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Abstract: P -values have been the focus of considerable criticism based on various
considerations. Still the P -value represents one of the most commonly used
statistical tools. When we are assessing the suitability of a single hypothesized
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for model checking and checking for prior-data conflict.
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1 Introduction

The use of P -values is common in statistical practice. Despite this it is rea-
sonable to say that the logical foundations for the P -value are somewhat weak.
This has lead to a variety of criticisms of P -values and even to doubts as to their
correctness. The purpose of this paper is to examine the foundations of the P -
value concept and attempt to provide a version of the P -value that addresses
at least some of the issues raised concerning their validity.

The following situation arises in many statistical contexts and could be con-
sidered almost the archetypal statistical problem. Suppose we observe a value
x0 ∈ X and this value was presumed to have been generated via a prescribed
probability measure P on X . The question of interest is then: given the evidence
presented by x0, is P a reasonable choice? In certain situations we could answer
this with a categorical no, e.g., suppose that P concentrates on C and x0 /∈ C.
While this can arise, it is typical in applications that x0 is a possible value from
P but, if x0 is in a region where P assigns relatively little probability, then we
feel we have evidence against P. Note that x0 not occurring in such a region is
not evidence in favor of P, as there are many probability distributions with this
property and we are not selecting among them. In general, we are only looking
here for evidence that suggests that a specific P is inappropriate.
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As an example of this, consider model checking where P corresponds to the
conditional distribution of the data given a minimal sufficient statistic, or where
P corresponds to the distribution of an ancillary statistic. Then evidence against
P is evidence against assumptions we have made as part of a statistical analysis.
Model checking is an important and necessary part of statistical analyses. In
Bayesian analyses P could correspond to the prior predictive distribution of a
minimal sufficient statistic given an ancillary and, as discussed in Evans and
Moshonov (2006, 2007), we want to assess whether or not the observed value of
the minimal sufficient statistic is a reasonable value from this distribution. This
is a check as to whether or not the prior is in conflict with the data.

In general then, we are looking for a measure of how surprising the observed
value x0 is as a possible value from P. A common approach to this is to say that
we need to prescribe a real-valued discrepancy statistic T : X → R1, so that in
some sense T (x) measures how divergent the value x is, and then compute the
P -value

P (T (x) ≥ T (x0)). (1)

If this P -value is small, then we interpret this as evidence that x0 is a surprising
value and so we have evidence against P. In general, no guidance is provided
as to how the statistic T is to be chosen with respect to P. Further, it can be
noted that some restrictions on T are necessary if (1) is to have an appropriate
interpretation. In particular, the right tail of the distribution of T should be
the only region that has relatively low probability. Otherwise, we could have
an extreme value of T (x0) in the left tail, or a value that occurs near a shallow
anti-mode, that lead to a reasonable value of (1) and yet T (x0) could still be
considered as surprising and so evidence against P.

As an example of this consider the situation where #(X ) = k < ∞, x0

corresponds to a sample of n and we use the Chi-squared statistic T as the
discrepancy statistic. Then, for n large, (1) corresponds to the right-tail of a
Chi-squared(k − 1) distribution. If k is also large, however, a value of T in the
left-tail does not provide evidence against P via (1), even though we know that
it is very unlikely for P to have produced such a value. We will see in Example
1, however, that this apparent ambiguity can be explained when we are more
careful about defining P -values.

The choice of the discrepancy statistic T also poses some problems. It seems
clear that the choice of such a statistic should be made prior to seeing the data.
Further, if we think of choosing T to check for some particular discrepancy, then
there seems to be no reason why we should be restricted to a specific choice
but may well have T = (T1, . . . , Tm)′ where the Ti are different discrepancy
statistics. Clearly, it is more appropriate then to compare T (x0) to PT rather
than compute (1) for each Ti, i.e., the dependencies among the Ti should be
taken into account when making the assessment, as T (x0) may be a surprising
value even when each Ti(x0) isn’t. We note, however, that (1) does not tell us
how to proceed when we have multiple discrepancy statistics.

We will subsequently argue that there are contexts where we do not want the
statistician to be free to choose the discrepancy measures and their associated
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P -values, but want them to be determined by the model. This arises in checking
for prior-data conflict and we will discuss this issue in section 5. In section 2
we discuss a particular context where the computation of an appropriate P -
value seems uncontroversial. We argue that this is the basis for the general
development of P -values for the problems considered in this paper. In sections
3 and 4 we develop a general approach for the computation of P -values based
on an observed measured response. The central idea is that volume distortions
must not affect the computation of P -values. We will refer to such a P -value as
a model based P -value. In section 6 we discuss some computational issues.

Many other criticisms of P -values are often cited. In particular, a common
complaint, is that in reality the data is never distributed exactly as P, but P
may be adequate for the application at hand in the sense that it provides a
good approximation. If we observe enough data, however, any reasonable P -
value will detect the discrepancy and lead to evidence against P. Of course, this
cannot be viewed as a criticism of the P -value in question, as it is doing the
right thing. Rather it suggests that in such problems we really do have to say
what size of discrepancies are meaningful and then assess whether or not the
discrepancy detected is to be taken seriously. So the P -value is not the end
of the story in model assessment and cannot cover-up modelling inadequacies,
namely, situations where we really can’t say what discrepancies are meaningful.
We do not view the necessity of taking into account practical significance, as
opposed to statistical significance, as a criticism of the P -value.

In Schervish (1996) the use of certain frequentist P -values was examined as
a measure of support for a hypothesis. The analysis there demonstrated con-
vincingly that there is little logical support for this. As mentioned, we are using
P -values as measures of surprise, not support, and restricting our discussion to
the situation where we have a single P. In Berger and Delampady(1987) and
Berger and Selke(1987) comparisons are made between frequentist P -values and
Bayesian measures of evidence in the context of hypothesis testing, i.e., assess-
ing the evidence in favor of a point null hypothesis H0 = {θ0} ⊂ Θ. Arguments
are presented there in favor of the Bayesian measures. For our discussion here,
however, we are restricting to a single P and agree that we might proceed very
differently in situations where alternatives to P are prescribed, i.e., the com-
putation of the P -values we discuss here may well not be appropriate in such
situations, as we have more information available.

2 Model-based P -values with Discrete P

Suppose that P is discrete with probability function given by p(x) = P ({x}).
Then an obvious model-based P -value for checking whether or not x0 is a sur-
prising value from P is given by

P (p(x) ≤ p(x0)). (2)

We see that (2) is the probability of observing a value whose probability of
occurrence is no greater than the probability of occurrence of the observed x0.
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If (2) is small then it seems clear that x0 is surprising and we have evidence
against P.

Note that the appropriate inequality in (2) is less than or equal to, as we
want no evidence against x0 when P is uniform. Further, we see that (2) handles
values in either tail, values that lie between modes and also multidimensional x.
It seems reasonable to refer to (2) as a pure model-based P -value. Values that
are surprising are identified by the model and not by the statistician’s choices.

We may, however, have a discrepancy statistic T of interest. Then PT is
discrete with probability function pT and the model-based P -value induced by
T is given by

PT (pT (t) ≤ pT (T (x0))). (3)

For example, suppose that C ⊂ X is such that P (C) is very small. Then, with
T = IC , (3) equals P (C) and we have evidence against P when x0 ∈ C.

We see that (2) determines whether or not x0 is a surprising value based
solely on the smallness of its probability of occurrence when compared to the
probabilities of occurrence of other values. If p(x0) is very small compared to
the other possibilities, then (2) seems like an appropriate measure of surprise.
Consider a situation, however, where X has a large finite cardinality k and
p(x0) = (1± ε)/k, p(x) = 1/k∓ ε/k(k− 1) otherwise and ε is very small. In the
first case the P -value is 1−(1+ε)/k and we have no evidence against P, while in
the second case it is (1− ε)/k and we have evidence against P . So even though
the probability distributions are very similar, the P -values are quite different.
This points to the need generally to consider discrepancy statistics as checks on
P rather than relying solely on (2).

We now consider an important example.

Example 1. Multinomial(1, θ1, . . . , θk)
Suppose we observe a sample x10, . . . , xn0 that is supposed to have come

from the Multinomial(1, θ1, . . . , θk) distribution where θ1, . . . , θk are known val-
ues that are all positive. Then, denoting the cell counts by T (x10, . . . , xn0) =
(t10, . . . , tk0), the P -value (2) is given by

PT (θt1
1 · · · θtk

k ≤ θt10
1 · · · θtk0

k ) (4)

where PT is the Multinomial(n, θ1, . . . , θk) distribution. We can write (4) as

PT

(

k
∑

i=1

(ln θi)
√

θi(1− θi)

(

ti − nθi
√

nθi(1− θi)

)

≤ √
n

k
∑

i=1

(ln θi) (ti0/n− θi)

)

.

Putting σ2 =
∑k

i=1(ln θi)
2θi(1− θi)− 2

∑

i<j(θi ln θi)(θj ln θj), then

k
∑

i=1

(ln θi)
√

θi(1− θi)

(

ti − nθi
√

nθi(1− θi)

)

D→ N
(

0, σ2
)

so (4) converges in probability to Φ(
√

n
∑k

i=1(ln θi) (ti0/n− θi) /σ) and the joint
asymptotic normality of the ti0/n implies that (4) is asymptotically uniform,
when the probabilities θ1, . . . , θk are correct.
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Now observe that generally
∑k

i=1(ln θi) (ti0/n− θi)
a.s.→ ∑k

i=1(ln θi) (pi − θi)
for some pi, and so we will find evidence against the probabilities θ1, . . . , θk,
for large enough n, whenever

∑k
i=1(ln θi) (pi − θi) < 0. Note that this holds

whenever the expected value of − ln θi under the true distribution is greater
than the entropy of the assumed distribution. If we take E(− ln θi) as a measure
of diffuseness of a Multinomial(1, p1, . . . , pk) distribution, then this says we will
inevitably find evidence against P whenever the true distribution is more diffuse
but not otherwise. For example, when k = 2 and θ 6= 1/2, this is equivalent to
p ln(θ/(1− θ)) < θ ln(θ/(1− θ)) which occurs when θ > 1/2 and p < θ or when
θ < 1/2 and p > θ. When each θi = 1/k, then we will never find evidence against
the uniform distribution and this makes sense as the uniform distribution is the
most diffuse distribution.

The check based on (4) will only detect certain discrepancies and this is true
of most discrepancy statistics. Of course, we can also consider other discrepancy
statistics and perhaps it is natural to consider T itself. So in this case we need
to evaluate

PT (pn(t) ≤ pn(t0)) (5)

where pn(t) =
(

n
t1...tk

)

θt1
1 · · · θtk

k . In the Appendix we provide a proof of the
following result.

Theorem 1. Suppose that θi 6= 0 for i = 1, . . . , k and we have a sample of n
from a Multinomial(1, p1, . . . , pk) distribution. Then, as n →∞,
(i) when θi = pi for all i,

− ln pn(t)− 1

2

k
∑

i=1

ln θi +
k − 1

2
ln 2πn

P→
k
∑

i=1

(ti − nθi)
2

2nθi

and so has a limiting Chi-squared(k − 1) distribution,
(ii) when θi = pi for all i, the P -value (5) converges in probability to

P
(

X ≥∑k
i=1(ti0 − nθi)

2/nθi

)

where X ∼ Chi-squared(k − 1) ,

(iii) when θi 6= pi for some i, the P -value (5) converges in probability to 0.

We note that (iii) says that the model-based P -value based on T will always de-
tect when the assumed distribution is wrong, provided n is large enough. Also,
we see that the Pearson Chi-squared test statistic arises directly as an approxi-
mation when computing the model-based P -value (5) and this adds support for
the use of this statistic. In the typical development of the Chi-squared test, the
statistic is developed via intuition and then its asymptotic distribution is de-
rived using the delta theorem while, in Pearson (1900), the statistic is developed
from the quadratic form in the exponential of a multivariate normal density ap-
proximating the multinomial distribution. Finally, we see that computing the
right-tail probability for the Chi-squared test is the correct approximation to
(5). So, for large n, if the Chi-squared statistic is small, then (5) is large.
Bayesian uses of the Chi-squared test statistic for model checking are discussed
in Johnson (2004).
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3 Model-based P -values with General P

Additional considerations arise when P is a continuous measure. We restrict
our attention to the absolutely continuous case so that P has density f with
respect to to a support measure µ. The natural analog of (2) is then

P (f(x) ≤ f(x0)) (6)

and this is the probability of observing a value whose density is no greater than
the density of the observed x0.

The P -value (6), however, has a disturbing feature. Suppose we change the
support measure from µ to ν where ν(A) =

∫

A
g(x) µ(dx) for some integrable,

nonnegative g. Then the density of P with respect to ν is f/g and (6) becomes
P (f(x)/g(x) ≤ f(x0)/g(x0)) which will generally be quite different than (6).

Another manifestation of the nonuniqueness of (6) arises when we consider
1-1 transformations of x. Suppose that X is an open subset of Rk, µk is volume
measure, and W : X → X is 1-1 and sufficiently smooth. Then the density of
w = W (x) with respect to µk is given by fW (w) = f(W−1(w))JW

(

W−1(w)
)

where JW (x) is the reciprocal of the Jacobian determinant of W at x. We see
that (6) applied to w becomes

PW (fW (w) ≤ fW (w0)) = P (f(x)JW (x) ≤ f(x0)JW (x0))

where w0 = W (x0) and again this will typically be different than (6) unless JW

is constant, e.g., when X = Rk and W is an affine transformation.
So it is clear that we cannot just write down a density and compute (6)

as a model-based P -value. Still, the fact that we can do this in a satisfactory
way in the discrete case, leads us to believe that there must be an appropriate
resolution of this problem in more general contexts.

In measure-theoretic terms a density f, with respect to a support measure
µ, is seen simply as a device to compute probabilities. In statistical contexts,
however, a density plays a somewhat greater role. For example, if f(x1) > f(x2),
then we want to say that the probability of x1 occurring is greater than the
probability of x2 occurring. For this to hold we can’t allow f to be defined in an
arbitrary fashion. In effect we need to have that P (A)/µ(A) → f(x), as the set
A converges to {x}, as then P (A) ≈ f(x)µ(A) when A is close to {x}. Further,
to compare the probabilities of two points x1 and x2 we need Ai → {xi} with
µk(A1) = µk(A2) and then, for example, we can say that the probability of x1

occurring is greater than the probability of x2 occurring when f(x1) > f(x2).
The mathematics of making this precise is discussed, for example, in Rudin
(1974), under the topic of differentiating one measure with respect to another.
To use this here we suppose that X is an open subset of Rk and P is absolutely
continuous with respect to volume measure µk.

It then seems natural to choose µ = µk as it weights sample points equally
and so f(x) expresses the essence of how the probability measure is behaving
at x. This is analogous to using counting measure as the support measure in
the discrete case as then f(x) has a direct interpretation as the probability of
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x. In fact any measure that weights points equally will be a positive multiple of
volume measure and (6) is invariant under these choices for µ. More generally X
could be a manifold with locally Euclidean structure and with µ being geometric
measure—the analog of volume measure on such a space—see Tjur (1974) for
more details.

Given that we have settled on a specific support measure, the issue is then
how to deal with the noninvariance of (6) under smooth, 1-1 transformations
W : X → X . It might seem that the only way to obtain invariance in general
is to add an ingredient to the problem. We argue, however, that such an ingre-
dient is actually implicitly part of any statistical problem where we are using
a continuous distribution to model a measured response x. When we take this
into account we can derive a version of (6) that is invariant under smooth trans-
formations and that serves as a sensible definition of a model-based P -value.
For note that, when we use a continuous probability distribution to model a
variable that is being measured as part of some observational process, we are in
fact thinking of the distribution as an approximation to an underlying discrete
reality. For example, we measure variables to some fixed accuracy and so there
is an underlying discreteness to the sample space.

To develop an invariant P -value we first show that (6) arises as an approx-
imation to a P -value based on an appropriate discrete response. Suppose then
that the underlying discreteness translates into a value x lying in a set Bn(x)
such that {Bn(x) : x ∈ X} forms a partition of X with µk(Bn(x)) finite and
constant in x, and such that Bn(x) converges ‘nicely’ (see Rudin (1974)) to x as
n →∞. We then have that P (Bn(x))/µk(Bn(x)) → f(x) as n →∞ as long as
f is continuous at x. So for n large, P (Bn(x)) ≈ f(x)µk(Bn(x)) and f(x) serves
as surrogate for the probability of x, at least when we are comparing the proba-
bilities of different values of x occurring. Note that the constancy of µk(Bn(x))
in x is necessary for this interpretation of f(x). As a particular example of this,
suppose that X = R1 and we partition R1 using {((i − 1)/n, i/n] : i ∈ Z} and
Bn(x) is the set ((i− 1)/n, i/n] that contains x.

Rather than observing x, the essential discreteness of the problem means that
we will observe some xn(x) ∈ Bn(x) and the probability of observing xn(x) is
P (Bn(x)). Note that implicitly x0 is one of the values assumed by xn. Then for
the discrete response variable xn, the appropriate P -value (2) is given by

∑

{xn(x):P (Bn(x))≤P (Bn(x0))}

P (Bn(x)). (7)

We then want to show that (6) serves as an approximation to (7).
While such a result seems intuitively plausible, a general proof is not straight-

forward. We require some regularity conditions as we cannot expect such an
approximation to hold if we allow f and the partition {Bn(x) : x ∈ X} to be too
general. For this we use the theory of contented sets and functions as discussed
in Loomis and Sternberg (1968) where it is used to develop the Riemann integral.
Essentially, a bounded set A is contented if its µk-measure can be approximated
arbitrarily closely by the µk-measure of a finite union of disjoint rectangles con-
tained in A and also by the µk-measure of a finite union of disjoint rectangles
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containing A. A bounded function f with compact support is contented if it can
be approximated arbitrarily closely by step functions. Further, we say that a
function f is locally constant at x if we can find an open set containing x on
which f is constant. For x0 ∈ X let LC(x0) = {x : f(x) = f(x0), f is locally
constant at x}. In the Appendix we prove the following result.

Theorem 2. Suppose that
(i) X is a contented subset of Rk with positive content,
(ii) Bn(x) is a rectangle containing x with µk(Bn(x)) finite and constant in x,
and such that Bn(x) converges nicely to x as n →∞,
(iii) {Bn(x) : x ∈ Rk} forms a partition of Rk with {Bn+1(x) : x ∈ Rk} a
subpartition of {Bn(x) : x ∈ Rk} and supx∈Rkdiam(Bn(x)) → 0 as n →∞,
(iv) f is a continuous density function on X with f−1A contented for any interval
A and such that LC(x0) is contented with µk(f−1f(x0) ∩ LC(x0)

c) = 0, then
(7) converges to (6) as n → 0

Theorem 2 establishes that the appropriate discrete P -value, in the sense that
we will always be measuring x to some finite accuracy, is indeed approximated
by the continuous version given by (6), provided n is large enough.

Although the result will hold under weaker conditions, the conditions speci-
fied seem to apply in typical applications. Condition (iv) controls the behavior
of f and in particular prevents it from being too ‘wiggly’ so that points in con-
tours of f are either points where the function is locally constant or part of a
null set. For example, the condition holds for all piecewise smooth f. This con-
dition can be substantially weakened if P (f(x) = c) = 0 for every c. In essence
the distribution of f(x) can have a discrete component but our conditions imply
that this can really only arise by f being constant on sets where it is locally
constant. The conditions on the partitions {Bn(x) : x ∈ Rk} are stronger than
needed. In particular, we could allow for more general sets than rectangles.
Further, it is implicit in Theorem 2 that the accuracy of the discretization is
effectively the same across the sample space. We could allow for this accuracy
to vary across the sample space and this would determine a different approxi-
mation to (7). While this is reasonable, we do not pursue this further here but
note that the situation we have considered is very common.

We may, however, base the P -value on a statistic T , such as a discrepancy
statistic, and use the observed value T (x0). The question then is: given the
initial discretization on X as determined by the measurement process, how
should we take this into account? For, even if T is 1-1, it will give rise to
volume distortions and we do not want these volume distortions to affect our
P -value. This is the heart of the invariance issue and we discuss this in the next
section.

4 Invariant P -values for General Statistics

Suppose T : X → T is a general statistic, and we want to compare t0 = T (x0) to
PT to assess whether or not we have evidence against P. When PT is discrete, it
would seem that the relevant P -value is as discussed in Section 2 (see Example
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4). In the continuous case, however, additional complexities arise. This is
because T may distort volume and we need to ensure that the P -value we use
does not depend on these distortions.

Suppose first that X and T are open subsets of Rk and that T is 1-1 and
smooth. Then a partition element Bn(x) ⊂ X , with measure µk(Bn(x)), is
transformed into TBn(x) with measure µk(TBn(x)) = µk(Bn(x))J−1

T (x′) for
some x′ ∈ Bn(x), while the density of the transformed response with respect
to µk (Euclidean measure on Rk) is fT (t) = f(T−1(t))JT (T−1(t)). Accordingly,
we cannot use the P -value PT (fT (t) ≤ fT (t0)) to assess whether or not t0,
or equivalently x0 = T−1(t0) is surprising, since the density fT (t) depends
on volume distortions and the sets TBn(x) are no longer necessarily of equal
volume. There is clearly an easy fix for this, however, as we simply correct for
this volume distortion and compute the P -value

PT

(

fT (t)/JT (T−1(t)) ≤ fT (t0)/JT (T−1(t))
)

= P (f(x) ≤ f(x0)). (8)

With this refinement the P -value introduced in section 3 becomes invariant
under 1-1, smooth transformations of the response, i.e., we retain as part of the
problem prescription how the continuous probability model is approximating an
essentially discrete response.

In general, however, T will not be 1-1. Suppose then, that X is an open
subset of Rk and T is an open subset of Rl where l ≤ k. Let fT denote the
density of PT with respect to µl and suppose this is continuous. Suppose that
T is sufficiently smooth so that for each t ∈ T the set T−1 {t} is a Riemann
manifold with geometric measure on T−1 {t} denoted by νt. For example, when
T is 1-1, then T−1 {t} is a 0-dimensional Riemann manifold and νt is counting
measure. Results in Tjur (1974) show that, in general,

fT (t) =

∫

T−1{t}

f(x) |det(dT (x) ◦ dT ′(x))|−1/2
νt(dx) (9)

where dT is the differential of T. Formula (9) shows directly how fT is affected
by volume distortions. For, at x ∈ T−1 {t} the contribution to the density value

fT (t) is distorted by the factor JT (x) = |det(dT (x) ◦ dT ′(x))|−1/2
. Accordingly,

just as we do in the 1-1 case, we adjust the integrand in (9) by dividing by the
factor JT (x) to obtain

f∗T (t) =

∫

T−1{t}

f(x) νt(dx)

as the appropriate density to use. Note that f ∗T is the density of PT with respect
to the measure (fT (t)/f∗T (t))µl(dt) and the ratio fT (t)/f∗T (t) measures the effect
of the volume distortion induced by T on the density fT . We then compute the
P -value

PT (f∗T (t) ≤ f∗T (t0)) = P (f∗T (T (x)) ≤ f∗T (T (x0))) (10)

to assess whether or not t0 = T (x0) is a surprising value from PT . We see
that (10) depends only on the density assignment f on the original response
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space, which is determined by how we are approximating an essentially discrete
response, and the preimage sets of T.

We have the following simple but significant result for (10).

Theorem 3. When X is an open subset of Rk, T : X → T is onto with T ⊂ Rl

open, and T is sufficiently smooth, then the P -value given by (10) is invariant
under 1-1 smooth transformations of T .
Proof : Suppose W is a 1-1, smooth transformation defined on T and w = W (t).
Then, (W ◦ T )−1{w} = T−1 {t} and f∗W◦T (w) =

∫

T−1{t}
f(x) νt(dx) = f∗T (t).

We now consider some applications and note that these support (10) as the
appropriate definition of an invariant P -value.

Example 2. T a smooth 1-1 transformation.

Suppose that T : X → T is 1-1. Then T−1 {t} is a singleton set. Any discrete
set of points is a 0-dimensional Riemann manifold and geometric measure is
counting measure. Therefore, f∗T (t) =

∫

T−1{t} f(x) νt(dx) = f(T−1 {t}) and

(10) equals (8).

Example 3. T a smooth k-1 transformation.

Suppose that T−1 {t} = {x1(t), . . . , xk(t)} for each t. Then we have that

fT (t) =
∑k

i=1 f(xi(t))JT (xi(t)) and note that the volume distortion JT (xi(t))
could vary with i. In this case, we have that νt is counting measure and the
corrected density is f∗T (t) =

∑k
i=1 f(xi(t)). As in Example 2, it seems clear here

how we need to correct for volume distortions and, as such, it provides strong
support for (10) as the relevant P -value.

The following example shows that (10) gives the correct answer in the dis-
crete case as well.

Example 4. PT is discrete.

First suppose that P is discrete so we can consider X as a 0-dimensional
Riemann manifold with geometric measure equal to counting measure and sim-
ilarly for T . In this case νt is counting measure on T−1 {t} , JT (x) ≡ 1 and so
f∗T (t) =

∫

T−1{t} f(x) νt(dx) =
∑

x∈T−1{t} P (X = x) = pT (t) is the probability

function of T. Note dT is just the identity so there is no volume distortion.
When P is continuous then, for those t with pT (t) > 0, we have that νt is µk

restricted to T−1 {t} . Accordingly, we have that pT (t) =
∫

T−1{t} f(x) νt(dx) =

f∗T (t). So, in general, we obtain the P -value discussed in section 2.

Example 5. JT (x) is constant.

Note that JT (x) is constant for all x whenever T (x) is an affine transforma-
tion. So we could have T (x) = a + Bx for some a ∈ Rl and B ∈ Rl×k when
X ⊂ Rk. Also notice that when x ∈ Rn and T (x) is the order statistic then
JT (x) is constant for all x. It is then clear from (9) that, in this case, we can
compute (10) as PT (fT (t) ≤ fT (t0)).

For example, when T (x) = x̄ we simply use the density of x̄ to compute the
P -value. When P is the N1(0, 1) distribution, then (10) is 2(1− Φ(x̄)).

As another example, suppose that T is projection on the i-th coordinate, so
JT (x) ≡ 1. Then T−1{t} is the set of points in X with i-th coordinate equal to
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t, νt is Euclidean volume on this set, and f∗T (t) is the marginal density of the
i-th coordinate. Of course, this generalizes to arbitrary coordinate projections.

Example 6. JT (x) is constant for x ∈ T−1 {t} .
In some ways Example 5 is the simplest situation as the volume distortion

induced by T is constant on X . We now allow for the possibility that the volume
distortion is constant in T−1 {t} but may vary with t.

Put J∗T (t) = JT (x) for x ∈ T−1 {t} . From (9) we have that fT (t) =
f∗T (t)J∗T (t) and so (10) can be computed as PT (fT (t)/J∗T (t) ≤ fT (t0)/J∗T (t0)).
This permits us to avoid the integration involved in calculating f ∗T (t) when we
know the distribution of T and can compute JT (x) easily.

As an example, suppose that T (x) = x′x. Then T−1 {t} is a (k − 1)-
dimensional sphere in Rk. Now dT (x) = 2(x1 . . . xk) so dT (x)◦dT ′(x) = 4x′x =
4t and JT (x) = 1/2t1/2 is constant for x ∈ T−1 {t} for every t. Note that the
adjustment factor applied to fT (t) is to multiply by 2t1/2 and this is precisely
the distortion caused by the “quadratic” part of the transformation. The appro-

priate P -value is PT (fT (t)t1/2 ≤ fT (t0)t
1/2
0 ). We see that in this case we must

modify the usual density that we work with.
As a particular case, suppose that x ∼ Nk(0, I). Then T (x) ∼ Chi-squared(k)

with density fT (t) = Γ−1(k)2−k/2t(k/2)−1e−t/2. Therefore, the invariant P -value

is given by PT (t(k−1)/2e−t/2 ≤ t
(k−1)/2
0 e−t0/2) and only when k = 1 is this

equivalent to PT (t ≥ t0).
Notice that when we directly observe T ∼ Chi-squared(k), in the sense that

it is a measured variable, and we discretize using equal length intervals, then

the relevant P -value is PT (t(k/2)−1e−t/2 ≤ t
(k/2)−1
0 e−t0/2). As just shown, when

we take into account that T arises as a transformation of a measured variable,
the P -value changes. Further, both of these P -values are two-sided when k > 1.
In contrast, the approximate P -value that arises in Example 1, for a multino-
mial with k + 1 categories, is a right-tail only P -value for the Chi-squared(k)
distribution, and this follows directly from our theory.

In section 5 we discuss some further examples and, in particular, some exam-
ples where JT (x) varies with x ∈ T−1 {t} . There are also computational issues
that need to be addressed in such contexts and we discuss these in section 6.

In section 5 we also discuss another use of a transformation W to assess
surprise. This involves comparing the observed x0 with the conditional dis-
tribution of x given that W (x) = W (x0) = w0. In this case the conditional
density of x, with respect to geometric measure on W−1{w0}, is given by
f(x)JW (x)/fW (w0) and it is clear that the volume distortion at x, induced
by the conditioning, is given by JW (x). Accordingly the relevant P -value, based
on the full data, is given by P (f(x)/fW (w0) ≤ f(x0)/fW (w0) |W (x) = w0) =
P (f(x) ≤ f(x0) |W (x) = w0). If we have a transformation T of x, then the
relevant P -value is given in the following result.

Lemma 4. Suppose that X ,W and T are manifolds, with geometric measures
µX , µW and µT respectively, and W : X → W , T : X → T are onto smooth
mappings. Let νT,W,t,w denote geometric measure on T−1 {t} ∩W−1{w}. Then
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the relevant conditional P -value based on T, given W (x) = w0, is

PT

(

f∗T,W (t |w0) ≤ f∗T,W (t0 |w0) |W (x) = w0

)

(11)

where t0 = T (x0), and f∗T,W (t |w0) =
∫

T−1{t}∩W−1{w0}
f(x) νT,W,t,w0

(dx).

Proof : The conditional density of T given W = w is given by fT,W (t |w) =
∫

T−1{t}∩W−1{w}
(f(x)/fW (w))J(T,W )(x) νT,W,t,w(dx). Therefore, volume distor-

tion induced by the transformations is J(T,W )(x) and the result follows.

We will need the following result concerning the composition of mappings.

Lemma 5. Suppose that X ,U and T are manifolds, with geometric measures
µX , µU and µT respectively, and U : X → U , T : U → T are onto smooth map-
pings, then

f∗T◦U (t) =

∫

T−1{t}

JT (u)

∫

U−1{u}

f(x)J−1
T◦U (x)JU (x) υU,u(dx) υT,t(du),

where υU,u and υT,t are the geometric measures on U−1{u} and T−1{t}.
Proof : Suppose that g : X →R1 is nonnegative,

∫

A
g(x) µX (dx) is finite for

compact A and let B ⊂ T be open. By the measure decomposition theorem
(see Tjur (1974), Theorem 15.1) applied to g(x) µX (dx) and T ◦U, we have that
∫

X
IB(T (U(x)))g(x) µX (dx) =

∫

B

∫

(T◦U)−1{t}
g(x)JT◦U (x) υT◦U,t(dx) µT (dt).

Apply the measure decomposition theorem first to g(x) µX (dx) and U and then
to
∫

U−1{u} IB(T (U(x)))g(x)JU (x) υU,u(dx) µU (du) and T to obtain

∫

X

IB(T (U(x)))g(x) µX (dx)

=

∫

U

∫

U−1{u}

IB(T (U(x)))g(x)JU (x) υU,u(dx) µU (du)

=

∫

B

∫

T−1{t}

∫

U−1{u}

g(x)JU (x) υU,u(dx)JT (u) υT,t (du) µT (dt).

From this we conclude that
∫

(T◦U)−1{t}
g(x)JT◦U (x) υT◦U,t(dx) µT (dt) =

∫

T−1{t}

∫

U−1{u} g(x)JU (x) υU,u(dx)JT (u) υT,t(du) µT (dt). Putting g(x) =

f(x)J−1
T◦U (x) establishes the result.

5 Applications

Suppose that we have a statistical model {Pθ : θ ∈ Θ} where Pθ is a probability
measure on X with density fθ with respect to support measure µk, and Π is a
prior probability measure on Θ. Let M(A) =

∫

Θ
Pθ(A) Π(dθ) denote the prior

predictive on X with density m(x) =
∫

Θ
fθ(A) Π(dθ) with respect to µk. We

will investigate here the relevant P -values for assessing the model and checking
for prior-data conflict in light of an observed x0. As we will see, these P -values
are invariant and depend only on the densities fθ. In particular, the P -values
do not depend on any choice of density for the prior. This makes sense because
we do not directly measure the variable θ, only the response variable x.
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5.1 Model Checking

If W : X → W is a minimal sufficient statistic, then the conditional distribution
of the data given W is independent of θ and is denoted P (· |W (x) = w0).
Suppose we wish to check if the model makes sense in light of the observed x0. By
the converse of the factorization theorem we have that fθ(x) = gθ(W (x))h(x).
Lemma 4 and (11) give an invariant P -value that assesses fθ for each θ. We
have the following result.

Theorem 6. The P -value (11) is given by

PT (hT,W (t |w0) ≤ hT,W (t0 |w0) |W (x) = w0) , (12)

where hT,W (t |w0) =
∫

T−1{t}∩W−1{w0}
h(x) νt(dx), i.e., it is independent of θ,

and (12) is independent of the choice of h.
Proof : In the continuous case we assume that each density is continuous at
any observed x0 and restrict attention to those x0 for which fθ(x0) > 0. When
fθ(x0) > 0, then gθ(W (x0)) > 0 and gθ(W (x)) = gθ(W (x0)) for the event
W (x) = t0 = W (x0). We have that (11) equals

PT

(

∫

T−1{t}∩W−1{w0}
fθ(x) νt(dx)

≤
∫

T−1{t0}∩W−1{w0}
fθ(x) νt(dx)

∣

∣

∣

∣

∣

W (x) = w0

)

= P (hT,W (t |w0) ≤ hT,W (t0 |w0) |W (x) = w0) .

Further, if gθ(T (x))h(x) = g′θ(T (x))h′(x), then

PT (hT,W (t |w0) ≤ hT,W (t |w0) |W (x) = w0)

= PT

(

∫

T−1{t}∩W−1{w0}
gθ(W (x))h(x) νt(dx)

≤
∫

T−1{t0}∩W−1{w0}
gθ(W (x0))h(x) νt(dx)

∣

∣

∣

∣

∣

W (x) = w0

)

= PT

(
∫

T−1{t}∩W−1{w0}
g′θ(W (x))h′(x) νt(dx)

≤
∫

T−1{t0}∩W−1{w0}
g′θ(W (x0))h

′(x) νt(dx)

∣

∣

∣

∣

∣

W (x) = w0

)

= PT

(

h′T,W (t |w0) ≤ h′T,W (t0 |w0) |W (x) = w0

)

and we are done.

We now consider an application of this result.

Example 6. Model checking for the location-scale normal model.

Suppose that x = (x1, . . . , xn) is a sample of n from the N(µ, σ2) distribution
with µ ∈ R1 and σ2 > 0 unknown. Then W (x) = (x̄, ||x − x̄1n||) is minimal
sufficient. Putting d(x) = (x − x̄1n)/||x − x̄1n||, we can write x = x̄ + ||x −
x̄1n||d and note that x̄, ||x − x̄1n|| and d are statistically independent with d
uniformly distributed on Sn−1 ∩ L⊥{1n}. In this case h is constant (so we can
take it to be 1) and W−1{(x̄0, ||x0 − x̄01n||)} is the (n− 2)-dimensional sphere
x̄01n + ||x0 − x̄01n||(Sn−1 ∩ L⊥{1n}).

It is natural here to consider functions of d as discrepancy statistics for
checking the model. For example, the family Tp ◦ d =

∑d
i=1 dp

i is of some in-
terest as this gives effectively the skewness and kurtosis statistics when p =

13



3 and 4, respectively. In this case, hT,W (t |w0) is the volume of the (n −
3)-dimensional submanifold of x̄01n + ||x0 − x̄01n||(Sn−1 ∩ L⊥{1n}) given by
(Tp ◦ d)−1{t} ∩W−1{(x̄0, ||x0 − x̄01n||)}. Alternatively, from the proof of The-
orem 6, we can compute the invariant P -value by assuming (µ, σ) = (0, 1),
letting f denote the density of a sample of n from the N(0, 1) distribution
and computing P(0,1)(f

∗
Tp◦d

(Tp(d(x))) ≤ f∗Tp◦d
(Tp(d(x0))) | (x̄0, ||x0 − x̄01n||)) =

Pd(f
∗
Tp◦d

(Tp(d)) ≤ f∗Tp◦d
(Tp(d0))) where f∗Tp◦d

(t) =
∫

(Tp◦d)−1{t}
f(x) υt(dx) and

d is uniformly distributed on Sn−1∩L⊥{1n}. The volume distortion induced by
Tp(d) can be computed explicitly as JTp◦d(x) = p(T2p−2(d(x))−T 2

p−1(d(x))/n−
T 2

p (d(x)))−1/2/||x − x̄1n||. We see that this is not a function of Tp ◦ d and also
JTp◦d(x) = JTp◦d(−x). Since f(x) = f(−x) and (Tp ◦ d)−1{−t} = (−1)p(Tp ◦
d)−1{t} when p is a nonnegative integer, we have that f ∗Tp◦d

(t) and the den-

sity fTp◦d(t) =
∫

(Tp◦d)−1{t} f(x)JTp◦d(x) υt(dx) are symmetric about 0 when p is

odd. If both f∗Tp◦d
and fTp◦d are unimodal, then this implies that the P -values

based on the densities, tail probabilities of |Tp ◦ d| and the invariant P -values
are the same when p is odd. Although we do not have a proof, it would appear
that in general, the differences among these P -values disappear with increasing
n, so the need to correct for volume distortion vanishes with large sample sizes
in this case.

In Figure 1 we have plotted the densities and invariant P -values for tests
of skewness for several sample sizes n. The P -values are two-sided. The in-
variant P -values are the same as those based on the density of T3(d) and tail
probabilities of |T3(d)|, for all cases except n = 3. We note that the asymptotic
approximation to the exact P -value can be poor but is quite good for n = 100.
When n = 3 the invariant P -value is identically equal to 1, i.e., we never find
evidence against the model. In this case, we can show that J−2

T3
(x) = 1/6−T 2

3 (x)

and the density of T3 at t is proportional to (1−6t2)−1/2 for −1/
√

6 < t < 1/
√

6,
i.e., all the density is due to the volume distortion caused by T3. Notice too that
the density is U -shaped with infinite singularities at the end-points. Accord-
ingly, if we were to use the density for the P -value we would reject the model
for values of T3 near 0 and this doesn’t make sense. It wouldn’t seem to make
sense to reject for large values of |T3| either, at least based on the shape of the
distribution. The invariant P -value is telling us that there is no test for skew-
ness based on T3 when n = 3. Intuitively this seems reasonable as we need two
degrees of freedom for location and scale and to check for skewness, we need at
least two more to see if there is asymmetry about the center.

In Figure 2 we have plotted the densities and invariant P -values for tests of
kurtosis for several sample sizes n. The densities are quite irregular for small
sample sizes and skewed. The invariant P -values, those based on the density
and tail probabilities are all different in this case. The P -values based on the
densities and asymptotics are quite similar for n = 100 while this is not the
case for the invariant P -values. This indicates that the volume distortion is still
having an appreciable effect when n = 100.
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Figure 1: Densities and invariant P -values for test of skewness for various sample

sizes nwhen sampling from normal.
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Figure 2: Densities and invariant P -values for test of kurtosis for various sample

sizes n when sampling from normal.

In Figure 3 we have plotted the densities and invariant P -values based on the
Jarque-Bera test statistic n(nT 2

3 /6 + (nT4 − 3)2/24) for several sample sizes n.
This is clearly an attempt to assess both skewness and kurtosis simultaneously.
The densities are quite irregular for small sample sizes and skewed. The P -
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values based on the densities and asymptotics are quite different for n = 100
while this is not the case for the invariant P -values. Again this indicates that
the volume distortion is still appreciable when n = 100.
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Figure 3: Densities and invariant P -values for Jarque-Bera test for various sample

sizes n when sampling from normal.

When U is an ancillary statistic, then a function of U can be used to as-
sess the model. If we consider the transformation T ◦ U, then we must evalu-
ate

∫

(T◦U)−1{t} fθ(x) νt(dx) and, in general, there is no reason to suppose that

this is independent of θ. When the distribution of T ◦ U is discrete, how-
ever, then

∫

(T◦U)−1{t}
fθ(x) νt(dx) is the probability function of T ◦ U and

as such is independent of θ. Theorem 7 will show that the P -value based on
∫

(T◦U)−1{t} fθ(x) νt(dx) is independent of θ for a very broad class of ancillaries.

Consider the following example which will serve as an archetype for a com-
mon situation where ancillaries arise.

Example 7. Location-scale models.

Suppose we have x ∈ Rn and the model is x = µ1n+σz where z is distributed
with density f with respect to volume measure on Rn, and µ ∈ R1, σ > 0 are
unknown. Then x has density fµ,σ(x) = σ−nf((x − µ1n)/σ). We take the
parameter space to be Θ = {(µ, σ) : µ ∈ R1, σ > 0} and note that we have
a group product defined on Θ via (µ1, σ1)(µ2, σ2) = (µ1 + σ1µ2, σ1σ2). This
group acts on Rn via (µ, σ)x = µ1n + σx. A maximal invariant is then given
by U(x) = (x − x̄1n)/||x − x̄1n|| and this is ancillary. Note that U−1{u} =
{x : x = a1n + cu, for some (a, c) ∈ Θ} = Θu, i.e., U−1{u} is an orbit of the
group action. Clearly, this orbit is half of a 2-dimensional plane in Rn and so
geometric measure νu is just area.
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If we wish to base our checking on U itself, then we must evaluate

f∗µ,σ,U (d0) =

∫

U−1{u}

fµ,σ(x) νu(dx) =

∫ ∞

0

∫ ∞

−∞

fµ,σ(a1n + cu)
√

nda dc

=

∫ ∞

0

∫ ∞

−∞

σ−nf

(

a− µ

σ
1n +

c

σ
u

) √
nda dc

= σ−(n−2)

∫ ∞

0

∫ ∞

−∞

f (a1n + cu)
√

nda dc.

Accordingly the P -value for model checking is given by

PU (f∗µ,σ,U (u) ≤ f∗µ,σ,U (u0))

= PU

(∫ ∞

0

∫ ∞

−∞

f (a1n + cu) da dc ≤
∫ ∞

0

∫ ∞

−∞

f (a1n + cu0) da dc

)

and this is independent of the model parameter and we have a valid P -value
for checking the model. If instead we use a function T (U) then, an application
of Lemma 5 shows that (10) is independent of (µ, σ) by the same argument, as
the Jacobian factors do not depend on the parameter. Note that when f is the
N(0, 1) density, then basing model checking on the ancillary d or the conditional
distribution of the data given a minimal sufficient statistic produces the same
results.

More generally suppose we have a group model {fg : g ∈ G} where G is a
group, with a smooth product, acting freely and smoothly on X and fg(x) =
f(g−1x)Jg(g−1x) for some fixed density f. Now suppose that [·] : X → G
is smooth and satisfies [gx] = g[x] so U(x) = [x]−1x is a maximal invariant
and is thus ancillary. So u = U(x) ∈ X , x = [x]U(x) and U−1{u} is the
orbit {gu : g ∈ G}. Now if ν∗G denotes geometric measure on G we have that
νu = K(u)ν∗G for some positive function K. Let z = g−1x so that [z] = g−1[x]
and let J∗g ([z]) denote the Jacobian of the transformation [z] → [x]. Then we
have that

f∗gU (u) =

∫

U−1{u}

fg(x) νu(dx) =

∫

{gu:g∈G}

fg([x]u) νu(dx)

= K(u)

∫

G

f(g−1[x]u)Jg(g
−1[x]u) ν∗G(d[x])

= K(u)

∫

G

f([z]u)Jg(u)J∗g ([z]) ν∗G(d[z]).

Now if we can write Jg(u)J∗g (z) = L(u)m(g) for some positive functions L and
m, then we have that the invariant P -value PU (f∗gU (u) ≤ f∗gU (u0)) is indeed
independent of g. Further, by Lemma 5 this will also hold for T ◦ U as well.
For example, in Example 6 J(µ,σ)(u) = σ−n and, with [x] = [x̄, ||x − x̄1n||],
then J∗g ([z]) = σ2 and this condition is satisfied. More generally, this condition
is satisfied in a wide range of group models, such as those discussed in Fraser
(1979). Accordingly the following result is broadly applicable.
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Theorem 7. Suppose that {fg : g ∈ G} is a family of densities with respect
to geometric measure µX on X , where G is a group with a smooth product,
a smooth action defined on X and fg(x) = f(g−1x)Jg(g−1x). Further suppose
that there exists smooth [·] : X → G satisfying [gx] = g[x] and let J∗g ([z]) denote
the Jacobian of the transformation [z] → [x] where x = gz. If there exist positive
functions L and m so that Jg(u)J∗g (z) = L(u)m(g), then we have that the P -
value (10) based on the ancillary T ◦ U, with U(x) = [x]−1x and T smooth, is
independent of the model parameter and is thus a valid check on the model.

Although we have not been able to find an example, there may exist cases
where the invariant P -value based on an ancillary T ◦ U is not independent of
the parameter. In such a case it is perhaps difficult to accept T ◦ U as a true
ancillary, because its ancillarity is dependent on the way the transformation is
distorting volumes in some essential way.

5.2 Checking for Prior-Data Conflict

In Evans and Moshonov (2006, 2007) methodology was developed for inves-
tigating the existence of a conflict existing between the prior probability as-
signments made for the model parameter θ, and the values of θ deemed rel-
evant by the likelihood. If T is a minimal sufficient statistic and U(T ) is a
maximal ancillary, then the assessment is made based upon comparing the ob-
served value t0 = T (x0) with MT (· |u0), the conditional prior predictive dis-
tribution of T given U(t0) = u0. The comparison was based upon the P -value
MT (mT (t |u0) ≤ mT (t0 |u0) |u0) where mT (· |u0) is the prior predictive den-
sity of T given U(T ) = u0, based on either counting measure or volume measure
depending on whether MT (· |u0) was discrete or continuous. This choice of P -
value was made primarily because there was no theory that dictated how such
an assessment was to be made, but concern was expressed about the lack of
invariance in the continuous case. We can now use the approach developed here
to derive an appropriate invariant P -value.

The prior predictive density of x is given by m(x) =
∫

Θ fθ(x) Π(dθ) and
note that this is just an average of the density values fθ(x) with respect to the
prior. There is no volume distortion involved in this, for if fθ(x)µk(Bn(x)) is
the probability of observing the discretized response xn(x) when θ is true, then
m(x)µk(Bn(x)) is the probability of observing xn(x) when θ ∼ Π and x ∼ Pθ.
Furthermore, m∗

T (t) =
∫

T−1{t}
m(x) υt(dx) =

∫

T−1{t}

∫

Θ
fθ(x) Π(dθ) υt(dx) =

∫

Θ

∫

T−1{t}
fθ(x) υt(dx) Π(dθ) =

∫

Θ
f∗θT (x) Π(dθ) and so m∗

T is obtained by aver-

aging the densities appropriate to checking each Pθ measure individually based
on any statistic T. If T is minimal sufficient with fθ(x) = gθ(T (x))h(x), then
m∗

T (t) =
∫

Θ
gθ(t) Π(dθ)

∫

T−1{t}
h(x) υt(dx).

If T is a complete minimal sufficient statistic, then we can ignore ancillaries
and the relevant P -value is MT (m∗

T (t) ≤ m∗
T (t0)). The following result shows

that we need a slight modification for the general situation.

Theorem 8. Suppose that {fθ : θ ∈ Θ} is a family of densities with respect to
geometric measure µX on X , Π is a prior probability measure on Θ, T : X → T is
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a smooth mapping onto manifold T with geometric measure µT and U : T → U
is a smooth mapping onto manifold U with geometric measure µU . Further
suppose that T is minimal sufficient and U ◦ T is ancillary. Then the invariant
P -value based on the conditional prior predictive of T given U is

MT (m∗
T (t) ≤ m∗

T (t0) |U = u0) (13)

where m∗
T (t) =

∫

Θ f∗θT (x) Π(dθ).
Proof : For t ∈ U−1{u0} we have that mT (t |u0) =

∫

Θ
fθT (t |u0) Π(dθ). Note

that T−1 {t} ∩ T−1U−1{u0} = T−1 {t} when t ∈ U−1{u0} and is the empty set
otherwise. If t ∈ U−1{u0}, then

fθT (t |u0) = fθT (t)JU (t)/fU (u0) = (JU (t)/fU (u0))

∫

T−1{t}

fθ(x)JT (x) νt(dx).

Therefore, removing the volume distortions due to T and U, we have that
m∗

T (t |u0) =
∫

Θ

∫

T−1{t}
(fθ(x)/fU (u0)) νt(dx) Π(dθ) = m∗

T (t)/fU (u0) and the

result follows.

So (13) is obtained by averaging, with respect to the prior, the relevant functions
for checking each Pθ measure and then, comparing the observed value of this
function with its distribution under the prior predictive given the ancillary U(T ).
As argued in Evans and Moshonov (2006, 2007), conditioning on the ancillary
is appropriate when assessing prior-data conflict, as this removes variation from
the assessment that has nothing to do with the prior.

For the examples included in Evans and Moshonov (2006, 2007) the only P -
values that will change, when we use these invariant P -values, are those recorded
for the location-scale models. In all the other examples the volume distortions
are constant, either because of discreteness or because the model was a location
model. The change in the P -values for location-scale models is illustrated by
the following example, and we see that this is very small.

Example 8. Prior-data conflict for the location-scale normal model.

For a sample x of size n from the N(µ, σ2) model, T (x) = (x̄, (n− 1)−1||x−
x̄1n||2) = (x̄, s2) is minimal sufficient. Then for a prior π on (µ, σ2)

mT (x̄, s2) =

∫ ∞

0

∫ ∞

−∞

∫

T−1{(x̄,s2)}

f(x |µ, σ2)JT (x) υ(x̄,s2)(dx) π(µ, σ2) dµ dσ2

where f(· |µ, σ2) is the joint density of the sample, υ(x̄,s2) is surface area measure

on the (n−2)-dimensional sphere x̄1n+||x−x̄1n||(Sn−1∩L⊥{1n}), and JT (x) =
n1/2(n− 1)1/2/2s. So m∗

T (x̄, s2) = 2smT (x̄, s2)/n1/2(n− 1)1/2 and the P -values
based on mT and m∗

T differ by very little. In fact this difference disappears as
n grows. The arbitrariness of the P -value based on the density is demonstrated
by the fact that, if we had instead chosen the minimal sufficient statistic to be
T (x) = (nx̄, ||x − x̄1n||), then the P -value based on mT equals the invariant
P -value.

It is not clear that the general use of discrepancy statistics is appropriate
when checking for prior-data conflict. For there is no sense in which we think
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of the prior as being wrong, as it represents some individual’s (or individuals’)
beliefs about what the true distribution is. Rather we simply look to see if there
is a conflict between what the data says about θ, as expressed by the likelihood
function, and the prior. Evans and Moshonov (2006, 2007) assessed this by
determining whether or not the observed likelihood function is a surprising
value from its prior predictive distribution given an ancillary or, equivalently,
whether or not the observed value of a minimal sufficient statistic is a surprising
value from its prior predictive distribution given an ancillary. With the use of
the invariant P -values developed here, this assessment becomes independent of
the choice of a particular form chosen for the minimal sufficient statistic.

The assessment for prior-data conflict becomes more involved when a prior is
specified hierarchically. For example, suppose the prior is specified component-
wise as π2(θ2 | θ1)π1(θ1), where the model parameter equals (θ1, θ2), or where θ2

is the model parameter and θ1 corresponds to hyperparameters. In such a case
choices are made for the πi and, as discussed in Evans and Moshonov (2006,
2007), we wonder if perhaps only part of this specification leads to a prior-data
conflict. Of course, the P -values developed there for such cases should also be
modified to use invariant P -values.

We have restricted our discussion to determining appropriate P -values for
checks on the sampling model, based on the conditional distribution given a min-
imal sufficient statistic or based on an ancillary statistic, and separate checks
for prior-data conflict, based on the conditional prior predictive of a minimal
sufficient statistic given an ancillary. Other authors, such as Box (1980), Meng
(1994), Gelman, Meng and Stern (1996), Berger and Bayarri (2000), and Ba-
yarri and Castellanos (2007), have recommended P -values for Bayesian model
checking that combine elements of the prior and the model. We feel that our
developments are also relevant to the checks recommended by these authors.

6 Computations

Implementation of invariant P -values will sometimes require the numerical eval-
uation of f∗T . In Example 6 we used simulation based upon the following result.

Lemma 9. Suppose that X and T are manifolds, with geometric measures
µX and µT respectively, and T : U → T is an onto, smooth mapping. If
E(J−1

T (X)) < ∞, then f∗T (t) = fT (t)E(J−1
T (X) |T = t).

Proof: For B ⊂ T , by the measure decomposition theorem, we have that

E(J−1
T (X)IB(T (X))) =

∫

X

J−1
T (x)IB(T (X))f(x) µX (dx)

=

∫

B

∫

T−1{t}

f(x) νt(dx) µT (dt) =

∫

B

f∗T (t)µT (dt)

and of course E(J−1
T (X)IB(T (X))) =

∫

B E(J−1
T (X) |T = t) fT (t)µT (dt).

Therefore we generate a sample x1, . . . , xn from f and use the kernel density
estimator f̂T (t) = n−1

∑n
i=1 Kh(T (xi)− t) to approximate fT (t) with Kh(t) =
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I(−1,1)(t/h)/2h. For small h > 0 and n large, 2hfT (t)E(J−1
T (X) |T = t) ≈

n−1
∑n

i=1 J−1
T (xi)I(t−h,t+h)(T (xi)). Then we approximate E(J−1

T (X) |T = t)

by Ê(J−1
T (X) |T = t) =

∑n
i=1 J−1

T (xi)Kh(T (xi) − t)/
∑n

i=1 Kh(T (xi) − t), the
Nadaraya-Watson estimator. The approximation is carried out at some of the
ti = T (xi) values. Further details on this estimator and kernel regression can
be found in Wand and Jones (1995).

7 Conclusions

The use of P -values is somewhat of a controversial topic in statistics. In many
ways, it seems to us, however, that the P -value represents the best way of
assessing whether or not an observed value x0 from a distribution P is surprising.
Perhaps the first concern about P -values arises here, as it is not clear exactly
how such a P -value should be computed. Some may argue that we must make
use of a real-valued discrepancy statistic T (x) and compute PT (T ≥ T (x0)).
While there is intuitive support for this, it only seems justified when the region
of relatively low probability for T is just the right-tail. Further, it doesn’t really
help at all when T is multivariate.

We have argued that there is a logical basis for the development of appropri-
ate P -values for discrete models. Further, we can carry this development over to
suitably regular continuous models provided that we acknowledge that our con-
tinuous models are approximations to a discrete reality and, that we make sure
that volume distortions induced by transformations do not affect our P -values.
This leads to results that are the same or very similar, in many examples, to
the way we currently compute P -values based simply on intuition. This is sat-
isfying, as a radical change in such a fundamental tool would make us wary.
Perhaps the most important consequence is that we feel that we have resolved
the issue of the noninvariance of the P -value in the continuous case, and this
makes us more confident that these are appropriate measures of surprise for the
problems discussed.

8 Appendix

Proof of Theorem 1

(i) We need to consider the distribution of

ln pn(t) = ln

(

n

t1 . . . tk

)

θt1
1 · · · θtk

k =

k
∑

i=1

(ti ln θi − ln ti!) + ln n!

when (t1, . . . , tk) ∼ Multinomial(n, θ1, . . . , θk). For M > 0, let

CM = {(t1, . . . , tk) : max
i=1,...,k

|ti − nθi|/n1/2 ≤ M and no ti = 0}.

Since (z1, . . . , zk) = (t1 − nθ1, . . . , tk − nθk)/n1/2 D→ Nk(0, Σ) as n →∞, where
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σii = θi(1 − θi) and σij = −θiθj when i 6= j, and since no θi = 0, there exists
Mε and nMε

, such that for all n ≥ nMε
then PT (CMε

) > 1− ε.
Suppose that (t1, . . . , tk) ∈ CMε

. By Stirling’s formula ln ti! = (1/2) ln 2πti +

ti ln ti − ti + λ(ti) where |λ(ti)| < 1/12ti and, using
∑k

i=1 ti = n,

k
∑

i=1

(ti ln θi − ln ti!)

= −
k
∑

i=1

ti ln
ti

nθi
− 1

2

k
∑

i=1

ln
ti
n

+

k
∑

i=1

λ(ti)− n ln n + n− k

2
ln 2πn. (A1)

Now ti ln(ti/nθi) = (nθi +
√

nzi) ln(1 + zi/
√

nθi) and since |zi| ≤ M, we can
choose n larger than nMε

so that |zi| /
√

nθi ≤ 1/2 for all i. When |z| ≤ 1/2,

∣

∣ln(1 + z)− z + z2/2
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

i=1

(−1)i+1 zi

i
− z + z2/2

∣

∣

∣

∣

∣

≤
∞
∑

i=3

|z|i
i
≤ 2

3
|z|3 ,

so ln(1 + z) = z − z2/2 + O(|z|3). Applying this to the first term in (A1), gives

k
∑

i=1

ti ln
ti

nθi
=

k
∑

i=1

(nθi +
√

nzi) ln(1 + zi/
√

nθi)

=

k
∑

i=1

(nθi +
√

nzi)

{

zi√
nθi

− z2
i

2nθ2
i

+ O

(

|zi|3
n3/2

)}

=

k
∑

i=1

z2
i

2θi
+

k
∑

i=1

O

(

|zi|3
n1/2

)

+

k
∑

i=1

O

(

|zi|4
n

)

.

When |z| ≤ 1/2, then |ln(1 + z)| ≤ ∑∞
i=1 |z|

i
/i = |z|∑∞

i=0 |z|
i
/(i + 1) ≤ 2 |z|

and, applying this to the second term in (A1), gives

1

2

k
∑

i=1

ln
ti
n

=
1

2

k
∑

i=1

ln θi +
1

2

k
∑

i=1

ln

(

1 +
zi√
nθi

)

=
1

2

k
∑

i=1

ln θi +

k
∑

i=1

O

( |zi|√
n

)

.

The third term in (A1) satisfies

∣

∣

∣

∣

∣

k
∑

i=1

λ(ti)

∣

∣

∣

∣

∣

≤
k
∑

i=1

1

12ti
=

1

12

k
∑

i=1

1

nθi +
√

nzi
= O

(

1

n

)

.

Combining all this and | ln n!− n lnn + n− (1/2) ln 2πn| ≤ 1/12n gives

− ln pn(t) =

k
∑

i=1

(ti − nθi)
2

2nθi
+

1

2

k
∑

i=1

ln θi +
k − 1

2
ln 2πn + rn(t)
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where

rn(t) =
k
∑

i=1

O

( |zi|
n1/2

)

+
k
∑

i=1

O

(

|zi|3
n1/2

)

+
k
∑

i=1

O

(

|zi|4
n

)

+O

(

1

n

)

= O

(

1

n1/2

)

.

when (t1, . . . , tk) ∈ CMε
since |zi| ≤ Mε. Then, for η > 0, we have that

PT (|rn(t)| > η) ≤ PT (|rn(t)| > η |CMε
)PT (CMε

) + PT (Cc
Mε

) ≤ ε

since PT (|rn(t)| > η |CMε
) = 0 for all n large enough and so rn(t)

P→ 0. Since
∑k

i=1(ti − nθi)
2/nθi

D→ X where X ∼ Chi-squared(k − 1) we have proved (i).

(ii) We can write

PT (ln pn(t) ≤ ln pn(t0))

= PT

(

k
∑

i=1

(ti − nθi)
2

2nθi
+ rn(t) ≥

k
∑

i=1

(ti0 − nθi)
2

nθi
+ rn(t0)

)

.

Then, letting Gk−1 denote the Chi-squared(k − 1) distribution function,

PT0

(∣

∣

∣

∣

∣

PT (ln pn(t) ≤ ln pn(t0))−
{

1−Gk−1

(

k
∑

i=1

(ti0 − nθi)
2

nθi

)}∣

∣

∣

∣

∣

> η

)

≤ PT0









∣

∣

∣

∣

∣

∣

∣

∣

PT

(

∑k
i=1

(ti−nθi)
2

2nθi
+ rn(t) ≥

∑k
i=1

(ti0−nθi)
2

nθi
+ rn(t0)

)

−
{

1−Gk−1

(

∑k
i=1

(ti0−nθi)
2

nθi
+ rn(t0)

)}

∣

∣

∣

∣

∣

∣

∣

∣

> η/2









+

PT0





∣

∣

∣

∣

∣

∣

{

1−Gk−1

(

∑k
i=1

(ti0−nθi)
2

nθi
+ rn(t0)

)}

−
{

1−Gk−1

(

∑k
i=1

(ti0−nθi)
2

nθi

)}

∣

∣

∣

∣

∣

∣

> η/2



 (A2)

Now let ε > 0 satisfy ε < η/2. When X has a continuous distribution and

Xn
D→ X then, for any ε > 0, we have that supx |P (X ≤ x)− P (Xn ≤ x)| ≤ ε

for all n large enough. So, since rn(t)
P→ 0, the first term on the right in (A2)

equals 0 for all n large enough. Since rn(t0)
P→ 0, then

Gk−1

(

k
∑

i=1

(ti0 − nθi)
2

nθi
+ rn(t0)

)

P→ Gk−1

(

k
∑

i=1

(ti0 − nθi)
2

nθi

)

.

Combining all this we have proved (ii).

(iii) First we note that if pi = 0, then PT (ti = 0) = 1 and so pi ln(θi/pi) =

ti ln(θi/pi) = 0. Now (z1, . . . , zk) = (t1 − np1, . . . , tk − npk)/n1/2 D→ Nk(0, Σ) as
n →∞, where σii = pi(1− pi) and σij = −pipj when i 6= j. We have that

ln pn(t0) =
k
∑

i=1

ti0(ln θi − ln pi) +
k
∑

i=1

(ti0 ln pi − ln ti0!) + ln n!. (A3)
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We can apply the same analysis to
∑k

i=1(ti0 ln pi − ln ti0!) as we did in (i) but
now we must take into account that whenever pi = 0, then corresponding terms
are dropped. Doing this we obtain (always interpreting 0 · ∞ = 0)

sn(t0) = − ln pn(t0)−
1

2

k
∑

i=1

ln θi −
(

ln n!− n ln n + n− k

2
ln 2πn

)

= −n

k
∑

i=1

ti0
n

ln
θi

pi
+

k
∑

i=1

(ti0 − npi)
2

2npi
− 1

2

k
∑

i=1

ln θi +
1

2

k
∑

i=1,pi 6=0

ln pi

+
l

2
ln 2πn + r∗n(t0)

where l is the number of pi = 0 and r∗n(t0)
P→ 0 when sampling from the

Multinomial(1, p1, . . . , pk) distribution. Arguing as in (ii), we have that the
P -value given by (5) converges in probability to 1−Gk−1(sn(t0)). Under sam-

pling from the Multinomial(1, p1, . . . , pk) distribution
∑k

i=1(ti0/n) ln(θi/pi)
a.s→

∑k
i=1 pi ln(θi/pi). This equals minus the Kullback Leibler distance between the

pi and θi distributions and so is negative when pi 6= θi for some i. It is then

immediate that sn(t0)
P→∞ and this completes the proof of (iii).

Proof of Theorem 2

Let B be a bounded set formed from a union of elements of {B1(x) : x ∈ Rk},
such that P (Bc) < ε and x0 ∈ B. Since P (Bn(x) |B) = P (Bn(x))/P (B) when
Bn(x) ⊂ B and P (Bn(x) |B) = 0 otherwise, we have that
∣

∣

∣

∣

∣

∣

∑

{xn(x):P (Bn(x))≤P (Bn(x0))}

P (Bn(x)) − P (f(x) ≤ f(x0))

∣

∣

∣

∣

∣

∣

≤ 2ε+

∣

∣

∣

∣

∣

∣

∑

{xn(x):P (Bn(x) |B)≤P (Bn(x0) |B)}

P (Bn(x) |B) − P (f(x) ≤ f(x0) |B)

∣

∣

∣

∣

∣

∣

P (B).

So, if we prove that
∑

{xn(x):P (Bn(x) |B)≤P (Bn(x0) |B)}

P (Bn(x) |B) → P (f(x) ≤ f(x0) |B),

as n →∞, then the result will be established. Accordingly, we hereafter assume
that X is contained in a bounded set B with {Bn(x) : x ∈ Rk} a finite partition
of B.

Now suppose that f is unbounded on X and let ε > 0. Let M > 0 and
XM = {x : f(x) < M}. Since P (X c

M ) → 0 as M → ∞, we can find M such
that P (X c

M ) < ε. Since ∪{xn(x):Bn(x)∩X c
M
6=φ)}Bn(x) is monotonically decreasing

to X c
M , there exists n0 such that for all n ≥ n0, then

∣

∣

∣

∣

∣

∣

∑

{xn(x):Bn(x)∩X c
M
6=φ)}

P (Bn(x)) − P (X c
M )

∣

∣

∣

∣

∣

∣

< ε.
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Therefore, taking B′ = B\ ∪{x:Bn0
(x)∩X c

M
6=φ)} Bn0

(x), and reasoning as in the
preceding paragraph with B′ replacing B, we see that we need only prove the
result when f is bounded. We assume f is bounded hereafter.

Since f is continuous on X , we have that P (Bn(x))/µ(Bn(x)) → f(x) for
all x ∈ X . For each x ∈ X there exists x′n(x) ∈ Bn(x) such that P (Bn(x)) =
f(x′n(x))µ(Bn(x)) and so, since µ(Bn(x)) is finite and constant, (7) equals

∑

{xn(x):f(x′n(x))≤f(x′n(x0))}

f(x′n(x))µ(Bn(x)). (A4)

Since X is contained in the union of finitely many of the Bn(x), the sum in (A4)
is a finite sum. Now

∑

{xn(x):f(x′n(x))≤f(x′n(x0))}

f(x′n(x))µ(Bn(x))

=
∑

{xn(x):f(x′n(x))<f(x0)}

f(x′n(x))µ(Bn(x))+

∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

f(x′n(x))µ(Bn(x))−

∑

{xn(x):f(x′n(x0))≤f(x′n(x))<f(x0)}

f(x′δ(x))µ(Bδ(x)).

We have that
∑

{xn(x):f(x′n(x))<f(x0))}

f(x′n(x))µ(Bn(x)) → P (f(x) < f(x0))

as n → 0 as the left side is an approximating Riemann sum to the right side.
Further, f(x′n(x0)) → f(x0) as n → ∞ and so, for ε > 0 we can find nε such
that for all n ≥ nε, then |f(x0)− f(x′n(x0))| < ε. Accordingly,

∑

{xn(x):f(x′n(x0))≤f(x′n(x))<f(x0)}

f(x′n(x))µ(Bn(x))

≤
∑

{xn(x):f(x0)−ε<f(x′n(x))<f(x0)}

f(x′n(x))µ(Bn(x))

→ P (f(x0)− ε < f(x) < f(x0))

as n →∞ and this upper bound converges to 0 as ε → 0.
Now we have that 1 = ILC(x0) + If−1f(x0)∩LC(x0)c + I(f−1f(x0))

c ,

∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

If−1f(x0)∩LC(x0)c(x′n(x))f(x′n(x))µ(Bn(x))

= f(x0)
∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

If−1f(x0)∩LC(x0)c(x′n(x))µ(Bn(x))

25



≤ f(x0)
∑

xn(x)

If−1f(x0)∩LC(x0)c(x′n(x))µ(Bn(x)) → f(x0)µ(f−1f(x0)∩LC(x0)
c)

where µ(f−1f(x0) ∩ LC(x0)
c) = 0 and

∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

I(f−1f(x0))
c(x′n(x))f(x′n(x))µ(Bn(x))

≤
∑

{xn(x):f(x0)≤f(x′n(x))≤f(x0)+ε}

I(f−1f(x0))
c(x′n(x))f(x′n(x))µ(Bn(x))

→ P ({x : f(x0) ≤ f(x) ≤ f(x0) + ε} ∩
(

f−1f(x0)
)c

)

and this converges to P (f−1f(x0) ∩
(

f−1f(x0)
)c

) = 0 as ε → 0.
Finally, we consider

∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

ILC(x0)(x
′
n(x))f(x′n(x))µ(Bn(x)).

Now LC(x0) is covered by finitely many of the Bn(x). Let LCε(x0) be the set of
points in LC(x0) that lie a distance greater than ε from ∂LC(x0). Since LC(x0)
is an open set, LCε(x0) ↑ LC(x0) as ε → 0 and so µ(LCε(x0)) ↑ µ(LC(x0)).
We can choose nε so that when n ≥ nε, then xn(x) ∈ LC2ε(x0) then x′δ(x) ∈
LCε(x0) and so

∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

ILC2ε(x0)(x
′
n(x))f(x′n(x))µ(Bn(x))

= f(x0)
∑

xn(x)

ILC2ε(x0)(x
′
n(x))µ(Bn(x))

≤
∑

{xn(x):f(x0)≤f(x′n(x))≤f(x′n(x0))}

ILC(x0)(x
′
n(x))f(x′n(x))µ(Bn(x))

≤
∑

{xn(x):f(x0)≤f(x′n(x))≤f(x0)+ε}

ILC(x0)(x
′
n(x))(f(x0) + ε)µ(Bδ(x)). (A5)

Now the left-hand side of (A5) converges to f(x0)µ(LC2ε(x0)) which converges
to f(x0)µ(LC(x0)) = P (f(x) = f(x0)) as ε → 0. The right-hand side of (A5)
converges to

P (LC(x0) ∩ {x : f(x0) ≤ f(x) ≤ f(x0) + ε})+
εµ(LC(x0) ∩ {x : f(x0) ≤ f(x) ≤ f(x0) + ε})

which converges to P (f(x) = f(x0)) as ε → 0 and this establishes the result.

Example Where Theorem 2 Fails

Let q1, q2, . . . be a listing of all rational numbers in X = (0, 1). Fix a δ ∈
(0, 1/8) sufficiently small and let A0 = X∩∪∞i=1(qi−δ2−i, qi+δ2−i). For x ∈ A0,
there is an interval (a, b) ⊂ X such that x ∈ (a, b) ⊂ A0. For x ∈ A0 define
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a(x) = inf{a ∈ [0, x] | (a, x) ⊂ A0} and b(x) = sup{b ∈ [x, 1] | (x, b) ⊂ A0}.
Then, (a(x), b(x)) ⊂ A0 for all x ∈ A0. Since A0 is a countable union of
intervals, there are countably many xi’s in A0 such that A0 = ∪∞i=1(a(xi), b(xi))
and such that these intervals are disjoint.

The intervals (a(xi), b(xi))’s can be ordered to obtain the class of intervals
{(ai, bi) : i = 1, 2, . . .} where the ordering is such that (ai, bi) satisfies i < j
whenever bi−ai > bj−aj , or ai < aj when bi−ai = bj−aj . Now let A = X ∩Ac

0

and define probability density f(x) on X as

f(x) =

{

1 if x ∈ A,

1 + (bi−ai)
2

π sin 2π(x−ai)
bi−ai

if x ∈ (ai, bi) for some i.

We see immediately that f is continuous on X and so, for every x ∈ X ,
limn→∞ P (Bn(x))/µk(Bn(x)) = f(x) for any Bn(x) shrinking nicely to x.

We need the following results.

Lemma 10. (i) volume(A) = 1− 2α ≥ 1− 2δ where α =
∑∞

i=1(bi − ai)/2.
(ii) For any x0 ∈ A, P (f(x) ≤ f(x0)) = 1−β−α where β =

∑∞
i=1(bi−ai)

3/π2.
Proof: (i) We have that volume(A0) = A0 = ∪∞i=1(ai, bi) =

∑∞
i=1(bi−ai) = 2α

and volume(A) = 1− volume(A0). Further,

volume(A) = volume((0, 1)\A0) = volume((0, 1) ∩ ∩∞i=1(qi − δ2−1, qi + δ2−i)c)

≥ 1−
∞
∑

i=1

volume((qi − δ2−1, qi + δ2−i)) = 1−
∞
∑

i=1

2δ2−i = 1− 2δ.

(ii) For any x0 ∈ A, f(x0) = 1 and

P (f(x) ≤ f(x0)) = P (f(x) ≤ 1) = 1− P (f(x) > 1)

= 1− P (∪∞i=1(ai, (ai + bi)/2))

= 1−
∞
∑

i=1

∫

ai+bi
2

ai

f(x)dx

= 1−
∞
∑

i=1

[

bi − ai

2
+

∫

ai+bi
2

ai

(bi − ai)
2

π
sin

2π(x− ai)

bi − ai
dx

]

= 1− α +

∞
∑

i=1

(bi − ai)
3

2π2
cos

2π(x− ai)

bi − ai

∣

∣

∣

∣

x=(ai+bi)/2

x=ai

= 1− α−
∞
∑

i=1

(bi − ai)
3

π2

= 1− α− β.

Note that δ ∈ (0, 1/8) and Lemma 10(i) implies that the volume of A is bigger
than 3/4.

Now let Bn(x) = X ∩ ((k − 1)2−n, k2−n] where k = d2nxe for x ∈ X . Then,
Bn(x) = (ln(x), un(x)] for k < 2n and Bn(x) = (ln(x), un(x)) if k = 2n.

Lemma 11. The set N(x) = {n ∈ N : x − ln(x) > un(x) − x} has infinitely
many elements for x ∈ X .
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Proof: The binary expansion of x is given by x = [0.x1x2x3 · · · ]2 =
∑∞

i=1 xi2
−i.

Then, 2nx = [x1 · · ·xn.xn+1xn+2 · · · ]2 and un(x) = 2−n+[0.x1 · · ·xn]2 if xn+k =
1 for some k > 0 and otherwise, i.e., xn+k = 0 for all k ∈ N or equivalently
x = m2−n for some m ∈ N, un(x) = [0.x1 · · ·xn]2 = x.

For the second case, i.e., un(x) = x. Then, uk(x) = x for all k ≥ n. Note
lk(x) = uk(x) − 2−k. Thus, x − lk(x) = uk(x) − lk(x) = 2−k > 0 = uk(x) − x
for all k ≥ n. Hence, N(x) contains infinitely many elements.

For the first case, i.e., there are infinitely many 1’s in x1, x2, . . ., assume that
N(x) is finite. Then there is a number M ∈ N such that x− ln(x) ≤ un(x)− x
for all n ≥ M . Now x − ln(x) ≤ un(x) − x implies that xn+1 = 0 since
x− ln(x) < un(x)− x implies this and if x− ln(x) = un(x)− x, then we would
be in the second case as un+1(x) = x. Hence, we get xn = 0 for all n ≥ 1 + M .
In other words x = [0.x1 · · ·xM ]2 = m2−M for some m ∈ N and this is a
contradiction. Hence N(x) must contain infinitely many elements.

Let A = {ai : i = 1, 2, . . .} and B = {bi : i = 1, 2, . . .}. We have the following
result.

Lemma 12. Each x ∈ A is irrational and A ∪ B ⊂A.
Proof: We must have that x ∈ A is irrational since A0 contains all the rationals
in (0, 1) and A = (0, 1)\A0. For any x ∈ A ∪ B, we have x ∈ A because A =
(0, 1)\ ∪∞i=1 (ai, bi).

Now if x ∈ A, then ln(x) < x < un(x) since ln(x) and un(x) are rational
and x is irrational by Lemma 12. Since ln(x) ∈ A0, there exists i such that
ln(x) ∈ (ai, bi) and bi ≤ x since x /∈ A0. Therefore, ai < ln(x) < bi ≤ x
implying bi = min(B∩Bn(x)) and we define al,n(x) = ai, bl,n(x) = bi. Similarly,
since un(x) ∈ A0, there exists j such that un(x) ∈ (aj , bj) and x ≤ aj since
x /∈ A0. Therefore, x ≤ aj < un(x) < bj implying aj = max(A∩Bn(x)) and we
define au,n(x) = aj , bu,n(x) = bj . Note that

al,n(x) < ln(x) < bl,n(x) < au,n(x) < un(x) < bu,n(x) (A6)

whenever x ∈ A. Note that we must have that bl,n(b) = b for any b ∈ B and
au,n(a) = a for any a ∈ A.

We need the following trigonometric inequalities.

Lemma 13. (i) | sin x| ≤ |x| for all x ∈ R,
(ii) cosx ≤ 1− x2/2 + x4/24 = 1− (x2/2)(1− x2/12) for all |x| ≤

√
56.

Proof: (i) The result is well-known.
(ii) The trigonometric function expansion of cosx is given by

cosx =

∞
∑

i=0

(−1)i x2i

(2i)!
= 1− x2

2
+

x4

24
−

∞
∑

j=2

x4j−2

(4j − 2)!

(

1− x2

(4j − 1)(4j)

)

.

For |x| ≤
√

56 and j ≥ 2, we have 1− x2/[(4j − 1)4j] ≥ 0 as well as

cosx ≤
∞
∑

i=0

(−1)i x2i

(2i)!
= 1− x2

2
+

x4

24
.
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Hence, the lemma follows.

We now establish some inequalities for P (Bn(x)).

Lemma 14. For x ∈ A we have that P (Bn(x)) satisfies

P (Bn(x)) ≥ 2−n − (bl,n(x)− al,n(x))(bl,n(x)− ln(x))2 (A7)

and

P (Bn(x))

≤ 2−n − (bl,n(x)− al,n(x))(bl,n(x)− ln(x))2
(

1− π2(bl,n(x) − ln(x))2

3(bl,n(x) − al,n(x))2

)

+

(bu,n(x)− au,n(x))(un(x)− au,n(x))2. (A8)

Proof : Suppose x ∈ A. Let Mn(x) = {i ∈ N : (ai, bi) ∩ Bn(x) 6= ∅}.

P (Bn(x)) =

∫ un(x)

ln(x)

f(v)dv

=

∫ un(x)

ln(x)

1 +
∑

i∈Mn(x)

I(ai,bi)(v)
(bi − ai)

2

π
sin

2π(v − ai)

bi − ai
dv

= 2−n +

∫ bl,n(x)

ln(x)

(bl,n(x)− al,n(x))2

π
sin

2π(v − al,n(x))

bl,n(x) − al,n(x)
dv

+

∫ un(x)

au,n(x)

(bu,n(x) − au,n(x))2

π
sin

2π(v − au,n(x))

bu,n(x)− au,n(x)
dv

= 2−n +
(bl,n(x) − al,n(x))3

2π2
(cos

2π(bl,n(x)− ln(x))

bl,n(x)− al,n(x)
− 1) (A9)

+
(bu,n(x)− au,n(x))3

2π2

(

1− cos
2π(un(x)− au,n(x))

bu,n(x) − au,n(x)

)

= 2−n − (bl,n(x) − al,n(x))3

π2
sin2 π(bl,n(x)− ln(x))

bl,n(x) − al,n(x)

+
(bu,n(x)− au,n(x))3

π2
sin2 π(un(x) − au,n(x))

bu,n(x) − au,n(x)
. (A10)

where the last equality is derived using 1 − cosx = 2 sin2(x/2). Then (A7)
follows from Lemma 13(i) and (A8) follows from

0 ≤ 2π(bl,n(x) − ln(x))

bl,n(x) − al,n(x)
≤ 2π <

√
56

and applying Lemma 13(ii) to the second term in (A9) and Lemma 13(i) to the
last term in (A10).

Lemma 15. Consider bj ∈ B and let Bn = {Bn(x) |x ∈ X}. Then,

lim inf
n→∞

∑

B∈Bn:P (B)≤P (Bn(bj))

P (B) ≤ α− β.
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Proof: Let C1,n = {B ∈ Bn |B ∩ B 6= ∅, P (B) ≤ P (Bn(bj))} and C2,n = {B ∈
Bn |B ∩ B = ∅, P (B) ≤ P (Bn(bj))}. Then, {B ∈ Bn |P (B) ≤ P (Bn(bj))} =
C1,n ∪ C2,n. We will prove that (i) P (Σ(C2,n)) → α − β as n → ∞ and (ii)
P (Σ(C1,n)) → 0 as n →∞, subject to n ∈ N(bj), where Σ(C) = ∪C∈CC.
(i) Since bj ∈ A, we have that P (Bn(bj))/volume(Bn(bj)) → 1, and also

P (Bn(x))/volume(Bn(x)) → 1 +
(bi − ai)

2

π
sin

2π(x− ai)

bi − ai

when x ∈ (ai, bi) for some i. It is then clear that lim infn→∞ Σ(C2,n) ⊃ D1,ε =
{x ∈ X | f(x) < 1 − ε}. Further, if x ∈ A, then by (A6) Bn(x) ∩ B 6= ∅ for
any n and so lim supn→∞ Σ(C2,n) ⊂ D2,ε = {x ∈ X | f(x) < 1 + ε, ai < x <
bi for some i} for any ε > 0. Hence, {x ∈ X | f(x) < 1} ⊂ lim infn→∞ Σ(C2,n) ⊂
lim supn→∞ Σ(C2,n) ⊂ {x ∈ X | f(x) <= 1, ai < x < bi for some i}. Note
P ({x ∈ X | f(x) = 1, ai < x < bi for some i}) = 0 because this set contains
countably many points. Thus,

P (Σ(C2,n)) → P ({x ∈ X | f(x) < 1})

=

∞
∑

i=1

∫ bi

ai+bi
2

1 +
(bi − ai)

2

π
sin

2π(x− ai)

bi − ai
dx = α− β.

(ii) Fix ε ∈ (0, 1/4). By the comment after (A6) we have that al,n(bj) = aj

and bl,n(bj) = bj . As n increases, bu,n(bj)− au,n(bj) converges to 0, because the
length of Bn(bj) shrinks to 0, and also bj− ln(bj) → 0. Hence, there is a number
N0 > 0 such that for all n ≥ N0, we have that π2(2−n)2/3(bj−aj)

2 < min{1, ε}
and bu,n(bj)− au,n(bj) < ε(bj − aj)/4. Then, for all n ≥ N0 in N(bj) defined in
Lemma 11, and using bj − ln(bj) ≤ 2−n, the upper bound on P (Bn(bj)) in (A8)
becomes

P (Bn(bj)) ≤ 2−n − (bj − aj)(bj − ln(bj))
2

(

1− π2(bj − ln(bj))
2

3(bj − aj)2

)

+ (bu,n(bj)− au,n(bj))(un(bj)− au,n(bj))
2

≤ 2−n − (bj − aj)(2
−n/2)2

(

1− π2(2−n)2

3(bj − aj)2

)

+ ε(bj − aj)(2
−n/2)2

< 2−n − (bj − aj)(2
−n/2)2(1− 2ε).

For any x ∈ A, the inequality (A7) becomes

P (Bn(x)) ≥ 2−n − (bl,n(x)− al,n(x)(bl,n(x)− ln(x))2

≥ 2−n − (bl,n(x)− al,n(x))2−2n.

Hence, for all x ∈ A satisfying (bl,n(x)− al,n(x)) < (bj − aj)/8,

P (Bn(x)) ≥ 2−n − (bl,n(x)− al,n(x))2−2n > 2−n − (bj − aj)2
−2n/8

≥ 2−n − (bj − aj)2
−2n(1− 2ε)/4 > P (Bn(bj)).
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Thus, for x ∈ A, P (Bn(x)) ≤ P (Bn(bj)) implies bl,n(x)− bl,n(x) ≥ (bj − aj)/8.
Since bi − ai → 0 as i → ∞, there is J ∈ N such that bi − ai < (bj − aj)/8

for all i > J . It then follows that

C1,n = {B ∈ Bn |B ∩ B 6= ∅, P (B) ≤ P (Bn(bj))}
= {Bn(x) |x ∈ B, P (Bn(x)) ≤ P (Bn(bj))}
⊂ {Bn(bi) | i ≤ J}.

Then, since f(x) ≤ 2 for all x ∈ X , we have that P (Σ(C1,n)) ≤ P (Σ({Bn(bi) | i ≤
J})) ≤ 2J/2n → 0 as n →∞ subject to n ∈ N0(bj) and this establishes (ii).

The result follows by combining (i) and (ii).

We now have the final result.

Theorem 16. For the distribution on X = (0, 1), with continuous density
given by f, and for bj ∈ B, we have that P (f(x) ≤ f(bj)) = 1 − β − α while
∑

B∈Bn:P (B)≤P (Bn(bj )) P (B) either doesn’t converge or has limit equal to α−β <
1− β − α.
Proof: By Lemma 12, bj ∈ A so by Lemma 10(ii) we have that P (f(x) ≤
f(bj)) = 1 − β − α. By Lemma 15, if

∑

B∈Bn:P (B)≤P (Bn(bj))
P (B) converges,

then it converges to α − β since we constructed a subsequence converging to
this value in Lemma 15. If α − β ≥ 1 − β − α, then α ≥ 1/2, but by Lemma
10(i) and δ ∈ (0, 1/8), we have that α < δ ≤ 1/8.
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