not have closed form ex-
pressions for the marginal prior and posterior density. The dimensionality of
the model does not affect the feasibility of our approach provided we have good
sampling algorithms (exact or approximate) for the prior and posterior.
While many parameters of interest are 1-dimensional, e.g., probabilities of

subsets of the sample space, this is certainly not always the case. The obvious
analog of the methods described here will work generally for fairly low dimen-
sional quantities of interest, but clearly other methods will have to be developed
when these are high-dimensional. Happily this seems like a fairly rare occur-
rence. We also note that the algorithms we have developed can be used in
problems where the integrated likelihood for a parameter of interest needs to be
calculated without using the associated relative surprise inferences.
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6 Appendix

Proof of Lemma 1
Let G denote the posterior cdf of πΥ(· |x0)/λ(·). Then τ0 ∈ Bγ(x0) if and

only if G (πΥ(τ0 |x0)/λ(τ0)) ≥ 1−γ which holds if and only if πΥ(τ0 |x0)/λ(τ0)
≥ G−1 (1− γ) = inf {r : 1− γ ≤ G(r)} soΠΥ (Bγ(x0) |x0) = 1−G(G−1 (1− γ))
+
¡
G(G−1 (1− γ))−G(G−1 (1− γ)− 0)

¢
≥ γ. Note we now have the simpler

deÞnition Bγ(x0) = {τ : πΥ(τ |x0)/λ(τ) ≥ cγ} where cγ = G−1 (1− γ) .

Proof of Theorem 2
The proof of this result is very similar to the proof of the fundamental

lemma of hypothesis testing as in Lehmann (1986). Let C ⊂ T be such that
ΠΥ (C |x0) ≥ ΠΥ (Bγ(x0) |x0) . Put T0 =

©
τ : IBγ(x0) (τ)− IC (τ) = 0

ª
, T1 =©

τ : IBγ(x0) (τ)− IC (τ) < 0
ª
, T2 =

©
τ : IBγ(x0) (τ)− IC (τ) > 0

ª
and note that

{T0,T1,T2} is a partition of T . We have that

T1 =
©
τ : IBγ(x0) (τ)− IC (τ) < 0, πΥ(τ |x0)/λ(τ) ≤ cγ

ª
because πΥ(τ |x0)/λ(τ) > cγ implies IBγ(x0) (τ) = 1, which implies IBγ(x0) (τ)−
IC (τ) = 1− IC (τ) ≥ 0 a contradiction to the deÞnition of T1. Also

T2 =
©
τ : IBγ(x0) (τ)− IC (τ) > 0, πΥ(τ |x0)/λ(τ) ≥ cγ

ª
because πΥ(τ |x0)/λ(τ) < cγ implies IBγ(x0) (τ) = 0, which implies IBγ(x0) (τ)−
IC (τ) = −IC (τ) ≤ 0.
We have that,

Λ (Bγ(x0))− Λ (C) =

Z ¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ)

=

Z
T1

¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ) +

Z
T2

¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ) .

Now note that Λ (dτ) = λ (τ) υT (dτ) , ΠΥ(dτ |x0) = πΥ(τ |x0)υT (dτ) and
because IBγ(x0) (τ)− IC (τ) < 0 and πΥ(τ |x0)/λ(τ) ≤ cγ when τ ∈ T1 thenZ

T1

¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ) ≤ c−1γ

Z
T1

¡
IBγ(x0) (τ)− IC (τ)

¢
ΠΥ(dτ |x0)

= c−1γ EΠ(· | x0)
¡
IT1
¡
IBγ(x0) − IC

¢¢
.

Similarly, because IBγ(x0) (τ)−IC (τ) > 0 and πΥ(τ |x0)/λ(τ) ≥ cγ when τ ∈ T2,
we have thatZ

T2

¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ) ≤ c−1γ

Z
T2

¡
IBγ(x0) (τ)− IC (τ)

¢
ΠΥ(dτ |x0)

= c−1γ EΠ(· | x0)
¡
IT2
¡
IBγ(x0) − IC

¢¢
.

Therefore we have that Λ (Bγ(x0)) − Λ (C) =
R ¡
IBγ(x0) (τ)− IC (τ)

¢
Λ (dτ)

≤ c−1γ EΠ(· |x0)
¡¡
IBγ(x0) − IC

¢¢
= c−1γ (Π (Bγ(x0) |x0)−Π (C |x0)) ≤ 0 be-

cause we have assumed that Π (C |x0) ≥ Π (Bγ(x0) |x0) . We conclude that
Λ (Bγ(x0)) ≤ Λ (C) .
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Proof of Theorem 7
Let F = FΥ, G = FΥ (· |x0), deÞne the random variable X = X(τ) =

πΥ(τ |x0)/πΥ(τ) and, for the grid 0 = �τ1 < · · · < �τN3
= 1, deÞne the random

variable XN3
= XN3

(τ) = (G (�τ j+1)−G (�τ j)) / (F (�τ j+1)− F (�τj)) whenever
τ ∈ (�τ j , �τj+1]. Note that XN3 is not deÞned when F (�τ j+1) = F (�τ j) but we can
ignore this because this implies G (�τ j+1) = G (�τ j) (the posterior is absolutely
continuous with respect to the prior) and a similar comment applies to the
deÞnition of X when πΥ(τ) = 0.
Now suppose that we choose the grids so that sup {�τ j+1 − �τ j : j = 1, . . . , N3}

→ 0 as N3 →∞ . Then we have that XN3 → X as N3 →∞ almost surely with
respect to the posterior Π (· |x0) . This implies that XN3

converges in distribu-
tion to X as N3 →∞.
If i = i(N3) is such that τ0 ∈ (�τ i, �τ i+1] , then,as N3 →∞,

νN3 =
G (�τ i+1)−G (�τ i)

F (�τ i+1)− F (�τ i)
→
πΥ(τ0 |x0)

πΥ(τ0)
= ν0.

Therefore, if η > 0, then νN3
∈ (ν0 − η, ν0 + η) for all N3 large enough and

|Π (XN3 ≤ νN3 |x0)−Π (X ≤ ν0 |x0)| ≤ max

½¯̄̄̄
Π (XN3 ≤ ν0 ± η |x0)−

Π (X ≤ ν0 |x0)

¯̄̄̄¾
.

We can choose η so that ν − η and ν + η are continuity points for the distri-
bution of X and so the right-hand side of the above inequality converges to
max {|Π (X ≤ ν0 ± η |x0)−Π (X ≤ ν0 |x0)|} . Since ν0 is a continuity point of
the distribution of X, this can be made as small as we like by an appropriate
choice of η and so lim supN3→∞ |Π (XN3 ≤ νN3 |x0)−Π (X ≤ ν0 |x0)| can be
made as small as we like. This completes the proof.

Proof of Theorem 8
We use some of the notation and results from the proof of Theorem 7 and

in addition let �F = �FΥ, �G = �FΥ (· |x0). Since ν0 is a continuity point for the
distribution of X we can choose η > 0 so that ν0 − δ and ν0 + δ are con-
tinuity points for X and Π (X ∈ (ν0 − η, ν0 + η] |x0) = Π (X ≤ ν0 + η |x0) −
Π (X ≤ ν0 − η |x0) is smaller than B/4. Since νN3 → ν0 we have that νN3 ∈
(ν0−η, ν0+η] for all N3 large enough. Then, because XN3

converges in distribu-
tion toX, we have that Π (XN3

∈ (ν0 − δ, ν0 + δ] |x0) = Π (XN3
≤ ν0 + η |x0)−

Π (XN3 ≤ ν0 − η |x0) < B/2 for all N3 large enough. Putting

S (τ0) =

½
�τ j+1 :

G (�τ j+1)−G (�τ j)

F (�τ j+1)− F (�τ j)
= νN3

¾
,

then we have that
P

�τj+1∈S(τ0)
(G (�τ j+1)−G (�τ j)) = Π (XN3 = νN3 |x0) ≤

Π (XN3 ∈ (ν0 − δ, ν0 + δ] |x0) < B/2 for all N3 large enough.
If �τ j+1 ∈ R (τ0), then

G (�τj+1)−G (�τ j)

F (�τj+1)− F (�τ j)
>
G (�τ i+1)−G (�τ i)

F (�τ i+1)− F (�τ i)
.
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Therefore, since

�G (�τ j+1)− �G (�τ j)

�F (�τ j+1)− �F (�τ j)
→
G (�τj+1)−G (�τj)

F (�τj+1)− F (�τ j)

almost surely as N1, N2 → ∞, we have that �τj+1 ∈ �R (τ0) for all N1, N2 large
enough. Similarly, if �τ j+1 is such that

G (�τ j+1)−G (�τ j)

F (�τ j+1)− F (�τj)
<
G (�τ i+1)−G (�τ i)

F (�τ i+1)− F (�τ i)

then �τ j+1 /∈ �R (τ0) for all N1, N2 large enough. Then, because there are only
Þnitely many values �τ j+1, for all N1,N2 large enough,X

�τj+1∈ �R(τ0)

( �G (�τj+1)− �G (�τj)) =
X

�τj+1∈R(τ0)

( �G (�τ j+1)− �G (�τ j)) +

X
�τj+1∈ �R(τ0)∩S(τ0)

( �G (�τ j+1)− �G (�τ j)).

Since there are only Þnitely many terms in these sums we have thatX
�τj+1∈R(τ0)

( �G (�τ j+1)− �G (�τ j))→
X

�τj+1∈R(τ0)

(G (�τ j+1)−G (�τ j))

and X
�τj+1∈ �R(τ0)∩S(τ0)

( �G (�τj+1)− �G (�τj)) ≤
X

�τj+1∈S(τ0)

( �G (�τ j+1)− �G (�τ j))

→
X

�τj+1∈S(τ0)

(G (�τ j+1)−G (�τj))

almost surely as N1, N2 → ∞. Then for all N1, N2 large enough we have that
(9) is within B/4 of (8) and

P
�τj+1∈S(τ0)

( �G (�τ j+1) − �G (�τj)) is within B/4 ofP
�τj+1∈S(τ0)

(G (�τj+1)−G (�τj)). This completes the proof.

Posterior Distribution in Example 3
Some straightforward calculation gives the posterior distribution of θ as

β1 |β2, σ
2
1, σ

2
2, y1, y2 ∼ Np1(β10 (y1, y2) , σ

2
1

¡
Xt
1X1 + Λ

−1
1

¢−1
),

β2 |σ
2
1, σ

2
2, y1, y2 ∼ Np2(β20 (y1, y2) , σ

2
2

¡
Xt
2X2 + Λ

−1
2

¢−1
),

σ−21 |σ22, y1, y2 ∼ Gamma

µ
n1 + p1
2

+ α1, η1 (y1, y2)

¶
,

σ−22 | y1, y2 ∼ Gamma

µ
n2 + p2
2

+ α2, η2 (y1, y2)

¶
,
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where

β10 (y1, y2) =
¡
Xt
1X1 + Λ

−1
1

¢−1 ¡
Xt
1y1 + Λ

−1
1 β10

¢
,

β20 (y1, y2) =
¡
Xt
2X2 + Λ

−1
2

¢−1 ¡
Xt
2y2 + Λ

−1
2 β20

¢
η1 (y1, y2) =

 1

η1
+
1

2

 yt1y1 + β
t
10Λ

−1
1 β10−¡

Xt
1y1 + Λ

−1
1 β10

¢t ¡
Xt
1X1 + Λ

−1
1

¢−1¡
Xt
1y1 + Λ

−1
1 β10

¢
−1

η2 (y1, y2) =

 1

η2
+
1

2

 yt2y2 + β
t
20Λ

−1
2 β20−¡

Xt
2y2 + Λ

−1
2 β20

¢t ¡
Xt
2X2 + Λ

−1
2

¢−1¡
Xt
1y1 + Λ

−1
1 β10

¢
−1

.

Further, δ |σ21, σ
2
2, y1, y2 ∼ N

¡
µδ (σ1, σ2, y1, y2) , σ

2
δ (σ1, σ2, y1, y2)

¢
where

µδ
¡
σ21, σ

2
2, y1, y2

¢
=

vt2β20 (y1, y2)− v
t
1β10 (y1, y2)p

σ21 + σ
2
2

σ2δ
¡
σ21, σ

2
2, y1, y2

¢
=

σ21v
t
1

¡
Xt
1X1 + Λ

−1
1

¢−1
v1 + σ

2
2v
t
2

¡
Xt
2X2 + Λ

−1
2

¢−1
v2

σ21 + σ
2
2

.
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