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In this chapter, we begin our discussion of statistical inference. Probability theory is
primarily concerned with calculating various quantities associated with a probability
model. This requires that we know what the correct probability model is. In applica-
tions, this is often not the case, and the best we can say is that the correct probability
measure to use is in a set of possible probability measures. We refer to this collection as
the statistical model. So, in a sense, our uncertainty has increased; not only do we have
the uncertainty associated with an outcome or response as described by a probability
measure, but now we are also uncertain about what the probability measure is.

Statistical inference is concerned with making statements or inferences about char-
acteristics of the true underlying probability measure. Of course, these inferences must
be based on some kind of information; the statistical model makes up part of it. Another
important part of the information will be given by an observed outcome or response,
which we refer to as the data. Inferences then take the form of various statements about
the true underlying probability measure from which the data were obtained. These take
a variety of forms, which we refer to as types of inferences.

The role of this chapter is to introduce the basic concepts and ideas of statistical
inference. The most prominent approaches to inference are discussed in Chapters 6,
7, and 8. Likelihood methods require the least structure as described in Chapter 6.
Bayesian methods, discussed in Chapter 7, require some additional ingredients. Infer-
ence methods based on measures of performance and loss functions are described in
Chapter 8.
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254 Section 5.1: Why Do We Need Statistics?

5.1 Why Do We Need Statistics?
While we will spend much of our time discussing the theory of statistics, we should
always remember that statistics is an applied subject. By this we mean that ultimately
statistical theory will be applied to real-world situations to answer questions of practical
importance.

What is it that characterizes those contexts in which statistical methods are useful?
Perhaps the best way to answer this is to consider a practical example where statistical
methodology plays an important role.

EXAMPLE 5.1.1 Stanford Heart Transplant Study
In the paper by Turnbull, Brown, and Hu entitled “Survivorship of Heart Transplant
Data” (Journal of the American Statistical Association, March 1974, Volume 69, 74–
80), an analysis is conducted to determine whether or not a heart transplant program,
instituted at Stanford University, is in fact producing the intended outcome. In this case,
the intended outcome is an increased length of life, namely, a patient who receives a
new heart should live longer than if no new heart was received.

It is obviously important to ensure that a proposed medical treatment for a disease
leads to an improvement in the condition. Clearly, we would not want it to lead to a
deterioration in the condition. Also, if it only produced a small improvement, it may
not be worth carrying out if it is very expensive or causes additional suffering.

We can never know whether a particular patient who received a new heart has lived
longer because of the transplant. So our only hope in determining whether the treat-
ment is working is to compare the lifelengths of patients who received new hearts with
the lifelengths of patients who did not. There are many factors that influence a patient’s
lifelength, many of which will have nothing to do with the condition of the patient’s
heart. For example, lifestyle and the existence of other pathologies, which will vary
greatly from patient to patient, will have a great influence. So how can we make this
comparison?

One approach to this problem is to imagine that there are probability distributions
that describe the lifelengths of the two groups. Let these be given by the densities fT
and fC , where T denotes transplant and C denotes no transplant. Here we have used
C as our label because this group is serving as a control in the study to provide some
comparison to the treatment (a heart transplant). Then we consider the lifelength of a
patient who received a transplant as a random observation from fT and the lifelength of
a patient who did not receive a transplant as a random observation from fC . We want
to compare fT and fC , in some fashion, to determine whether or not the transplant
treatment is working. For example, we might compute the mean lifelengths of each
distribution and compare these. If the mean lifelength of fT is greater than fC , then
we can assert that the treatment is working. Of course, we would still have to judge
whether the size of the improvement is enough to warrant the additional expense and
patients’ suffering.

If we could take an arbitrarily large number of observations from fT and fC , then
we know, from the results in previous chapters, that we could determine these distribu-
tions with a great deal of accuracy. In practice, however, we are restricted to a relatively
small number of observations. For example, in the cited study there were 30 patients
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P X S P X S P X S
1 49 d 11 1400 a 21 2 d
2 5 d 12 5 d 22 148 d
3 17 d 13 34 d 23 1 d
4 2 d 14 15 d 24 68 d
5 39 d 15 11 d 25 31 d
6 84 d 16 2 d 26 1 d
7 7 d 17 1 d 27 20 d
8 0 d 18 39 d 28 118 a
9 35 d 19 8 d 29 91 a

10 36 d 20 101 d 30 427 a

Table 5.1: Survival times (X) in days and status (S) at the end of the study for each
patient (P) in the control group.

in the control group (those who did not receive a transplant) and 52 patients in the
treatment group (those who did receive a transplant).

For each control patient, the value of X — the number of days they were alive
after the date they were determined to be a candidate for a heart transplant until the
termination date of the study — was recorded. For various reasons, these patients did
not receive new hearts, e.g., they died before a new heart could be found for them.
These data, together with an indicator for the status of the patient at the termination
date of the study, are presented in Table 5.1. The indicator value S = a denotes that the
patient was alive at the end of the study and S = d denotes that the patient was dead.

For each treatment patient, the value of Y, the number of days they waited for the
transplant after the date they were determined to be a candidate for a heart transplant,
and the value of Z, the number of days they were alive after the date they received
the heart transplant until the termination date of the study, were both recorded. The
survival times for the treatment group are then given by the values of Y + Z . These
data, together with an indicator for the status of the patient at the termination date of
the study, are presented in Table 5.2.

We cannot compare fT and fC directly because we do not know these distributions.
But we do have some information about them because we have obtained values from
each, as presented in Tables 5.1 and 5.2. So how do we use these data to compare fT
and fC to answer the question of central importance, concerning whether or not the
treatment is effective? This is the realm of statistics and statistical theory, namely, pro-
viding methods for making inferences about unknown probability distributions based
upon observations (samples) obtained from them.

We note that we have simplified this example somewhat, although our discussion
presents the essence of the problem. The added complexity comes from the fact that
typically statisticians will have available additional data on each patient, such as their
age, gender, and disease history. As a particular example of this, in Table 5.2 we have
the values of both Y and Z for each patient in the treatment group. As it turns out,
this additional information, known as covariates, can be used to make our comparisons
more accurate. This will be discussed in Chapter 10.



256 Section 5.1: Why Do We Need Statistics?

P Y Z S P Y Z S P Y Z S
1 0 15 d 19 50 1140 a 37 77 442 a
2 35 3 d 20 22 1153 a 38 2 65 d
3 50 624 d 21 45 54 d 39 26 419 a
4 11 46 d 22 18 47 d 40 32 362 a
5 25 127 d 23 4 0 d 41 13 64 d
6 16 61 d 24 1 43 d 42 56 228 d
7 36 1350 d 25 40 971 a 43 2 65 d
8 27 312 d 26 57 868 a 44 9 264 a
9 19 24 d 27 0 44 d 45 4 25 d

10 17 10 d 28 1 780 a 46 30 193 a
11 7 1024 d 29 20 51 d 47 3 196 a
12 11 39 d 30 35 710 a 48 26 63 d
13 2 730 d 31 82 663 a 49 4 12 d
14 82 136 d 32 31 253 d 50 45 103 a
15 24 1379 a 33 40 147 d 51 25 60 a
16 70 1 d 34 9 51 d 52 5 43 a
17 15 836 d 35 66 479 a
18 16 60 d 36 20 322 d

Table 5.2: The number of days until transplant (Y ), survival times in days after trans-
plant (Z), and status (S) at the end of the study for each patient (P) in the treatment
group.

The previous example provides some evidence that questions of great practical im-
portance require the use of statistical thinking and methodology. There are many sit-
uations in the physical and social sciences where statistics plays a key role, and the
reasons are just like those found in Example 5.1.1. The central ingredient in all of
these is that we are faced with uncertainty. This uncertainty is caused both by vari-
ation, which can be modeled via probability, and by the fact that we cannot collect
enough observations to know the correct probability models precisely. The first four
chapters have dealt with building, and using, a mathematical model to deal with the
first source of uncertainty. In this chapter, we begin to discuss methods for dealing
with the second source of uncertainty.

Summary of Section 5.1

• Statistics is applied to situations in which we have questions that cannot be an-
swered definitively, typically because of variation in data.

• Probability is used to model the variation observed in the data. Statistical infer-
ence is concerned with using the observed data to help identify the true proba-
bility distribution (or distributions) producing this variation and thus gain insight
into the answers to the questions of interest.
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EXERCISES

5.1.1 Compute the mean survival times for the control group and for the treatment
groups in Example 5.1.1. What do you conclude from these numbers? Do you think
it is valid to base your conclusions about the effectiveness of the treatment on these
numbers? Explain why or why not.
5.1.2 Are there any unusual observations in the data presented in Example 5.1.1? If so,
what effect do you think these observations have on the mean survival times computed
in Exercise 5.1.1?
5.1.3 In Example 5.1.1, we can use the status variable S as a covariate. What is the
practical significance of this variable?
5.1.4 A student is uncertain about the mark that will be received in a statistics course.
The course instructor has made available a database of marks in the course for a number
of years. Can you identify a probability distribution that may be relevant to quantifying
the student’s uncertainty? What covariates might be relevant in this situation?
5.1.5 The following data were generated from an N(µ, 1) distribution by a student.
Unfortunately, the student forgot which value of µ was used, so we are uncertain about
the correct probability distribution to use to describe the variation in the data.

0.2 −0.7 0.0 −1.9 0.7 −0.3 0.3 0.4
0.3 −0.8 1.5 0.1 0.3 −0.7 −1.8 0.2

Can you suggest a plausible value for µ? Explain your reasoning.
5.1.6 Suppose you are interested in determining the average age of all male students
at a particular college. The registrar of the college allows you access to a database
that lists the age of every student at the college. Describe how you might answer your
question. Is this a statistical problem in the sense that you are uncertain about anything
and so will require the use of statistical methodology?
5.1.7 Suppose you are told that a characteristic X follows an N(µ1, 1) distribution and
a characteristic Y follows an N(µ2, 1) distribution where µ1 and µ2 are unknown. In
addition, you are given the results x1, . . . , xm of m independent measurements on X
and y1, . . . , yn of n independent measurements on Y. Suggest a method for determin-
ing whether or not µ1 and µ2 are equal. Can you think of any problems with your
approach?
5.1.8 Suppose we know that a characteristic X follows an Exponential(λ) distribution
and you are required to determine λ based on i.i.d. observations x1, . . . , xn from this
distribution. Suggest a method for doing this. Can you think of any problems with your
approach?

PROBLEMS

5.1.9 Can you identify any potential problems with the method we have discussed in
Example 5.1.1 for determining whether or not the heart transplant program is effective
in extending life?
5.1.10 Suppose you are able to generate samples of any size from a probability distri-
bution P for which it is very difficult to compute P(C) for some set C . Explain how
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you might estimate P(C) based on a sample. What role does the size of the sample
play in your uncertainty about how good your approximation is. Does the size of P(C)
play a role in this?

COMPUTER PROBLEMS

5.1.11 Suppose we want to obtain the distribution of the quantity Y = X4 + 2X3 − 3
when X ∼ N(0, 1).Here we are faced with a form of mathematical uncertainty because
it is very difficult to determine the distribution of Y using mathematical methods. Pro-
pose a computer method for approximating the distribution function of Y and estimate
P(Y ∈ (1, 2)).What is the relevance of statistical methodology to your approach?

DISCUSSION TOPICS

5.1.12 Sometimes it is claimed that all uncertainties can and should be modeled using
probability. Discuss this issue in the context of Example 5.1.1, namely, indicate all the
things you are uncertain about in this example and how you might propose probability
distributions to quantify these uncertainties.

5.2 Inference Using a Probability Model
In the first four chapters, we have discussed probability theory, a good part of which
has involved the mathematics of probability theory. This tells us how to carry out
various calculations associated with the application of the theory. It is important to
keep in mind, however, our reasons for introducing probability in the first place. As
we discussed in Section 1.1, probability is concerned with measuring or quantifying
uncertainty.

Of course, we are uncertain about many things, and we cannot claim that prob-
ability is applicable to all these situations. Let us assume, however, that we are in
a situation in which we feel probability is applicable and that we have a probability
measure P defined on a collection of subsets of a sample space S for a response s.

In an application of probability, we presume that we know P and are uncertain
about a future, or concealed, response value s ∈ S. In such a context, we may be
required, or may wish, to make an inference about the unknown value of s. This can
take the form of a prediction or estimate of a plausible value for s, e.g., under suitable
conditions, we might take the expected value of s as our prediction. In other contexts,
we may be asked to construct a subset that has a high probability of containing s and
is in some sense small, e.g., find the region that contains at least 95% of the probability
and has the smallest size amongst all such regions. Alternatively, we might be asked
to assess whether or not a stated value s0 is an implausible value from the known P,
e.g., assess whether or not s0 lies in a region assigned low probability by P and so
is implausible. These are examples of inferences that are relevant to applications of
probability theory.
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EXAMPLE 5.2.1
As a specific application, consider the lifelength X in years of a machine where it is
known that X ∼Exponential(1) (see Figure 5.2.1).
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Figure 5.2.1: Plot of the Exponential(1) density f .

Then for a new machine, we might predict its lifelength by E(X) = 1 year. Further-
more, from the graph of the Exponential(1) density, it is clear that the smallest interval
containing 95% of the probability for X is (0, c) , where c satisfies

0.95 =
! c

0
e−x dx = 1− e−c

or c = − ln (0.05) = 2.9957. This interval gives us a reasonable range of probable
lifelengths for the new machine. Finally, if we wanted to assess whether or not x0 = 5
is a plausible lifelength for a newly purchased machine, we might compute the tail
probability as

P(X > 5) =
! ∞

5
e−x dx = e−5 = 0.0067,

which, in this case, is very small and therefore indicates that x0 = 5 is fairly far out in
the tail. The right tail of this density is a region of low probability for this distribution,
so x0 = 5 can be considered implausible. It is thus unlikely that a machine will last 5
years, so a purchaser would have to plan to replace the machine before that period is
over.

In some applications, we receive some partial information about the unknown s
taking the form s ∈ C ⊂ S. In such a case, we replace P by the conditional probability
measure P (· |C) when deriving our inferences. Our reasons for doing this are many,
and, in general, we can say that most statisticians agree that it is the right thing to do. It
is important to recognize, however, that this step does not proceed from a mathematical
theorem; rather it can be regarded as a basic axiom or principle of inference. We will
refer to this as the principle of conditional probability, which will play a key role in
some later developments.
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EXAMPLE 5.2.2
Suppose we have a machine whose lifelength is distributed as in Example 5.2.1, and the
machine has already been running for one year. Then inferences about the lifelength of
the machine are based on the conditional distribution, given that X > 1. The density
of this conditional distribution is given by e−(x−1) for x > 1. The predicted lifelength
is now

E(X | X > 1) =
! ∞

1
xe−(x−1) dx = −xe−(x−1)

"""∞
1
+
! ∞

1
e−(x−1) dx = 2.

The fact that the additional lifelength is the same as the predicted lifelength before the
machine starts working is a special characteristic of the Exponential distribution. This
will not be true in general (see Exercise 5.2.4).

The tail probability measuring the plausibility of the value x0 = 5 is given by

P(X > 5 | X > 1) =
! ∞

5
e−(x−1) dx = e−4 = 0.0183,

which indicates that x0 = 5 is a little more plausible in light of the fact that the machine
has already survived one year. The shortest interval containing 0.95 of the conditional
probability is now of the form (1, c), where c is the solution to

0.95 =
! c

1
e−(x−1) dx = e(e−1 − e−c),

which implies that c = − ln
#
e−1 − 0.95e−1

$ = 3. 9957.

Our main point in this section is simply that we are already somewhat familiar with
inferential concepts. Furthermore, via the principle of conditional probability, we have
a basic rule or axiom governing how we go about making inferences in the context
where the probability measure P is known and s is not known.

Summary of Section 5.2

• Probability models are used to model uncertainty about future responses.

• We can use the probability distribution to predict a future response or assess
whether or not a given value makes sense as a possible future value from the
distribution.

EXERCISES

5.2.1 Sometimes the mode of a density (the point where the density takes its maximum
value) is chosen as a predictor for a future value of a response. Determine this predictor
in Examples 5.2.1 and 5.2.2 and comment on its suitability as a predictor.
5.2.2 Suppose it has been decided to use the mean of a distribution to predict a future
response. In Example 5.2.1, compute the mean-squared error (expected value of the
square of the error between a future value and its predictor) of this predictor, prior to
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observing the value. To what characteristic of the distribution of the lifelength does
this correspond?
5.2.3 Graph the density of the distribution obtained as a mixture of a normal distribu-
tion with mean 4 and variance 1 and a normal distribution with mean −4 and variance
1, where the mixture probability is 0.5. Explain why neither the mean nor the mode is
a suitable predictor in this case. (Hint: Section 2.5.4.)
5.2.4 Repeat the calculations of Examples 5.2.1 and 5.2.2 when the lifelength of a
machine is known to be distributed as Y = 10X, where X ∼Uniform[0, 1].
5.2.5 Suppose that X ∼ N(10, 2). What value would you record as a prediction of a
future value of X? How would you justify your choice?
5.2.6 Suppose that X ∼ N(10, 2). Record the smallest interval containing 0.95 of the
probability for a future response. (Hint: Consider a plot of the density.)
5.2.7 Suppose that X ∼ Gamma(3, 6). What value would you record as a prediction
of a future value of X? How would you justify your choice?
5.2.8 Suppose that X ∼ Poisson(5).What value would you record as a prediction of a
future value of X? How would you justify your choice?
5.2.9 Suppose that X ∼Geometric(1/3).What value would you record as a prediction
of a future value of X?
5.2.10 Suppose that X follows the following probability distribution.

x 1 2 3 4
P(X = x) 1/2 1/4 1/8 1/8

(a) Record a prediction of a future value of X.

(b) Suppose you are then told that X ≥ 2. Record a prediction of a future value of X
that uses this information.

PROBLEMS

5.2.11 Suppose a fair coin is tossed 10 times and the response X measured is the
number of times we observe a head.
(a) If you use the expected value of the response as a predictor, then what is the predic-
tion of a future response X?
(b) Using Table D.6 (or a statistical package), compute a shortest interval containing
at least 0.95 of the probability for X. Note that it might help to plot the probability
function of X first.
(c) What region would you use to assess whether or not a value s0 is a possible future
value? (Hint: What are the regions of low probability for the distribution?) Assess
whether or not x = 8 is plausible.
5.2.12 In Example 5.2.1, explain (intuitively) why the interval (0, 2.9957) is the short-
est interval containing 0.95 of the probability for the lifelength.
5.2.13 (Problem 5.2.11 continued) Suppose we are told that the number of heads ob-
served is an even number. Repeat parts (a), (b), and (c).
5.2.14 Suppose that a response X is distributed Beta(a, b) with a, b > 1 fixed (see
Problem 2.4.16). Determine the mean and the mode (point where density takes its
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maximum) of this distribution and assess which is the most accurate predictor of a
future X when using mean-squared error, i.e., the expected squared distance between
X and the prediction.
5.2.15 Suppose that a response X is distributed N(0, 1) and that we have decided to
predict a future value using the mean of the distribution.
(a) Determine the prediction for a future X.

(b) Determine the prediction for a future Y = X2.

(c) Comment on the relationship (or lack thereof) between the answers in parts (a) and
(b).
5.2.16 Suppose that X ∼ Geometric(1/3). Determine the shortest interval containing
0.95 of the probability for a future X. (Hint: Plot the probability function and record
the distribution function.)
5.2.17 Suppose that X ∼ Geometric(1/3) and we are told that X > 5. What value
would you record as a prediction of a future value of X? Determine the shortest interval
containing 0.95 of the probability for a future X. (Hint: Plot the probability function
and record the distribution function.)

DISCUSSION TOPICS

5.2.18 Do you think it is realistic for a practitioner to proceed as if he knows the true
probability distribution for a response in a problem?

5.3 Statistical Models
In a statistical problem, we are faced with uncertainty of a different character than
that arising in Section 5.2. In a statistical context, we observe the data s, but we are
uncertain about P . In such a situation, we want to construct inferences about P based
on s. This is the inverse of the situation discussed in Section 5.2.

How we should go about making these statistical inferences is probably not at all
obvious. In fact, there are several possible approaches that we will discuss in subse-
quent chapters. In this chapter, we will develop the basic ingredients of all the ap-
proaches.

Common to virtually all approaches to statistical inference is the concept of the
statistical model for the data s. This takes the form of a set {Pθ : θ ∈ *} of probability
measures, one of which corresponds to the true unknown probability measure P that
produced the data s. In other words, we are asserting that there is a random mechanism
generating s, and we know that the corresponding probability measure P is one of the
probability measures in {Pθ : θ ∈ *} .

The statistical model {Pθ : θ ∈ *} corresponds to the information a statistician
brings to the application about what the true probability measure is, or at least what
one is willing to assume about it. The variable θ is called the parameter of the model,
and the set * is called the parameter space. Typically, we use models where θ ∈ *
indexes the probability measures in the model, i.e., Pθ1 = Pθ2 if and only if θ1 = θ2.
If the probability measures Pθ can all be presented via probability functions or den-
sity functions fθ (for convenience we will not distinguish between the discrete and
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continuous case in the notation), then it is common to write the statistical model as
{ fθ : θ ∈ *}.

From the definition of a statistical model, we see that there is a unique value θ ∈
*, such that Pθ is the true probability measure. We refer to this value as the true
parameter value. It is obviously equivalent to talk about making inferences about the
true parameter value rather than the true probability measure, i.e., an inference about
the true value of θ is at once an inference about the true probability distribution. So, for
example, we may wish to estimate the true value of θ, construct small regions in* that
are likely to contain the true value, or assess whether or not the data are in agreement
with some particular value θ0, suggested as being the true value. These are types of
inferences, just like those we discussed in Section 5.2, but the situation here is quite
different.

EXAMPLE 5.3.1
Suppose we have an urn containing 100 chips, each colored either black B or white W .
Suppose further that we are told there are either 50 or 60 black chips in the urn. The
chips are thoroughly mixed, and then two chips are withdrawn without replacement.
The goal is to make an inference about the true number of black chips in the urn,
having observed the data s = (s1, s2) , where si is the color of the ith chip drawn.

In this case, we can take the statistical model to be {Pθ : θ ∈ *} , where θ is the
number of black chips in the urn, so that * = {50, 60} , and Pθ is the probability
measure on

S = {(B, B) , (B,W ) , (W, B) , (W,W )}
corresponding to θ. Therefore, P50 assigns the probability 50 ·49/ (100 · 99) to each of
the sequences (B, B) and (W,W ) and the probability 50 · 50/ (100 · 99) to each of the
sequences (B,W ) and (W, B) , and P60 assigns the probability 60 · 59/ (100 · 99) to
the sequence (B, B), the probability 40 · 39/ (100 · 99) to the sequence (W,W ) , and
the probability 60 · 40/ (100 · 99) to each of the sequences (B,W ) and (W, B).

The choice of the parameter is somewhat arbitrary, as we could have easily la-
belled the possible probability measures as P1 and P2, respectively. The parameter is
in essence only a label that allows us to distinguish amongst the possible candidates for
the true probability measure. It is typical, however, to choose this label conveniently
so that it means something in the problem under discussion.

We note some additional terminology in common usage. If a single observed value
for a response X has the statistical model { fθ : θ ∈ *}, then a sample (X1, . . . , Xn)
(recall that sample here means that the Xi are independent and identically distributed
— see Definition 2.8.6) has joint density given by fθ (x1) fθ (x2) · · · fθ (xn) for some
θ ∈ *. This specifies the statistical model for the response (X1, . . . , Xn) . We refer to
this as the statistical model for a sample. Of course, the true value of θ for the statistical
model for a sample is the same as that for a single observation. Sometimes, rather than
referring to the statistical model for a sample, we speak of a sample from the statistical
model { fθ : θ ∈ *} .

Note that, wherever possible, we will use uppercase letters to denote an unobserved
value of a random variable X and lowercase letters to denote the observed value. So an
observed sample (X1, . . . , Xn) will be denoted (x1, . . . , xn) .
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EXAMPLE 5.3.2
Suppose there are two manufacturing plants for machines. It is known that machines
built by the first plant have lifelengths distributed Exponential(1), while machines man-
ufactured by the second plant have lifelengths distributed Exponential(1.5). The den-
sities of these distributions are depicted in Figure 5.3.1.
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Figure 5.3.1: Plot of the Exponential(1) (solid line) and Exponential(1.5) (dashed line)
densities.

You have purchased five of these machines knowing that all five came from the
same plant, but you do not know which plant. Subsequently, you observe the lifelengths
of these machines, obtaining the sample (x1, . . . , x5), and want to make inferences
about the true P .

In this case, the statistical model for a single observation comprises two probability
measures {P1, P2}, where P1 is the Exponential(1) probability measure and P2 is the
Exponential(1.5) probability measure. Here we take the parameter to be θ ∈ * =
{1, 2} .

Clearly, longer observed lifelengths favor θ = 2. For example, if

(x1, . . . , x5) = (5.0, 3.5, 3.3, 4.1, 2.8),

then intuitively we are more certain that θ = 2 than if

(x1, . . . , x5) = (2.0, 2.5, 3.0, 3.1, 1.8).

The subject of statistical inference is concerned with making statements like this more
precise and quantifying our uncertainty concerning the validity of such assertions.

We note again that the quantity θ serves only as a label for the distributions in the
model. The value of θ has no interpretation other than as a label and we could just
as easily have used different values for the labels. In many applications, however, the
parameter θ is taken to be some characteristic of the distribution that takes a unique
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value for each distribution in the model. Here, we could have taken θ to be the mean
and then the parameter space would be* = {1, 1.5} . Notice that we could just as well
have used the first quartile, or for that matter any other quantile, to have labelled the
distributions, provided that each distribution in the family yields a unique value for the
characteristic chosen. Generally, any 1–1 transformation of a parameter is acceptable
as a parameterization of a statistical model. When we relabel, we refer to this as a
reparameterization of the statistical model.

We now consider two important examples of statistical models. These are important
because they commonly arise in applications.

EXAMPLE 5.3.3 Bernoulli Model
Suppose that (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution with θ ∈ [0, 1]
unknown. We could be observing the results of tossing a coin and recording Xi equal
to 1 whenever a head is observed on the ith toss and equal to 0 otherwise. Alternatively,
we could be observing items produced in an industrial process and recording Xi equal
to 1 whenever the ith item is defective and 0 otherwise. In a biomedical application,
the response Xi = 1 might indicate that a treatment on a patient has been successful,
whereas Xi = 0 indicates a failure. In all these cases, we want to know the true value
of θ, as this tells us something important about the coin we are tossing, the industrial
process, or the medical treatment, respectively.

Now suppose we have no information whatsoever about the true probability θ . Ac-
cordingly, we take the parameter space to be * = [0, 1], the set of all possible values
for θ . The probability function for the ith sample item is given by

fθ (xi) = θ xi (1− θ)1−xi ,

and the probability function for the sample is given by

n%
i=1

fθ (xi ) =
n%

i=1

θ xi (1− θ)1−xi = θnx̄ (1− θ)n(1−x̄) .

This specifies the model for a sample.
Note that we could parameterize this model by any 1–1 function of θ. For example,

α = θ2 would work (as it is 1–1 on *), as would ψ = ln {θ/(1− θ)}.
EXAMPLE 5.3.4 Location-Scale Normal Model
Suppose that (x1, . . . , xn) is a sample from an N(µ, σ 2) distribution with θ = (µ, σ 2) ∈
R1 × R+ unknown, where R+ = (0,∞). For example, we may have observations of
heights in centimeters of individuals in a population and feel that it is reasonable to
assume that the distribution of heights in the population is normal with some unknown
mean and standard deviation.

The density for the sample is then given by

n%
i=1

f(µ,σ 2) (xi ) =
&

2πσ 2
'−n/2

exp

(
− 1

2σ 2

n)
i=1

(xi − µ)2
*

=
&

2πσ 2
'−n/2

exp
+
− n

2σ 2 (x̄ − µ)2 −
n − 1

2σ 2 s2
,
,
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because (Problem 5.3.13)

n)
i=1

(xi − µ)2 = n (x̄ − µ)2 +
n)

i=1

(xi − x̄)2 , (5.3.1)

where

x̄ = 1
n

n)
i=1

xi

is the sample mean, and

s2 = 1
n − 1

n)
i=1

(xi − x̄)2

is the sample variance.
Alternative parameterizations for this model are commonly used. For example,

rather than using (µ, σ 2), sometimes (µ, σ−2) or (µ, σ) or (µ, ln σ) are convenient
choices. Note that lnσ ranges in R1 as σ varies in R+.

Actually, we might wonder how appropriate the model of Example 5.3.4 is for the
distribution of heights in a population, for in any finite population the true distribution
is discrete (there are only finitely many students). Of course, a normal distribution
may provide a good approximation to a discrete distribution, as in Example 4.4.9. So,
in Example 5.3.4, we are also assuming that a continuous probability distribution can
provide a close approximation to the true discrete distribution. As it turns out, such
approximations can lead to great simplifications in the derivation of inferences, so we
use them whenever feasible. Such an approximation is, of course, not applicable in
Example 5.3.3.

Also note that heights will always be expressed in some specific unit, e.g., centime-
ters; based on this, we know that the population mean must be in a certain range of
values, e.g., µ ∈ (0, 300) , but the statistical model allows for any value for µ. So we
often do have additional information about the true value of the parameter for a model,
but it is somewhat imprecise, e.g., we also probably have µ ∈ (100, 300). In Chapter
7, we will discuss ways of incorporating such information into our analysis.

Where does the model information {Pθ : θ ∈ *} come from in an application? For
example, how could we know that heights are approximately normally distributed in
Example 5.3.4? Sometimes there is such information based upon previous experience
with related applications, but often it is an assumption that requires checking before
inference procedures can be used. Procedures designed to check such assumptions are
referred to as model-checking procedures, which will be discussed in Chapter 9. In
practice, model-checking procedures are required, or else inferences drawn from the
data and statistical model can be erroneous if the model is wrong.

Summary of Section 5.3

• In a statistical application, we do not know the distribution of a response, but we
know (or are willing to assume) that the true probability distribution is one of a
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set of possible distributions { fθ : θ ∈ *} , where fθ is the density or probability
function (whichever is relevant) for the response. The set of possible distribu-
tions is called the statistical model.

• The set * is called the parameter space, and the variable θ is called the parame-
ter of the model. Because each value of θ corresponds to a distinct probability
distribution in the model, we can talk about the true value of θ, as this gives the
true distribution via fθ .

EXERCISES

5.3.1 Suppose there are three coins — one is known to be fair, one has probability 1/3
of yielding a head on a single toss, and one has probability 2/3 for head on a single toss.
A coin is selected (not randomly) and then tossed five times. The goal is to make an
inference about which of the coins is being tossed, based on the sample. Fully describe
a statistical model for a single response and for the sample.
5.3.2 Suppose that one face of a symmetrical six-sided die is duplicated but we do not
know which one. We do know that if 1 is duplicated, then 2 does not appear; otherwise,
1 does not appear. Describe the statistical model for a single roll.
5.3.3 Suppose we have two populations (I and II) and that variable X is known to be
distributed N(10, 2) on population I and distributed N(8, 3) on population II. A sam-
ple (X1, . . . , Xn) is generated from one of the populations; you are not told which
population the sample came from, but you are required to draw inferences about the
true distribution based on the sample. Describe the statistical model for this problem.
Could you parameterize this model by the population mean, by the population vari-
ance? Sometimes problems like this are called classification problems because making
inferences about the true distribution is equivalent to classifying the sample as belong-
ing to one of the populations.
5.3.4 Suppose the situation is as described in Exercise 5.3.3, but now the distribution
for population I is N(10, 2) and the distribution for population II is N(10, 3). Could
you parameterize the model by the population mean? By the population variance?
Justify your answer.
5.3.5 Suppose that a manufacturing process produces batteries whose lifelengths are
known to be exponentially distributed but with the mean of the distribution completely
unknown. Describe the statistical model for a single observation. Is it possible to
parameterize this model by the mean? Is it possible to parameterize this model by the
variance? Is it possible to parameterize this model by the coefficient of variation (the
coefficient of variation of a distribution equals the standard deviation divided by the
mean)?
5.3.6 Suppose it is known that a response X is distributed Uniform[0, β], where β >
0 is unknown. Is it possible to parameterize this model by the first quartile of the
distribution? (The first quartile of the distribution of a random variable X is the point c
satisfying P(X ≤ c) = 0.25.) Explain why or why not.
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5.3.7 Suppose it is known that a random variable X follows one of the following dis-
tributions.

θ Pθ (X = 1) Pθ (X = 2) Pθ (X = 3)
A 1/2 1/2 0
B 0 1/2 1/2

(a) What is the parameter space *?
(b) Suppose we observe a value X = 1.What is the true value of the parameter? What
is the true distribution of X?
(c) What could you say about the true value of the parameter if you had observed
X = 2?
5.3.8 Suppose we have a statistical model {P1, P2}, where P1 and P2 are probability
measures on a sample space S. Further suppose there is a subset C ⊂ S such that
P1(C) = 1 while P2(Cc) = 1. Discuss how you would make an inference about the
true distribution of a response s after you have observed a single observation.
5.3.9 Suppose you know that the probability distribution of a variable X is either P1
or P2. If you observe X = 1 and P1(X = 1) = 0.75 while P2(X = 1) = 0.001,
then what would you guess as the true distribution of X? Give your reasoning for this
conclusion.
5.3.10 Suppose you are told that class #1 has 35 males and 65 females while class #2
has 45 males and 55 females. You are told that a particular student from one of these
classes is female, but you are not told which class she came from.
(a) Construct a statistical model for this problem, identifying the parameter, the para-
meter space, and the family of distributions. Also identify the data.
(b) Based on the data, do you think a reliable inference is feasible about the true para-
meter value? Explain why or why not.
(c) If you had to make a guess about which distribution the data came from, what choice
would you make? Explain why.

PROBLEMS

5.3.11 Suppose in Example 5.3.3 we parameterize the model by ψ = ln {θ/(1− θ)}.
Record the statistical model using this parameterization, i.e., record the probability
function using ψ as the parameter and record the relevant parameter space.
5.3.12 Suppose in Example 5.3.4 we parameterize the model by (µ, ln σ) = (µ,ψ).
Record the statistical model using this parameterization, i.e., record the density func-
tion using (µ,ψ) as the parameter and record the relevant parameter space.
5.3.13 Establish the identity (5.3.1).
5.3.14 A sample (X1, . . . , Xn) is generated from a Bernoulli(θ) distribution with θ ∈
[0, 1] unknown, but only T = -n

i=1 Xi is observed by the statistician. Describe the
statistical model for the observed data.
5.3.15 Suppose it is known that a response X is distributed N(µ, σ 2), where θ =
(µ, σ 2) ∈ R1 × R+ and θ is completely unknown. Show how to calculate the first
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quartile of each distribution in this model from the values (µ, σ 2). Is it possible to
parameterize the model by the first quartile? Explain your answer.
5.3.16 Suppose response X is known to be distributed N(Y, σ 2), where Y ∼ N(0, δ2)
and σ 2, δ2 > 0 are completely unknown. Describe the statistical model for an obser-
vation (X, Y ) . If Y is not observed, describe the statistical model for X.

5.3.17 Suppose we have a statistical model {P1, P2}, where P1 is an N(10, 1) distrib-
ution while P2 is an N(0, 1) distribution.
(a) Is it possible to make any kind of reliable inference about the true distribution based
on a single observation? Why or why not?
(b) Repeat part (a) but now suppose that P1 is a N(1, 1) distribution.
5.3.18 Suppose we have a statistical model {P1, P2}, where P1 is an N(1, 1) distri-
bution while P2 is an N(0, 1) distribution. Further suppose that we had a sample
x1, . . . , x100 from the true distribution. Discuss how you might go about making an
inference about the true distribution based on the sample.

DISCUSSION TOPICS

5.3.19 Explain why you think it is important that statisticians state very clearly what
they are assuming any time they carry out a statistical analysis.
5.3.20 Consider the statistical model given by the collection of N(µ, σ 2

0) distributions
where µ ∈ R1 is considered completely unknown, but σ 2

0 is assumed known. Do you
think this is a reasonable model to use in an application? Give your reasons why or
why not.

5.4 Data Collection
The developments of Sections 5.2 and 5.3 are based on the observed response s being
a realization from a probability measure P. In fact, in many applications, this is an
assumption. We are often presented with data that could have been produced in this
way, but we cannot always be sure.

When we cannot be sure that the data were produced by a random mechanism, then
the statistical analysis of the data is known as an observational study. In an observa-
tional study, the statistician merely observes the data rather than intervening directly
in generating the data, to ensure that the randomness assumption holds. For example,
suppose a professor collects data from his students for a study that examines the rela-
tionship between grades and part-time employment. Is it reasonable to regard the data
collected as having come from a probability distribution? If so, how would we justify
this?

It is important for a statistician to distinguish carefully between situations that are
observational studies and those that are not. As the following discussion illustrates,
there are qualifications that must be applied to the analysis of an observational study.
While statistical analyses of observational studies are valid and indeed important, we
must be aware of their limitations when interpreting their results.
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5.4.1 Finite Populations

Suppose we have a finite set 1 of objects, called the population, and a real-valued
function X (sometimes called a measurement) defined on 1. So for each π ∈ 1, we
have a real-valued quantity X (π) that measures some aspect or feature of π.

For example, 1 could be the set of all students currently enrolled full-time at a
particular university, with X (π) the height of student π in centimeters. Or, for the
same1, we could take X (π) to be the gender of student π , where X (π) = 1 denotes
female and X (π) = 2 denotes male. Here, height is a quantitative variable, because its
values mean something on a numerical scale, and we can perform arithmetic on these
values, e.g., calculate a mean. On the other hand, gender is an example of a categorical
variable because its values serve only to classify, and any other choice of unique real
numbers would have served as well as the ones we chose. The first step in a statistical
analysis is to determine the types of variables we are working with because the relevant
statistical analysis techniques depend on this.

The population and the measurement together produce a population distribution
over the population. This is specified by the population cumulative distribution func-
tion FX : R1 → [0, 1], where

FX (x) = |{π : X (π) ≤ x}|
N

,

with |A| being the number of elements in the set A, and N = |1| . Therefore, FX (x)
is the proportion of elements in 1 with their measurement less than or equal to x .

Consider the following simple example where we can calculate FX exactly.

EXAMPLE 5.4.1
Suppose that 1 is a population of N = 20 plots of land of the same size. Further
suppose that X (π) is a measure of the fertility of plot π on a 10-point scale and that
the following measurements were obtained.

4 8 6 7 8 3 7 5 4 6
9 5 7 5 8 3 4 7 8 3

Then we have

FX (x) =



0 x < 3
3/20 3 ≤ x < 4
6/20 4 ≤ x < 5
9/20 5 ≤ x < 6
11/20 6 ≤ x < 7
15/20 7 ≤ x < 8
19/20 8 ≤ x < 9
1 9 ≤ x

because, for example, 6 out of the 20 plots have fertility measurements less than or
equal to 4.

The goal of a statistician in this context is to know the function FX as precisely
as possible. If we know FX exactly, then we have identified the distribution of X
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over 1. One way of knowing the distribution exactly is to conduct a census, wherein,
the statistician goes out and observes X (π) for every π ∈ 1 and then calculates FX .
Sometimes this is feasible, but often it is not possible or even desirable, due to the costs
involved in the accurate accumulation of all the measurements — think of how difficult
it might be to collect the heights of all the students at your school.

While sometimes a census is necessary, even mandated by law, often a very accu-
rate approximation to FX can be obtained by selecting a subset

{π1, . . . , πn} ⊂ 1
for some n < N . We then approximate FX (x) by the empirical distribution function
defined by

F̂X (x) = |{π i : X (π i ) ≤ x, i = 1, . . . , n}|
n

= 1
n

n)
i=1

I(−∞,x] (X (π i )) .

We could also measure more than one aspect of π to produce a multivariate mea-
surement X : 1 → Rk for some k. For example, if 1 is again the population of
students, we might have X (π) = (X1(π), X2(π)) , where X1(π) is the height in cen-
timeters of student π and X2(π) is the weight of student π in kilograms. We will dis-
cuss multivariate measurements in Chapter 10, where our concern is the relationships
amongst variables, but we focus on univariate measurements here.

There are two questions we need to answer now — namely, how should we select
the subset {π1, . . . , πn} and how large should n be?

5.4.2 Simple Random Sampling

We will first address the issue of selecting {π1, . . . , πn}. Suppose we select this subset
according to some given rule based on the unique label that each π ∈ 1 possesses.
For example, if the label is a number, we might order the numbers and then take the n
elements with the smallest labels. Or we could order the numbers and take every other
element until we have a subset of n, etc.

There are many such rules we could apply, and there is a basic problem with all
of them. If we want F̂X to approximate FX for the full population, then, when we
employ a rule, we run the risk of only selecting {π1, . . . , πn} from a subpopulation.
For example, if we use student numbers to identify each element of a population of
students, and more senior students have lower student numbers, then, when n is much
smaller than N and we select the students with smallest student numbers, F̂X is really
only approximating the distribution of X in the population of senior students at best.
This distribution could be very different from FX . Similarly, for any other rule we
employ, even if we cannot imagine what the subpopulation could be, there may be
such a selection effect, or bias, induced that renders the estimate invalid.

This is the qualification we need to apply when analyzing the results of observa-
tional studies. In an observational study, the data are generated by some rule, typically
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unknown to the statistician; this means that any conclusions drawn based on the data
X (π1), , . . . , X (πn) may not be valid for the full population.

There seems to be only one way to guarantee that selection effects are avoided,
namely, the set {π1, . . . , πn} must be selected using randomness. For simple random
sampling, this means that a random mechanism is used to select the π i in such a way
that each subset of n has probability 1/

#N
n

$
of being chosen. For example, we might

place N chips in a bowl, each with a unique label corresponding to a population ele-
ment, and then randomly draw n chips from the bowl without replacement. The labels
on the drawn chips identify the individuals that have been selected from 1. Alterna-
tively, for the randomization, we might use a table of random numbers, such as Table
D.1 in Appendix D (see Table D.1 for a description of how it is used) or generate
random values using a computer algorithm (see Section 2.10).

Note that with simple random sampling (X (π1), , . . . , X (πn)) is random. In par-
ticular, when n = 1, we then have

P(X (π1) ≤ x) = FX (x),

namely, the probability distribution of the random variable X (π1) is the same as the
population distribution.

EXAMPLE 5.4.2
Consider the context of Example 5.4.1. When we randomly select the first plot from
1, it is clear that each plot has probability 1/20 of being selected. Then we have

P(X (π1) ≤ x) = |{π : X (π) ≤ x}|
20

= FX (x)

for every x ∈ R1.

Prior to observing the sample, we also have P(X (π2) ≤ x) = FX (x). Consider,
however, the distribution of X (π2) given that X (π1) = x1. Because we have removed
one population member, with measurement value x1, then N FX (x) − 1 is the number
of individuals left in1 with X (π) ≤ x1. Therefore,

P (X (π2) ≤ x | X (π1) = x1) =
(

N FX (x)−1
N−1 x ≥ x1

N FX (x)
N−1 x < x1.

Note that this is not equal to FX (x).
So with simple random sampling, X (π1) and X (π2) are not independent. Observe,

however, that when N is large, then

P (X (π2) ≤ x | X (π1) = x1) ≈ FX (x),

so that X (π1) and X (π2) are approximately independent and identically distributed
(i.i.d.). Similar calculations lead to the conclusion that, when N is large and n is small
relative to N , then with simple random sampling from the population, the random
variables

X (π1), . . . , X (πn)
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are approximately i.i.d. and with distribution given by FX . So we will treat the observed
values (x1, . . . , xn) of (X (π1), . . . , X (πn)) as a sample (in the sense of Definition
2.8.6) from FX . In this text, unless we indicate otherwise, we will always assume that
n is small relative to N so that this approximation makes sense.

Under the i.i.d. assumption, the weak law of large numbers (Theorem 4.2.1) implies
that the empirical distribution function F̂X satisfies

F̂X (x) = 1
n

n)
i=1

I(−∞,x] (X (π i ))
P→ FX (x)

as n → ∞. So we see that F̂X can be considered as an estimate of the population
cumulative distribution function (cdf) FX .

Whenever the data have been collected using simple random sampling, we will re-
fer to the statistical investigation as a sampling study. It is a basic principle of good
statistical practice that sampling studies are always preferred over observational stud-
ies, whenever they are feasible. This is because we can be sure that, with a sampling
study, any conclusions we draw based on the sample π1, . . . , πn will apply to the pop-
ulation1 of interest. With observational studies, we can never be sure that the sample
data have not actually been selected from some proper subset of1. For example, if you
were asked to make inferences about the distribution of student heights at your school
but selected some of your friends as your sample, then it is clear that the estimated cdf
may be very unlike the true cdf (possibly more of your friends are of one gender than
the other).

Often, however, we have no choice but to use observational data for a statistical
analysis. Sampling directly from the population of interest may be extremely difficult
or even impossible. We can still treat the results of such analyses as a form of evidence,
but we must be wary about possible selection effects and acknowledge this possibility.
Sampling studies constitute a higher level of statistical evidence than observational
studies, as they avoid the possibility of selection effects.

In Chapter 10, we will discuss experiments that constitute the highest level of sta-
tistical evidence. Experiments are appropriate when we are investigating the possibility
of cause–effect relationships existing amongst variables defined on populations.

The second question we need to address concerns the choice of the sample size n. It
seems natural that we would like to choose this as large as possible. On the other hand,
there are always costs associated with sampling, and sometimes each sample value is
very expensive to obtain. Furthermore, it is often the case that the more data we collect,
the more difficulty we have in making sure that the data are not corrupted by various
errors that can arise in the collection process. So our answer, concerning how large n
need be, is that we want it chosen large enough so that we obtain the accuracy necessary
but no larger. Accordingly, the statistician must specify what accuracy is required, and
then n is determined.

We will see in the subsequent chapters that there are various methods for specifying
the required accuracy in a problem and then determining an appropriate value for n.
Determining n is a key component in the implementation of a sampling study and is
often referred to as a sample-size calculation.
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If we define

fX (x) = |{π : X (π) = x}|
N

= 1
N

)
π∈1

I{x}(X (π)),

namely, fX (x) is the proportion of population members satisfying X (π) = x , then we
see that fX plays the role of the probability function because

FX (x) =
)
z≤x

fX (z).

We refer to fX as the population relative frequency function. Now, fX (x) may be
estimated, based on the sample {π1, . . . , πn} , by

f̂ X (x) = |{π i : X (π i ) = x, i = 1, . . . , n}|
n

= 1

n

n)
i=1

I{x}(X (π i )),

namely, the proportion of sample members π satisfying X (π) = x.
With categorical variables, f̂ X (x) estimates the population proportion fX (x) in

the category specified by x . With some quantitative variables, however, fX is not an
appropriate quantity to estimate, and an alternative function must be considered.

5.4.3 Histograms

Quantitative variables can be further classified as either discrete or continuous vari-
ables. Continuous variables are those that we can measure to an arbitrary precision as
we increase the accuracy of a measuring instrument. For example, the height of an
individual could be considered a continuous variable, whereas the number of years of
education an individual possesses would be considered a discrete quantitative variable.
For discrete quantitative variables, fX is an appropriate quantity to describe a popula-
tion distribution, but we proceed differently with continuous quantitative variables.

Suppose that X is a continuous quantitative variable. In this case, it makes more
sense to group values into intervals, given by

(h1, h2], (h2, h3], . . . , (hm−1, hm],

where the hi are chosen to satisfy h1 < h2 < · · · < hm with (h1, hm) effectively
covering the range of possible values for X. Then we define

hX (x) =
( |{π : X(π)∈(hi ,hi+1]}|

N(hi+1−hi)
x ∈ (hi , hi+1]

0 otherwise

and refer to hX as a density histogram function. Here, hX (x) is the proportion of
population elements π that have their measurement X (π) in the interval (hi , hi+1]
containing x, divided by the length of the interval.

In Figure 5.4.1, we have plotted a density histogram based on a sample of 10,000
from an N(0, 1) distribution (we are treating this sample as the full population) and
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using the values h1 = −5, h2 = −4, . . . , h11 = 5. Note that the vertical lines are only
artifacts of the plotting software and do not represent values of hX , as these are given
by the horizontal lines.

543210-1-2-3-4-5
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Figure 5.4.1: Density histogram function for a sample of 10,000 from an N(0, 1) distribution
using the values h1= −5, h2= −4, . . . , h11= 5.

If x ∈ (hi , hi+1], then hX (x) (hi+1 − hi) gives the proportion of individuals in the
population that have their measurement X (π) in (hi , hi+1]. Furthermore, we have

FX (h j ) =
! h j

−∞
hX (x) dx

for each interval endpoint and

FX (h j )− FX (hi ) =
! h j

hi

hX (x) dx

when hi ≤ h j . If the intervals (hi , hi+1] are small, then we expect that

FX (b)− FX (a) ≈
! b

a
hX (x) dx

for any choice of a < b.
Now suppose that the lengths hi+1 − hi are small and N is very large. Then it

makes sense to imagine a smooth, continuous function fX , e.g., perhaps a normal or
gamma density function, that approximates hX in the sense that! b

a
fX (x) dx ≈

! b

a
hX (x) dx

for every a < b. Then we will also have! b

a
fX (x) dx ≈ FX (b)− FX (a)
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for every a < b. We will refer to such an fX as a density function for the population
distribution.

In essence, this is how many continuous distributions arise in practice. In Figure
5.4.2, we have plotted a density histogram for the same values used in Figure 5.4.1, but
this time we used the interval endpoints h1 = −5, h2 = −4.75, . . . , h41 = 5.We note
that Figure 5.4.2 looks much more like a continuous function than does Figure 5.4.1.
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Figure 5.4.2: Density histogram function for a sample of 10,000 from an N(0, 1) distribution
using the values h1 = −5, h2 = −4.75, . . . , h41 = 5.

5.4.4 Survey Sampling

Finite population sampling provides the formulation for a very important application
of statistics, namely, survey sampling or polling. Typically, a survey consists of a set of
questions that are asked of a sample {π1, . . . , πn} from a population1. Each question
corresponds to a measurement, so if there are m questions, the response from a respon-
dent π is the m-dimensional vector (X1(π), X2(π), . . . , Xm(π)) . A very important
example of survey sampling is the pre-election polling that is undertaken to predict the
outcome of a vote. Also, many consumer product companies engage in extensive mar-
ket surveys to try to learn what consumers want and so gain information that can lead
to improved sales.

Typically, the analysis of the results will be concerned not only with the population
distributions of the individual Xi over the population but also the joint population dis-
tributions. For example, the joint cumulative distribution function of (X1, X2) is given
by

F(X1,X2)(x1, x2) = |{π : X1(π) ≤ x1, X2(π) ≤ x2}|
N

,

namely, F(X1,X2)(x1, x2) is the proportion of the individuals in the population whose
X1 measurement is no greater than x1 and whose X2 measurement is no greater than
x2.Of course, we can also define the joint distributions of three or more measurements.
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These joint distributions are what we use to answer questions like, is there a relationship
between X1 and X2, and if so,what form does it take? This topic will be extensively
discussed in Chapter 10. We can also define f(X1,X2) for the joint distribution, and joint
density histograms are again useful when X1 and X2 are both continuous quantitative
variables.

EXAMPLE 5.4.3
Suppose there are four candidates running for mayor in a particular city. A random
sample of 1000 voters is selected; they are each asked if they will vote and, if so,
which of the four candidates they will vote for. Additionally, the respondents are asked
their age. We denote the answer to the question of whether or not they will vote by X1,
with X1(π) = 1 meaning yes and X1(π) = 0 meaning no. For those voting, we denote
by X2 the response concerning which candidate they will vote for, with X2(π) = i
indicating candidate i. Finally, the age in years of the respondent is denoted by X3. In
addition to the distributions of X1 and X2, the pollster is also interested in the joint
distributions of (X1, X3) and (X2, X3), as these tell us about the relationship between
voter participation and age in the first case and candidate choice and age in the second
case.

There are many interesting and important aspects to survey sampling that go well
beyond this book. For example, it is often the case with human populations that a ran-
domly selected person will not respond to a survey. This is called nonresponse error,
and it is a serious selection effect. The sampler must design the study carefully to try
to mitigate the effects of nonresponse error. Furthermore, there are variants of simple
random sampling (see Challenge 5.4.20) that can be preferable in certain contexts, as
these increase the accuracy of the results. The design of the actual questionnaire used
is also very important, as we must ensure that responses address the issues intended
without biasing the results.

Summary of Section 5.4

• Simple random sampling from a population 1 means that we randomly select
a subset of size n from 1 in such a way that each subset of n has the same
probability — namely, 1/

#|1|
n

$
— of being selected.

• Data that arise from a sampling study are generated from the distribution of the
measurement of interest X over the whole population 1 rather than some sub-
population. This is why sampling studies are preferred to observational studies.

• When the sample size n is small relative to |1| ,we can treat the observed values
of X as a sample from the distribution of X over the population.

EXERCISES

5.4.1 Suppose we have a population1 = {π1, . . . , π10} and quantitative measurement
X given by:

i 1 2 3 4 5 6 7 8 9 10
X (π i ) 1 1 2 1 2 3 3 1 2 4
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Calculate FX , fX , µX , and σ 2
X .

5.4.2 Suppose you take a sample of n = 3 (without replacement) from the population
in Exercise 5.4.1.
(a) Can you consider this as an approximate i.i.d. sample from the population distribu-
tion? Why or why not?
(b) Explain how you would actually physically carry out the sampling from the popu-
lation in this case. (Hint: Table D.1.)
(c) Using the method you outlined in part (b), generate three samples of size n = 3 and
calculate X̄ for each sample.
5.4.3 Suppose you take a sample of n = 4 (with replacement) from the population in
Exercise 5.4.1.
(a) Can you consider this as an approximate i.i.d. sample from the population distribu-
tion? Why or why not?
(b) Explain how you would actually physically carry out the sampling in this case.
(c) Using the method you outlined in part (b), generate three samples of size n = 3 and
calculate X̄ for each sample.
5.4.4 Suppose we have a finite population 1 and a measurement X : 1 → {0, 1}
where |1| = N and |{π : X (π) = 0}| = a.

(a) Determine fX (0) and fX (1). Can you identify this population distribution?
(b) For a simple random sample of size n, determine the probability that n f̂X (0) = x .

(c) Under the assumption of i.i.d. sampling, determine the probability that n f̂X (0) = x.

5.4.5 Suppose the following sample of size of n = 20 is obtained from an industrial
process.

3.9 7.2 6.9 4.5 5.8 3.7 4.4 4.5 5.6 2.5
4.8 8.5 4.3 1.2 2.3 3.1 3.4 4.8 1.8 3.7

(a) Construct a density histogram for this data set using the intervals (1, 4.5], (4.5, 5.5],
(5.5, 6.5](6.5, 10].
(b) Construct a density histogram for this data set using the intervals (1, 3.5], (3.5, 4.5],
(4.5, 6.5], (6.5, 10].
(c) Based on the results of parts (a) and (b), what do you conclude about histograms?
5.4.6 Suppose it is known that in a population of 1000 students, 350 students will vote
for party A, 550 students will vote for party B, and the remaining students will vote
for party C.

(a) Explain how such information can be obtained.
(b) If we let X : 1 → {A, B,C} be such that X (π) is the party that π will vote for,
then explain why we cannot represent the population distribution of X by FX .

(c) Compute fX .

(d) Explain how one might go about estimating fX prior to the election.
(e) What is unrealistic about the population distribution specified via fX ? (Hint: Does
it seem realistic, based on what you know about voting behavior?)
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5.4.7 Consider the population 1 to be files stored on a computer at a particular time.
Suppose that X (π) is the type of file as indicated by its extension, e.g., .mp3. Is X a
categorical or quantitative variable?
5.4.8 Suppose that you are asked to estimate the proportion of students in a college of
15, 000 students who intend to work during the summer.
(a) Identify the population1, the variable X , and fX .What kind of variable is X?
(b) How could you determine fX exactly?
(c) Why might you not be able to determine fX exactly? Propose a procedure for
estimating fX in such a situation.
(d) Suppose you were also asked to estimate the proportion of students who intended
to work but could not find a job. Repeat parts (a), (b), and (c) for this situation.
5.4.9 Sometimes participants in a poll do not respond truthfully to a question. For
example, students who are asked “Have you ever illegally downloaded music?” may
not respond truthfully even if they are assured that their responses are confidential.
Suppose a simple random sample of students was chosen from a college and students
were asked this question.
(a) If students were asked this question by a person, comment on how you think the
results of the sampling study would be affected.
(b) If students were allowed to respond anonymously, perhaps by mailing in a ques-
tionnaire, comment on how you think the results would be affected.
(c) One technique for dealing with the respondent bias induced by such questions is
to have students respond truthfully only when a certain random event occurs. For
example, we might ask a student to toss a fair coin three times and lie whenever they
obtain two heads. What is the probability that a student tells the truth? Once you have
completed the study and have recorded the proportion of students who said they did
cheat, what proportion would you record as your estimate of the proportion of students
who actually did cheat?
5.4.10 A market research company is asked to determine how satisfied owners are with
their purchase of a new car in the last 6 months. Satisfaction is to be measured by re-
spondents choosing a point on a seven-point scale {1, 2, 3, 4, 5, 6, 7}, where 1 denotes
completely dissatisfied and 7 denotes completely satisfied (such a scale is commonly
called a Likert scale).
(a) Identify1, the variable X , and fX .

(b) It is common to treat a variable such as X as a quantitative variable. Do you think
this is correct? Would it be correct to treat X as a categorical variable?
(c) A common criticism of using such a scale is that the interpretation of a statement
such as 3 = “I’m somewhat dissatisfied” varies from one person to another. Comment
on how this affects the validity of the study.

COMPUTER EXERCISES

5.4.11 Generate a sample of 1000 from an N(3, 2) distribution.
(a) Calculate F̂X for this sample.
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(b) Plot a density histogram based on these data using the intervals of length 1 over the
range (−5, 10) .
(c) Plot a density histogram based on these data using the intervals of length 0.1 over
the range (−5, 10) .
(d) Comment on the difference in the look of the histograms in parts (b) and (c). To
what do you attribute this?
(e) What limits the size of the intervals we use to group observations when we are
plotting histograms?
5.4.12 Suppose we have a population of 10,000 elements, each with a unique label
from the set {1, 2, 3, . . . , 10, 000}.
(a) Generate a sample of 500 labels from this population using simple random sam-
pling.
(b) Generate a sample of 500 labels from this population using i.i.d. sampling.

PROBLEMS

5.4.13 Suppose we have a finite population1 and a measurement X : 1→ {0, 1, 2},
where |1| = N and |{π : X (π) = 0}| = a and |{π : X (π) = 1}| = b. This problem
generalizes Exercise 5.4.4.
(a) Determine fX (0), fX (1), and fX (2) .
(b) For a simple random sample of size n, determine the probability that f̂ X (0) =
f0, f̂ X (1) = f1, and f̂ X (2) = f2.

(c) Under the assumption of i.i.d. sampling, determine the probability that f̂ X (0) =
f0, f̂ X (1) = f1, and f̂ X (2) = f2.

5.4.14 Suppose X is a quantitative measurement defined on a finite population.
(a) Prove that the population mean equals µX =

-
x x fX (x), i.e., the average of X (π)

over all population elements π equals µX .
(b) Prove that the population variance is given by σ 2

X =
-

x (x − µX )
2 fX (x), i.e., the

average of (X (π)− µX )
2 over all population elements π equals σ 2

X .
5.4.15 Suppose we have the situation described in Exercise 5.4.4, and we take a simple
random sample of size n from1 where |1| = N .

(a) Prove that the mean of f̂ X (0) is given by fX (0). (Hint: Note that we can write
f̂ X (0) = n−1-n

i=1 I{0} (X (π i)) and I{0} (X (π i )) ∼ Bernoulli( fX (0)).)

(b) Prove that the variance of f̂ X (0) is given by

fX (0) (1− fX (0))
n

N − n

N − 1
. (5.4.1)

(Hint: Use the hint in part (a), but note that the I{0} (X (π i )) are not independent. Use
Theorem 3.3.4(b) and evaluate Cov

#
I{0} (X (π i)) , I{0} (X (π i ))

$
in terms of fX (0).)

(c) Repeat the calculations in parts (a) and (b), but this time assume that you take a
sample of n with replacement. (Hint: Use Exercise 5.4.4(c).)
(d) Explain why the factor (N − n)/(N − 1) in (5.4.1) is called the finite sample
correction factor.
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5.4.16 Suppose we have a finite population 1 and we do not know |1| = N . In
addition, suppose we have a measurement variable X : 1 → {0, 1} and we know
that N fX (0) = a where a is known. Based on a simple random sample of n from 1,
determine an estimator of N . (Hint: Use a function of f̂ X (0).)
5.4.17 Suppose that X is a quantitative variable defined on a population1 and that we
take a simple random sample of size n from1.

(a) If we estimate the population mean µX by the sample mean X̄ = 1
n

-n
i=1 X (π i),

prove that E(X̄) = µX where µX is defined in Problem 5.4.14(a). (Hint: What is the
distribution of each X (π i )?)
(b) Under the assumption that i.i.d. sampling makes sense, show that the variance of X̄
equals σ 2

X/n, where σ 2
X is defined in Problem 5.4.14(b).

5.4.18 Suppose we have a finite population 1 and we do not know |1| = N . In
addition, suppose we have a measurement variable X : 1 → R1 and we know T =-
π X (π) . Based on a simple random sample of n from1, determine an estimator of

N . (Hint: Use a function of X̄ .)

5.4.19 Under i.i.d. sampling, prove that f̂ X (x)
D→ fX (x) as n →∞. (Hint: f̂ X (x) =

n−1-n
i=1 I{x}(X (π i )).)

CHALLENGES

5.4.20 (Stratified sampling) Suppose that X is a quantitative variable defined on a pop-
ulation1 and that we can partition1 into two subpopulations11 and12, such that a
proportion p of the full population is in11. Let fi X denote the conditional population
distribution of X on 1i .

(a) Prove that fX (x) = p f1X (x)+ (1− p) f2X (x).

(b) Establish that µX = pµ1X + (1− p) µ2X , where µi X is the mean of X on1i .

(c) Establish that σ 2
X = pσ 2

1X + (1− p) σ 2
2X + p(1− p) (µ1X − µ2X )

2 .

(d) Suppose that it makes sense to assume i.i.d. sampling whenever we take a sample
from either the full population or either of the subpopulations, i.e., whenever the sam-
ple sizes we are considering are small relative to the sizes of these populations. We
implement stratified sampling by taking a simple random sample of size ni from sub-
population 1i . We then estimate µX by pX̄1 + (1− p) X̄2, where X̄i is the sample
mean based on the sample from1i . Prove that E(pX̄1 + (1− p) X̄2) = µX and

Var
#
pX̄1 + (1− p) X̄2

$ = p2 σ
2
1X

n1
+ (1− p)2

σ 2
2X

n2
.

(e) Under the assumptions of part (d), prove that

Var
#
pX̄1 + (1− p) X̄2

$ ≤ Var
#
X̄
$

when X̄ is based on a simple random sample of size n from the full population and
n1 = pn, n2 = (1− p) n. This is called proportional stratified sampling.
(f) Under what conditions is there no benefit to proportional stratified sampling? What
do you conclude about situations in which stratified sampling will be most beneficial?
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DISCUSSION TOPICS

5.4.21 Sometimes it is argued that it is possible for a skilled practitioner to pick a more
accurate representative sample of a population deterministically rather than by employ-
ing simple random sampling. This argument is based in part on the argument that it is
always possible with simple random sampling that we could get a very unrepresenta-
tive sample through pure chance and that this can be avoided by an expert. Comment
on this assertion.
5.4.22 Suppose it is claimed that a quantitative measurement X defined on a finite
population 1 is approximately distributed according to a normal distribution with un-
known mean and unknown variance. Explain fully what this claim means.

5.5 Some Basic Inferences
Now suppose we are in a situation involving a measurement X, whose distribution is
unknown, and we have obtained the data (x1, x2, . . . , xn) , i.e., observed n values of X.
Hopefully, these data were the result of simple random sampling, but perhaps they were
collected as part of an observational study. Denote the associated unknown population
relative frequency function, or an approximating density, by fX and the population
distribution function by FX .

What we do now with the data depends on two things. First, we have to determine
what we want to know about the underlying population distribution. Typically, our
interest is in only a few characteristics of this distribution — the mean and variance.
Second, we have to use statistical theory to combine the data with the statistical model
to make inferences about the characteristics of interest.

We now discuss some typical characteristics of interest and present some informal
estimation methods for these characteristics, known as descriptive statistics. These
are often used as a preliminary step before more formal inferences are drawn and are
justified on simple intuitive grounds. They are called descriptive because they are
estimating quantities that describe features of the underlying distribution.

5.5.1 Descriptive Statistics

Statisticians often focus on various characteristics of distributions. We present some of
these in the following examples.

EXAMPLE 5.5.1 Estimating Proportions and Cumulative Proportions
Often we want to make inferences about the value fX (x) or the value FX (x) for a
specific x. Recall that fX (x) is the proportion of population members whose X mea-
surement equals x . In general, FX (x) is the proportion of population members whose
X measurement is less than or equal to x.

Now suppose we have a sample (x1, x2, . . . , xn) from fX . A natural estimate of
fX (x) is given by f̂ X (x), the proportion of sample values equal to x .A natural estimate
of FX (x) is given by F̂X (x) = n−1-n

i=1 I(−∞,x] (xi ) , the proportion of sample values
less than or equal to x, otherwise known as the empirical distribution function evaluated
at x.
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Suppose we obtained the following sample of n = 10 data values.

1.2 2.1 0.4 3.3 −2.1 4.0 −0.3 2.2 1.5 5.0

In this case, f̂ X (x) = 0.1 whenever x is a data value and is 0 otherwise. To compute
F̂X (x), we simply count how many sample values are less than or equal to x and
divide by n = 10. For example, F̂X (−3) = 0/10 = 0, F̂X (0) = 2/10 = 0.2, and
F̂X (4) = 9/10 = 0.9.

An important class of characteristics of the distribution of a quantitative variable X
is given by the following definition.

Definition 5.5.1 For p ∈ [0, 1], the pth quantile (or 100pth percentile) xp, for
the distribution with cdf FX , is defined to be the smallest number xp satisfying
p ≤ FX (xp).

For example, if your mark on a test placed you at the 90th percentile, then your mark
equals x0.9 and 90% of your fellow test takers achieved your mark or lower. Note that
by the definition of the inverse cumulative distribution function (Definition 2.10.1), we
can write xp = F−1

X (p) = min {x : p ≤ FX (x)} .
When FX is strictly increasing and continuous, then F−1

X (p) is the unique value xp
satisfying

FX (xp) = p. (5.5.1)

Figure 5.5.1 illustrates the situation in which there is a unique solution to (5.5.1). When
FX is not strictly increasing or continuous (as when X is discrete), then there may be
more than one, or no, solutions to (5.5.1). Figure 5.5.2 illustrates the situation in which
there is no solution to (5.5.1).

FX

x

1

p

xp

Figure 5.5.1: The pth quantile xp when there is a unique solution to (5.5.1).
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FX

x

1

p

xp

Figure 5.5.2: The pth quantile xp determined by a cdf FX when there is no solution to
(5.5.1).

So, when X is a continuous measurement, a proportion p of the population have
their X measurement less than or equal to xp. As particular cases, x0.5 = F−1

X (0.5)
is the median, while x0.25 = F−1

X (0.25) and x0.75 = F−1
X (0.75) are the first and third

quartiles, respectively, of the distribution.

EXAMPLE 5.5.2 Estimating Quantiles
A natural estimate of a population quantile xp = F−1

X (p) is to use x̂ p = F̂−1
X (p). Note,

however, that F̂X is not continuous, so there may not be a solution to (5.5.1) using F̂X .
Applying Definition 5.5.1, however, leads to the following estimate. First, order the

observed sample values (x1, . . . , xn) to obtain the order statistics x(1) < · · · < x(n) (see
Section 2.8.4). Then, note that x(i) is the (i/n)-th quantile of the empirical distribution,
because

F̂X (x(i)) = i

n

and F̂X (x) < i/n whenever x < x(i). In general, we have that the sample pth quantile
is x̂ p = x(i) whenever

i − 1
n

< p ≤ i

n
. (5.5.2)

A number of modifications to this estimate are sometimes used. For example, if we
find i such that (5.5.2) is satisfied and put

x̃ p = x(i−1) + n
#
x(i) − x(i−1)

$2
p − i − 1

n

3
, (5.5.3)

then x̃ p is the linear interpolation between x(i−1) and x(i). When n is even, this defin-
ition gives the sample median as x̃0.5 = x(n/2); a similar formula holds when n is odd
(Problem 5.5.21). Also see Problem 5.5.22 for more discussion of (5.5.3).

Quite often the sample median is defined to be

x̌0.5 =


x((n+1)/2) n odd

1
2

#
x(n/2) + x(n/2+1)

$
n even,

(5.5.4)
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namely, the middle value when n is odd and the average of the two middle values when
n is even. For n large enough, all these definitions will yield similar answers. The use
of any of these is permissible in an application.

Consider the data in Example 5.5.1. Sorting the data from smallest to largest, the
order statistics are given by the following table.

x(1) = −2.1 x(2) = −0.3 x(3) = 0.4 x(4) = 1.2 x(5) = 1.5
x(6) = 2.1 x(7) = 2.2 x(8) = 3.3 x(9) = 4.0 x(10) = 5.0

Then, using (5.5.3), the sample median is given by x̃0.5 = x(5) = 1.5, while the sample
quartiles are given by

x̃0.25 = x(2) + 10
#
x(3) − x(2)

$
(0.25− 0.2)

= −0.3+ 10 (0.4− (−0.3)) (0.25− 0.2) = 0.05

and

x̃0.75 = x(7) + 10
#
x(8) − x(7)

$
(0.75− 0.7)

= 2.2+ 10 (3.3− 2.2) (0.75− 0.7) = 2.75.

So in this case, we estimate that 25% of the population under study has an X measure-
ment less than 0.05, etc.

EXAMPLE 5.5.3 Measuring Location and Scale of a Population Distribution
Often we are asked to make inferences about the value of the population mean

µX = 1
|1|

)
π∈1

X (π)

and the population variance

σ 2
X =

1
|1|

)
π∈1

(X (π)− µX )
2 ,

where1 is a finite population and X is a real-valued measurement defined on it. These
are measures of the location and spread of the population distribution about the mean,
respectively. Note that calculating a mean or variance makes sense only when X is a
quantitative variable.

When X is discrete, we can also write

µX =
)

x
x fX (x)

because |1| fX (x) equals the number of elements π ∈ 1 with X (π) = x. In the
continuous case, using an approximating density fX , we can write

µX ≈
! ∞

−∞
x fX (x) dx .

Similar formulas exist for the population variance of X (see Problem 5.4.14).
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It will probably occur to you that a natural estimate of the population mean µX is
given by the sample mean

x̄ = 1
n

n)
i=1

xi .

Also, a natural estimate of the population variance σ 2
X is given by the sample variance

s2 = 1
n − 1

n)
i=1

(xi − x̄)2 . (5.5.5)

Later we will explain why we divided by n − 1 in (5.5.5) rather than n. Actually, it
makes little difference which we use, for even modest values of n. The sample standard
deviation is given by s, the positive square root of s2. For the data in Example 5.1.1,
we obtain x̄ = 1.73 and s = 2.097.

The population mean µX and population standard deviation σ X serve as a pair, in
which µX measures where the distribution is located on the real line and σ X measures
how much spread there is in the distribution about µX . Clearly, the greater the value of
σ X , the more variability there is in the distribution.

Alternatively, we could use the population median x0.5 as a measure of location
of the distribution and the population interquartile range x0.75 − x0.25 as a measure
of the amount of variability in the distribution around the median. The median and
interquartile range are the preferred choice to measure these aspects of the distribution
whenever the distribution is skewed, i.e., not symmetrical. This is because the median
is insensitive to very extreme values, while the mean is not. For example, house prices
in an area are well known to exhibit a right-skewed distribution. A few houses selling
for very high prices will not change the median price but could result in a big change
in the mean price.

When we have a symmetric distribution, the mean and median will agree (provided
the mean exists). The greater the skewness in a distribution, however, the greater will
be the discrepancy between its mean and median. For example, in Figure 5.5.3 we have
plotted the density of a χ2 (4) distribution. This distribution is skewed to the right, and
the mean is 4 while the median is 3.3567.
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Figure 5.5.3: The density f of a χ2 (4) distribution.
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We estimate the population interquartile range by the sample interquartile range
(IQR) given by I Q̂R = x̃0.75 − x̃0.25. For the data in Example 5.5.1, we obtain the
sample median to be x̃0.5 = 1.5, while I Q̂R = 2.75− 0.05 = 2.70.

If we change the largest value in the sample from x(10) = 5.0 to x(10) = 500.0 the
sample median remains x̃0.5 = 1.5, but note that the sample mean goes from 1.73 to
51.23!

5.5.2 Plotting Data

It is always a good idea to plot the data. For discrete quantitative variables, we can plot
f̂ X , i.e., plot the sample proportions (relative frequencies). For continuous quantitative
variables, we introduced the density histogram in section 5.4.3. These plots give us
some idea of the shape of the distribution from which we are sampling. For example,
we can see if there is any evidence that the distribution is strongly skewed.

We now consider another very useful plot for quantitative variables.

EXAMPLE 5.5.4 Boxplots and Outliers
Another useful plot for quantitative variables is known as a boxplot. For example,
Figure 5.5.4 gives a boxplot for the data in Example 5.5.1. The line in the center of the
box is the median. The line below the median is the first quartile, and the line above
the median is the third quartile.

The vertical lines from the quartiles are called whiskers, which run from the quar-
tiles to the adjacent values. The adjacent values are given by the greatest value less
than or equal to the upper limit (the third quartile plus 1.5 times the I Q̂R) and by the
least value greater than or equal to the lower limit (the first quartile minus 1.5 times
the I Q̂R). Values beyond the adjacent values, when these exist, are plotted with a ∗;
in this case, there are none. If we changed x(10) = 5.0 to x(10) = 15.0, however, we
see this extreme value plotted as a ∗, as shown in Figure 5.5.5.
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Figure 5.5.4: A boxplot of the data in Example 5.5.1.
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Figure 5.5.5: A boxplot of the data in Example 5.5.1, changing x(10) = 5.0 to
x(10) = 15.0.

Points outside the upper and lower limits, and thus plotted by ∗, are commonly
referred to as outliers. An outlier is a value that is extreme with respect to the rest
of the observations. Sometimes outliers occur because a mistake has been made in
collecting or recording the data, but they also occur simply because we are sampling
from a long-tailed distribution. It is often difficult to ascertain which is the case in
a particular application, but each such observation should be noted. We have seen in
Example 5.5.3 that outliers can have a big impact on statistical analyses. Their effects
should be recorded when reporting the results of a statistical analysis.

For categorical variables, it is typical to plot the data in a bar chart, as described in
the next example.

EXAMPLE 5.5.5 Bar Charts
For categorical variables, we code the values of the variable as equispaced numbers
and then plot constant-width rectangles (the bars) over these values so that the height
of the rectangle over a value equals the proportion of times that value is assumed. Such
a plot is called a bar chart. Note that the values along the x-axis are only labels and
not to be treated as numbers that we can do arithmetic on, etc.

For example, suppose we take a simple random sample of 100 students and record
their favorite flavor of ice cream (from amongst four possibilities), obtaining the results
given in the following table.

Flavor Count Proportion
Chocolate 42 0.42
Vanilla 28 0.28
Butterscotch 22 0.22
Strawberry 8 0.08

Coding Chocolate as 1, Vanilla as 2, Butterscotch as 3, and Strawberry as 4, Figure
5.5.6 presents a bar chart of these data. It is typical for the bars in these charts not to
touch.
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Figure 5.5.6: A bar chart for the data of Example 5.5.5.

5.5.3 Types of Inference

Certainly quoting descriptive statistics and plotting the data are methods used by a sta-
tistician to try to learn something about the underlying population distribution. There
are difficulties with this approach, however, as we have just chosen these methods based
on intuition. Often it is not clear which descriptive statistics we should use. Further-
more, these data summaries make no use of the information we have about the true pop-
ulation distribution as expressed by the statistical model, namely, fX ∈ { fθ : θ ∈ *} .
Taking account of this information leads us to develop a theory of statistical inference,
i.e., to specify how we should combine the model information together with the data to
make inferences about population quantities. We will do this in Chapters 6, 7, and 8,
but first we discuss the types of inferences that are commonly used in applications.

In Section 5.2, we discussed three types of inference in the context of a known
probability model as specified by some density or probability function f. We noted
that we might want to do any of the following concerning an unobserved response
value s.

(i) Predict an unknown response value s via a prediction t .

(ii) Construct a subset C of the sample space S that has a high probability of containing
an unknown response value s.

(iii) Assess whether or not s0 ∈ S is a plausible value from the probability distribution
specified by f.

We refer to (i), (ii), and (iii) as inferences about the unobserved s. The examples of
Section 5.2 show that these are intuitively reasonable concepts.

In a statistical application, we do not know f ; we know only that f ∈ { fθ : θ ∈ *},
and we observe the data s. We are uncertain about which candidate fθ is correct, or,
equivalently, which of the possible values of θ is correct.

As mentioned in Section 5.5.1, our primary goal may be to determine not the true
fθ , but some characteristic of the true distribution such as its mean, median, or the
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value of the true distribution function F at a specified value. We will denote this
characteristic of interest by ψ(θ). For example, when the characteristic of interest
is the mean of the true distribution of a continuous random variable, then

ψ(θ) =
! ∞

−∞
x fθ (x) dx.

Alternatively, we might be interested in ψ(θ) = F−1
θ (0.5), the median of the distribu-

tion of a random variable with distribution function given by Fθ .
Different values of θ lead to possibly different values for the characteristic ψ(θ).

After observing the data s, we want to make inferences about what the correct value is.
We will consider the three types of inference for ψ(θ).

(i) Choose an estimate T (s) of ψ(θ), referred to as the problem of estimation.

(ii) Construct a subset C(s) of the set of possible values for ψ(θ) that we believe
contains the true value, referred to as the problem of credible region or confidence
region construction.

(iii) Assess whether or not ψ0 is a plausible value for ψ(θ) after having observed s,
referred to as the problem of hypothesis assessment.

So estimates, credible or confidence regions, and hypothesis assessment are examples
of types of inference. In particular, we want to construct estimates T (s) of ψ (θ) ,
construct credible or confidence regions C(s) for ψ(θ), and assess the plausibility of a
hypothesized value ψ0 for ψ(θ).

The problem of statistical inference entails determining how we should combine
the information in the model { fθ : θ ∈ *} and the data s to carry out these inferences
about ψ(θ).

A very important statistical model for applications is the location-scale normal
model introduced in Example 5.3.4. We illustrate some of the ideas discussed in this
section via that model.

EXAMPLE 5.5.6 Application of the Location-Scale Normal Model
Suppose the following simple random sample of the heights (in inches) of 30 students
has been collected.

64.9 61.4 66.3 64.3 65.1 64.4 59.8 63.6 66.5 65.0
64.9 64.3 62.5 63.1 65.0 65.8 63.4 61.9 66.6 60.9
61.6 64.0 61.5 64.2 66.8 66.4 65.8 71.4 67.8 66.3

The statistician believes that the distribution of heights in the population can be well
approximated by a normal distribution with some unknown mean and variance, and
she is unwilling to make any further assumptions about the true distribution. Accord-
ingly, the statistical model is given by the family of N(µ, σ 2) distributions, where
θ = (µ, σ 2) ∈ * = R1 × R+ is unknown.

Does this statistical model make sense, i.e., is the assumption of normality appro-
priate for this situation? The density histogram (based on 12 equal-length intervals
from 59.5 to 71.5) in Figure 5.5.7 looks very roughly normal, but the extreme observa-
tion in the right tail might be some grounds for concern. In any case, we proceed as if
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this assumption is reasonable. In Chapter 9, we will discuss more refined methods for
assessing this assumption.
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Figure 5.5.7: Density histogram of heights in Example 5.5.6.

Suppose we are interested in making inferences about the population mean height,
namely, the characteristic of interest is ψ(µ, σ 2) = µ. Alternatively, we might want to
make inferences about the 90th percentile of this distribution, i.e., ψ(µ, σ 2) = x0.90 =
µ + σ z0.90, where z0.90 is the 90th percentile of the N(0, 1) distribution (when X ∼
N(µ, σ 2), then P(X ≤ µ+ σ z0.90) = P((X − µ) /σ ≤ z0.90) = 4(z0.90) = 0.90).
So 90% of the population under study have height less than x0.90, a value unknown
to us because we do not know the value of (µ, σ 2). Obviously, there are many other
characteristics of the true distribution about which we might want to make inferences.

Just using our intuition, T (x1, . . . , xn) = x̄ seems like a sensible estimate of µ and
T (x1, . . . , xn) = x̄ + sz0.90 seems like a sensible estimate of µ+σ z0.90. To justify the
choice of these estimates, we will need the theories developed in later chapters. In this
case, we obtain x̄ = 64.517, and from (5.5.5) we compute s = 2.379. From Table D.2
we obtain z0.90 = 1.2816, so that

x̄ + sz0.90 = 64.517+ 2.379 (1.2816) = 67.566.

How accurate is the estimate x̄ ofµ? A natural approach to answering this question
is to construct a credible interval, based on the estimate, that we believe has a high
probability of containing the true value of µ and is as short as possible. For example,
the theory in Chapter 6 leads to using confidence intervals for µ, of the form

[x̄ − sc, x̄ + sc]

for some choice of the constant c. Notice that x̄ is at the center of the interval. The
theory in Chapter 6 will show that, in this case, choosing c = 0.3734 leads to what is
known as a 0.95-confidence interval for µ.We then take the half-length of this interval,
namely,

sc = 2.379 (0.373 4) = 0.888,
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as a measure of the accuracy of the estimate x̄ = 64.517 of µ. In this case, we have
enough information to say that we know the true value of µ to within one inch, at least
with “confidence” equal to 0.95.

Finally, suppose we have a hypothesized value µ0 for the population mean height.
For example, we may believe that the mean height of the population of individuals
under study is the same as the mean height of another population for which this quantity
is known to equal µ0 = 65. Then, based on the observed sample of heights, we want
to assess whether or not the value µ0 = 65 makes sense. If the sample mean height
x̄ is far from µ0, this would seem to be evidence against the hypothesized value. In
Chapter 6, we will show that we can base our assessment on the value of

t = x̄ − µ0

s/
√

n
= 64.517− 65

2.379/
√

30
= −1.112.

If the value of |t | is very large, then we will conclude that we have evidence against
the hypothesized value µ0 = 65. We have to prescribe what we mean by large here,
and we will do this in Chapter 6. It turns out that t = −1.112 is a plausible value for t ,
when the true value of µ equals 65, so we have no evidence against the hypothesis.

Summary of Section 5.5

• Descriptive statistics represent informal statistical methods that are used to make
inferences about the distribution of a variable X of interest, based on an observed
sample from this distribution. These quantities summarize characteristics of the
observed sample and can be thought of as estimates of the corresponding un-
known population quantities. More formal methods are required to assess the
error in these estimates or even to replace them with estimates having greater
accuracy.

• It is important to plot the data using relevant plots. These give us some idea of
the shape of the population distribution from which we are sampling.

• There are three main types of inference: estimates, credible or confidence inter-
vals, and hypothesis assessment.

EXERCISES

5.5.1 Suppose the following data are obtained by recording X, the number of cus-
tomers that arrive at an automatic banking machine during 15 successive one-minute
time intervals.

2 1 3 2 0 1 4 2
0 2 3 1 0 0 4

(a) Record estimates of fX (0), fX (1), fX (2), fX (3), and fX (4).
(b) Record estimates of FX (0), FX (1), FX (2), FX (3), and FX (4).
(c) Plot f̂ X .
(d) Record the mean and variance.
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(e) Record the median and IQR and provide a boxplot. Using the rule prescribed in
Example 5.5.4, decide whether there are any outliers.
5.5.2 Suppose the following sample of waiting times (in minutes) was obtained for
customers in a queue at an automatic banking machine.

15 10 2 3 1 0 4 5
5 3 3 4 2 1 4 5

(a) Record the empirical distribution function.
(b) Plot f̂ X .
(c) Record the mean and variance.
(d) Record the median and IQR and provide a boxplot. Using the rule given in Example
5.5.4, decide whether there are any outliers.
5.5.3 Suppose an experiment was conducted to see whether mosquitoes are attracted
differentially to different colors. Three different colors of fabric were used and the
number of mosquitoes landing on each piece was recorded over a 15-minute interval.
The following data were obtained.

Number of landings
Color 1 25
Color 2 35
Color 3 22

(a) Record estimates of fX (1), fX (2), and fX (3) where we use i for color i .
(b) Does it make sense to estimate FX (i)? Explain why or why not.
(c) Plot a bar chart of these data.
5.5.4 A student is told that his score on a test was at the 90th percentile in the popula-
tion of all students who took the test. Explain exactly what this means.
5.5.5 Determine the empirical distribution function based on the sample given below.

1.0 −1.2 0.4 1.3 −0.3
−1.4 0.4 −0.5 −0.2 −1.3

0.0 −1.0 −1.3 2.0 1.0
0.9 0.4 2.1 0.0 −1.3

Plot this function. Determine the sample median, the first and third quartiles, and the
interquartile range. What is your estimate of F(1)?
5.5.6 Consider the density histogram in Figure 5.5.8. If you were asked to record
measures of location and spread for the data corresponding to this plot, what would
you choose? Justify your answer.



294 Section 5.5: Some Basic Inferences

1050

0.3

0.2

0.1

0.0

Figure 5.5.8: Density histogram for Exercise 5.5.6.

5.5.7 Suppose that a statistical model is given by the family of N(µ, σ 2
0) distributions

where θ = µ ∈ R1 is unknown, while σ 2
0 is known. If our interest is in making

inferences about the first quartile of the true distribution, then determine ψ(µ).
5.5.8 Suppose that a statistical model is given by the family of N(µ, σ 2

0) distributions
where θ = µ ∈ R1 is unknown, while σ 2

0 is known. If our interest is in making
inferences about the third moment of the distribution, then determine ψ(µ).
5.5.9 Suppose that a statistical model is given by the family of N(µ, σ 2

0) distributions
where θ = µ ∈ R1 is unknown, while σ 2

0 is known. If our interest is in making
inferences about the distribution function evaluated at 3, then determine ψ(µ).
5.5.10 Suppose that a statistical model is given by the family of N(µ, σ 2) distributions
where θ = (µ, σ 2) ∈ R1 × R+ is unknown. If our interest is in making inferences
about the first quartile of the true distribution, then determine ψ(µ, σ 2).

5.5.11 Suppose that a statistical model is given by the family of N(µ, σ 2) distributions
where θ = (µ, σ 2) ∈ R1 × R+ is unknown. If our interest is in making inferences
about the distribution function evaluated at 3, then determine ψ(µ, σ 2).

5.5.12 Suppose that a statistical model is given by the family of Bernoulli(θ) distribu-
tions where θ ∈ * = [0, 1]. If our interest is in making inferences about the probability
that two independent observations from this model are the same, then determine ψ(θ).
5.5.13 Suppose that a statistical model is given by the family of Bernoulli(θ) distribu-
tions where θ ∈ * = [0, 1]. If our interest is in making inferences about the probability
that in two independent observations from this model we obtain a 0 and a 1, then de-
termine ψ(θ).
5.5.14 Suppose that a statistical model is given by the family of Uniform[0, θ] dis-
tributions where θ ∈ * = (0,∞) . If our interest is in making inferences about the
coefficient of variation (see Exercise 5.3.5) of the true distribution, then determine
ψ(θ).What do you notice about this characteristic?
5.5.15 Suppose that a statistical model is given by the family of Gamma(α0, β) distri-
butions where θ = β ∈ * = (0,∞) . If our interest is in making inferences about the
variance of the true distribution, then determine ψ(θ).
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COMPUTER EXERCISES

5.5.16 Do the following based on the data in Exercise 5.4.5.
(a) Compute the order statistics for these data.
(b) Calculate the empirical distribution function at the data points.
(c) Calculate the sample mean and the sample standard deviation.
(d) Obtain the sample median and the sample interquartile range.
(e) Based on the histograms obtained in Exercise 5.4.5, which set of descriptive statis-
tics do you feel are appropriate for measuring location and spread?
(f) Suppose the first data value was recorded incorrectly as 13.9 rather than as 3.9.
Repeat parts (c) and (d) using this data set and compare your answers with those previ-
ously obtained. Can you draw any general conclusions about these measures? Justify
your reasoning.
5.5.17 Do the following based on the data in Example 5.5.6.
(a) Compute the order statistics for these data.
(b) Plot the empirical distribution function (only at the sample points).
(c) Calculate the sample median and the sample interquartile range and obtain a box-
plot. Are there any outliers?
(d) Based on the boxplot, which set of descriptive statistics do you feel are appropriate
for measuring location and spread?
(e) Suppose the first data value was recorded incorrectly as 84.9 rather than as 64.9.
Repeat parts (c) and (d) using this data set and see whether any observations are deter-
mined to be outliers.
5.5.18 Generate a sample of 30 from an N(10, 2) distribution and a sample of 1 from
an N(30, 2) distribution. Combine these together to make a single sample of 31.
(a) Produce a boxplot of these data.
(b) What do you notice about this plot?
(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.
5.5.19 Generate a sample of 50 from a χ2(1) distribution.
(a) Produce a boxplot of these data.
(b) What do you notice about this plot?
(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.
5.5.20 Generate a sample of 50 from an N(4, 1) distribution. Suppose your interest is
in estimating the 90th percentile x0.9 of this distribution and we pretend that µ = 4 and
σ = 1 are unknown.
(a) Compute an estimate of x0.9 based on the appropriate order statistic.
(b) Compute an estimate based on the fact that x0.9 = µ+ σ z0.9 where z0.9 is the 90th
percentile of the N(0, 1) distribution.
(c) If you knew, or at least were willing to assume, that the sample came from a normal
distribution, which of the estimates in parts (a) or (b) would you prefer? Explain why.
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PROBLEMS

5.5.21 Determine a formula for the sample median, based on interpolation (i.e., using
(5.5.3)) when n is odd. (Hint: Use the least integer function or ceiling 8x9 = smallest
integer greater than or equal to x.)
5.5.22 An alternative to the empirical distribution function is to define a distribution
function F̃ by F̃(x) = 0 if x < x(1), F̃(x) = 1 if x ≥ x(n), F̃(x) = F̂(x(i)) if x = x(i),
and

F̃(x) = F̂(x(i))+ F̂(x(i+1))− F̂(x(i))

x(i+1) − x(i)

#
x − x(i)

$
if x(i) ≤ x ≤ x(i+1) for i = 1, . . . , n.

(a) Show that F̃(x(i)) = F̂(x(i)) for i = 1, . . . , n and is increasing from 0 to 1.

(b) Prove that F̃ is continuous on
#
x(1),∞

$
and right continuous everywhere.

(c) Show that, for p ∈ [1/n, 1), the value x̃ p defined in (5.5.3) is the solution to
F̃(x̃ p) = p.

DISCUSSION TOPICS

5.5.23 Sometimes it is argued that statistics does not need a formal theory to prescribe
inferences. Rather, statistical practice is better left to the skilled practitioner to decide
what is a sensible approach in each problem. Comment on these statements.
5.5.24 How reasonable do you think it is for an investigator to assume that a random
variable is normally distributed? Discuss the role of assumptions in scientific mod-
elling.


