Chapter 5
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In this chapter, we begin our discussion of statistical inference. Probability theory is
primarily concerned with calculating various quantities associated with a probability
model. This requires that we know what the correct probability model is. In applica
tions, this is often not the case, and the best we can say is that the correct probability
measureto useisin aset of possible probability measures. Werefer to thiscollection as
the statistical model. So, in asense, our uncertainty hasincreased; not only do we have
the uncertainty associated with an outcome or response as described by a probability
measure, but now we are also uncertain about what the probability measure is.

Statistical inference is concerned with making statements or inferences about char-
acteristics of the true underlying probability measure. Of course, these inferences must
be based on some kind of information; the statistical model makes up part of it. Another
important part of the information will be given by an observed outcome or response,
which werefer to asthe data. Inferencesthen take the form of various statements about
the true underlying probability measure from which the datawere obtained. Thesetake
avariety of forms, which we refer to as types of inferences.

The role of this chapter is to introduce the basic concepts and ideas of statistical
inference. The most prominent approaches to inference are discussed in Chapters 6,
7, and 8. Likelihood methods require the least structure as described in Chapter 6.
Bayesian methods, discussed in Chapter 7, require some additional ingredients. Infer-
ence methods based on measures of performance and loss functions are described in
Chapter 8.
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254 Section 5.1: Why Do We Need Statistics?

5.1 | Why Do We Need Statistics?

While we will spend much of our time discussing the theory of statistics, we should
aways remember that statistics is an applied subject. By this we mean that ultimately
statistical theory will be applied to real-world situations to answer questions of practical
importance.

What isit that characterizes those contexts in which statistical methods are useful ?
Perhaps the best way to answer thisisto consider a practical example where statistical
methodol ogy plays an important role.

EXAMPLE 5.1.1 Sanford Heart Transplant Study

In the paper by Turnbull, Brown, and Hu entitled “ Survivorship of Heart Transplant
Data’ (Journal of the American Satistical Association, March 1974, Volume 69, 74—
80), an analysis is conducted to determine whether or not a heart transplant program,
ingtituted at Stanford University, isin fact producing theintended outcome. Inthiscase,
the intended outcome is an increased length of life, namely, a patient who receives a
new heart should live longer than if no new heart was received.

It is obviously important to ensure that a proposed medical treatment for a disease
leads to an improvement in the condition. Clearly, we would not want it to lead to a
deterioration in the condition. Also, if it only produced a small improvement, it may
not be worth carrying out if it is very expensive or causes additional suffering.

We can never know whether a particular patient who received a new heart haslived
longer because of the transplant. So our only hope in determining whether the treat-
ment isworking isto compare the lifelengths of patients who received new hearts with
thelifelengths of patientswho did not. There are many factorsthat influence apatient’s
lifelength, many of which will have nothing to do with the condition of the patient’s
heart. For example, lifestyle and the existence of other pathologies, which will vary
greatly from patient to patient, will have a great influence. So how can we make this
comparison?

One approach to this problem is to imagine that there are probability distributions
that describe the lifelengths of the two groups. Let these be given by the densities ft
and fc, where T denotes transplant and C denotes no transplant. Here we have used
C as our label because this group is serving as a control in the study to provide some
comparison to the treatment (a heart transplant). Then we consider the lifelength of a
patient who received atransplant as arandom observation from f and thelifelength of
a patient who did not receive a transplant as a random observation from fc. We want
to compare fr and fc, in some fashion, to determine whether or not the transplant
treatment is working. For example, we might compute the mean lifelengths of each
distribution and compare these. If the mean lifelength of fr is greater than fc, then
we can assert that the treatment is working. Of course, we would still have to judge
whether the size of the improvement is enough to warrant the additional expense and
patients suffering.

If we could take an arbitrarily large number of observations from fr and fc, then
we know, from the results in previous chapters, that we could determine these distribu-
tionswith agreat deal of accuracy. In practice, however, we arerestricted to arelatively
small number of observations. For example, in the cited study there were 30 patients
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P X S|P X S|P X S
1 49 d|11 1400 a| 21 2 d
2 5 d|12 5 d|22 148 d
3 17 d| 13 34 d| 28 1 d
4 2 d|14 15 d|24 68 d
5 39 d|15 11 d|25 31 d
6 84 d| 16 2 d| 26 1 d
7 7 d|17 1 dj{27r 20 d
8 0 d| 18 39 d| 28 118 a
9 3 d|19 8 d|29 91 a

10 36 d|20 101 d |30 427 a

Table 5.1: Surviva times (X) in days and status (S) at the end of the study for each
patient (P) in the control group.

in the control group (those who did not receive a transplant) and 52 patients in the
treatment group (those who did receive a transplant).

For each control patient, the value of X — the number of days they were aive
after the date they were determined to be a candidate for a heart transplant until the
termination date of the study — was recorded. For various reasons, these patients did
not receive new hearts, e.g., they died before a new heart could be found for them.
These data, together with an indicator for the status of the patient at the termination
date of the study, are presented in Table 5.1. Theindicator value S = a denotesthat the
patient was alive at the end of the study and S = d denotes that the patient was dead.

For each treatment patient, the value of Y, the number of days they waited for the
transplant after the date they were determined to be a candidate for a heart transplant,
and the value of Z, the number of days they were aive after the date they received
the heart transplant until the termination date of the study, were both recorded. The
survival times for the treatment group are then given by the values of Y + Z. These
data, together with an indicator for the status of the patient at the termination date of
the study, are presented in Table 5.2.

We cannot compare fr and fc directly because we do not know these distributions.
But we do have some information about them because we have obtained values from
each, as presented in Tables 5.1 and 5.2. So how do we use these data to compare ft
and fc to answer the question of central importance, concerning whether or not the
treatment is effective? Thisisthe realm of statistics and statistical theory, namely, pro-
viding methods for making inferences about unknown probability distributions based
upon observations (samples) obtained from them.

We note that we have simplified this example somewhat, although our discussion
presents the essence of the problem. The added complexity comes from the fact that
typically statisticians will have available additional data on each patient, such as their
age, gender, and disease history. As a particular example of this, in Table 5.2 we have
the values of both Y and Z for each patient in the treatment group. As it turns out,
this additional information, known as covariates, can be used to make our comparisons
more accurate. Thiswill be discussed in Chapter 10. 1
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P Y Z S|P Y Z S|P Y Z S
1 0 15 d|19 50 1140 a| 37 77 442 a
2 35 3 d|20 22 11583 a|38 2 65 d
3 50 624 d|21 45 54 d|39 26 419 a
4 11 46 d| 22 18 47 d|40 32 362 a
5 25 127 d| 23 4 0 df{4 13 64 d
6 16 61 d|24 1 43 d|42 56 228 d
7 36 1350 d|25 40 971 a|43 2 65 d
8 27 312 d|26 57 88 a4 9 264 a
9 19 24 d|27 O 4 df4 4 25 d
10 17 10 d|28 1 780 a|46 30 193 a
11 7 1024 d|29 20 51 d|47 3 19% a
12 11 39 d|3 35 710 a|l48 26 63 d
13 2 730 d|31 8 663 a|49 4 12 d
14 82 136 d|32 31 253 d|5 45 103 a
15 24 1379 a|33 40 147 d|51 25 60 a
16 70 1 d|34 9 51 d|52 5 43 a
17 15 83 d|35 66 479 a
18 16 60 d|36 20 322 d

Table 5.2: The number of days until transplant (YY), survival times in days after trans-
plant (Z), and status (S) at the end of the study for each patient (P) in the treatment

group.

The previous exampl e provides some evidence that questions of great practical im-
portance require the use of statistical thinking and methodology. There are many sit-
uations in the physical and socia sciences where statistics plays a key role, and the
reasons are just like those found in Example 5.1.1. The central ingredient in al of
these is that we are faced with uncertainty. This uncertainty is caused both by vari-
ation, which can be modeled via probability, and by the fact that we cannot collect
enough observations to know the correct probability models precisely. The first four
chapters have dealt with building, and using, a mathematical model to dea with the
first source of uncertainty. In this chapter, we begin to discuss methods for dealing
with the second source of uncertainty.

Summary of Section 5.1

e Statisticsis applied to situations in which we have questions that cannot be an-
swered definitively, typically because of variation in data.

e Probability is used to model the variation observed in the data. Statistical infer-
ence is concerned with using the observed data to help identify the true proba-
bility distribution (or distributions) producing this variation and thus gain insight
into the answers to the questions of interest.
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EXERCISES |

5.1.1 Compute the mean survival times for the control group and for the treatment
groups in Example 5.1.1. What do you conclude from these humbers? Do you think
it is valid to base your conclusions about the effectiveness of the treatment on these
numbers? Explain why or why not.

5.1.2 Arethere any unusual observationsin the data presented in Example 5.1.17? If so,
what effect do you think these observations have on the mean survival times computed
in Exercise5.1.1?

5.1.3 In Example 5.1.1, we can use the status variable S as a covariate. What is the
practical significance of this variable?

5.1.4 A student is uncertain about the mark that will be received in a statistics course.
The courseinstructor has made avail able a database of marksin the coursefor anumber
of years. Can you identify aprobability distribution that may be relevant to quantifying
the student’s uncertainty? What covariates might be relevant in this situation?

5.1.5 The following data were generated from an N(u, 1) distribution by a student.
Unfortunately, the student forgot which value of x was used, so we are uncertain about
the correct probability distribution to use to describe the variation in the data.

02 -07 00 -19 07 -03 03 04
03 -08 15 01 03 -07 -18 02

Can you suggest a plausible value for 1 ? Explain your reasoning.

5.1.6 Suppose you are interested in determining the average age of al male students
a a particular college. The registrar of the college allows you access to a database
that lists the age of every student at the college. Describe how you might answer your
question. Isthisastatistical problem in the sense that you are uncertain about anything
and so will require the use of statistical methodology?

5.1.7 Supposeyou aretold that a characteristic X followsan N (x4, 1) distribution and
acharacteristic Y follows an N (x5, 1) distribution where x1 and u, are unknown. In
addition, you are given the results X1, . . ., Xm of m independent measurements on X
and vy1, ..., yn of n independent measurements on Y. Suggest a method for determin-
ing whether or not x; and u, are equal. Can you think of any problems with your
approach?

5.1.8 Suppose we know that a characteristic X follows an Exponential (1) distribution
and you are required to determine 1 based oni.i.d. observations xi, ..., X from this
distribution. Suggest amethod for doing this. Can you think of any problemswith your
approach?

PROBLEMS

5.1.9 Can you identify any potential problems with the method we have discussed in
Example 5.1.1 for determining whether or not the heart transplant program is effective
in extending life?

5.1.10 Suppose you are able to generate samples of any size from a probability distri-
bution P for which it is very difficult to compute P(C) for some set C. Explain how
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you might estimate P(C) based on a sample. What role does the size of the sample
play inyour uncertainty about how good your approximation is. Doesthe size of P(C)
play aroleinthis?

COMPUTER PROBLEMS|

5.1.11 Suppose we want to obtain the distribution of the quantity Y = X* + 2X3 — 3
when X ~ N(0, 1). Hereweare faced with aform of mathematical uncertainty because
it isvery difficult to determine the distribution of Y using mathematical methods. Pro-
pose a computer method for approximating the distribution function of Y and estimate
P(Y € (1, 2)). What isthe relevance of statistical methodology to your approach?

DISCUSSION TOPICS|

5.1.12 Sometimesit is claimed that all uncertainties can and should be modeled using
probability. Discuss thisissue in the context of Example 5.1.1, namely, indicate all the
things you are uncertain about in this example and how you might propose probability
distributions to quantify these uncertainties.

5.2 | Inference Using a Probability Model

In the first four chapters, we have discussed probability theory, a good part of which
has involved the mathematics of probability theory. This tells us how to carry out
various calculations associated with the application of the theory. It is important to
keep in mind, however, our reasons for introducing probability in the first place. As
we discussed in Section 1.1, probability is concerned with measuring or quantifying
uncertainty.

Of course, we are uncertain about many things, and we cannot claim that prob-
ability is applicable to all these situations. Let us assume, however, that we are in
a situation in which we feel probability is applicable and that we have a probability
measure P defined on a collection of subsets of a sample space Sfor aresponse s.

In an application of probability, we presume that we know P and are uncertain
about a future, or concealed, response value s € S. In such a context, we may be
required, or may wish, to make an inference about the unknown value of s. This can
take the form of a prediction or estimate of aplausible value for s, e.g., under suitable
conditions, we might take the expected value of s as our prediction. In other contexts,
we may be asked to construct a subset that has a high probability of containing s and
isin some sense small, e.g., find the region that contains at least 95% of the probability
and has the smallest size amongst all such regions. Alternatively, we might be asked
to assess whether or not a stated value s is an implausible value from the known P,
e.g., assess whether or not s lies in a region assigned low probability by P and so
isimplausible. These are examples of inferences that are relevant to applications of
probability theory.



Chapter 5: Statistical Inference 259

EXAMPLE 5.2.1

As a specific application, consider the lifelength X in years of a machine whereiit is

known that X ~ Exponential (1) (see Figure 5.2.1).
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Figure 5.2.1: Plot of the Exponential (1) density f.

Then for a new machine, we might predict its lifelength by E(X) = 1 year. Further-
more, from the graph of the Exponential (1) density, it is clear that the smallest interval
containing 95% of the probability for X is (0, ¢) , where ¢ satisfies

C
O.95=/ eXdx=1-¢e°¢
0

or ¢ = —1In(0.05) = 2.9957. This interval gives us a reasonable range of probable
lifelengths for the new machine. Finally, if we wanted to assess whether or not xp = 5
is a plausible lifelength for a newly purchased machine, we might compute the tail
probability as

o0
P(X > 5) =/ e Xdx = e~ = 0.0067,
5

which, in this case, isvery small and therefore indicatesthat xg = 5isfairly far out in
thetail. Theright tail of thisdensity isaregion of low probability for this distribution,
S0 Xg = 5 can be considered implausible. It is thus unlikely that a machine will last 5
years, so a purchaser would have to plan to replace the machine before that period is
over. I

In some applications, we receive some partia information about the unknown s
takingtheforms € C c S. In such acase, we replace P by the conditional probability
measure P (- | C) when deriving our inferences. Our reasons for doing this are many,
and, in general, we can say that most statisticians agree that it isthe right thing to do. It
isimportant to recognize, however, that this step does not proceed from a mathematical
theorem; rather it can be regarded as a basic axiom or principle of inference. We will
refer to this as the principle of conditional probability, which will play a key role in
some later developments.
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EXAMPLE 5.2.2

Suppose we have amachinewhose lifelength is distributed asin Example5.2.1, and the
machine has already been running for one year. Then inferences about the lifelength of
the machine are based on the conditiona distribution, given that X > 1. The density
of this conditional distribution is given by e=*~D for x > 1. The predicted lifelength
isnow

o] 00 o]
E(X|X > 1) =/ xe D dx = —xe-<x-1>)1 +/ e Ddx =2
1 1
The fact that the additional lifelength is the same as the predicted lifelength before the
machine starts working is a special characteristic of the Exponentia distribution. This
will not be truein general (see Exercise 5.2.4).
Thetail probability measuring the plausibility of the value xg = 5 is given by

o
P(X > 5|X > 1) =/ e~ *Ddx = e™* = 0.0183,
5
whichindicatesthat xo = 5isalittle more plausiblein light of the fact that the machine
has already survived one year. The shortest interval containing 0.95 of the conditional
probability is now of the form (1, c), where c is the solution to

Cc
0.95 = / e Ddx =ee™t — e,
1

whichimpliesthat c = —In (e™* — 0.95e™1) = 3.9957. 1

Our main point in this section issimply that we are aready somewhat familiar with
inferential concepts. Furthermore, viathe principle of conditional probability, we have
a basic rule or axiom governing how we go about making inferences in the context
where the probability measure P isknown and s is not known.

Summary of Section 5.2

e Probability models are used to model uncertainty about future responses.

e We can use the probability distribution to predict a future response or assess
whether or not a given value makes sense as a possible future value from the
distribution.

EXERCISES|

5.2.1 Sometimesthe mode of a density (the point where the density takesits maximum
value) ischosen asapredictor for afuture value of aresponse. Determinethis predictor
in Examples 5.2.1 and 5.2.2 and comment on its suitability as a predictor.

5.2.2 Suppose it has been decided to use the mean of a distribution to predict a future
response. In Example 5.2.1, compute the mean-squared error (expected value of the
square of the error between a future value and its predictor) of this predictor, prior to
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observing the value. To what characteristic of the distribution of the lifelength does
this correspond?

5.2.3 Graph the density of the distribution obtained as a mixture of a normal distribu-
tion with mean 4 and variance 1 and a normal distribution with mean —4 and variance
1, where the mixture probability is0.5. Explain why neither the mean nor the modeis
asuitable predictor in this case. (Hint: Section 2.5.4.)

5.2.4 Repest the calculations of Examples 5.2.1 and 5.2.2 when the lifelength of a
machineis known to be distributed as Y = 10X, where X ~ Uniform[O, 1].

5.2.5 Suppose that X ~ N(10, 2). What value would you record as a prediction of a
future value of X? How would you justify your choice?

5.2.6 Supposethat X ~ N(10, 2). Record the smallest interval containing 0.95 of the
probability for a future response. (Hint: Consider a plot of the density.)

5.2.7 Suppose that X ~ Gamma(3, 6). What value would you record as a prediction
of afuture value of X? How would you justify your choice?

5.2.8 Supposethat X ~ Poisson(5). What value would you record as a prediction of a
future value of X? How would you justify your choice?

5.2.9 Supposethat X ~ Geometric(1/3). What value would you record as aprediction
of afuture value of X?

5.2.10 Supposethat X follows the following probability distribution.

X 1 2 3 4
PX=x)|1/2|1/4|1/8| 1/8

(a) Record a prediction of a future value of X.

(b) Suppose you are then told that X > 2. Record a prediction of afuture value of X
that uses thisinformation.

PROBLEMS

5.2.11 Suppose a fair coin is tossed 10 times and the response X measured is the
number of times we observe a head.

(a) If you use the expected val ue of the response as a predictor, then what is the predic-
tion of afuture response X?

(b) Using Table D.6 (or a statistical package), compute a shortest interval containing
a least 0.95 of the probability for X. Note that it might help to plot the probability
function of X firgt.

(c) What region would you use to assess whether or not avalue sp is a possible future
value? (Hint: What are the regions of low probability for the distribution?) Assess
whether or not x = 8 isplausible.

5.2.12 In Example5.2.1, explain (intuitively) why theinterval (0, 2.9957) isthe short-
est interval containing 0.95 of the probability for the lifelength.

5.2.13 (Problem 5.2.11 continued) Suppose we are told that the number of heads ob-
served is an even number. Repeat parts (a), (b), and (c).

5.2.14 Suppose that a response X is distributed Beta(a, b) with a, b > 1 fixed (see
Problem 2.4.16). Determine the mean and the mode (point where density takes its
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maximum) of this distribution and assess which is the most accurate predictor of a
future X when using mean-squared error, i.e., the expected squared distance between
X and the prediction.

5.2.15 Suppose that aresponse X is distributed N (0, 1) and that we have decided to
predict a future value using the mean of the distribution.

(a) Determine the prediction for a future X.

(b) Determine the prediction for afuture Y = X2.

(c) Comment on the relationship (or lack thereof) between the answers in parts (a) and
(b).

5.2.16 Supposethat X ~ Geometric(1/3). Determine the shortest interval containing
0.95 of the probability for a future X. (Hint: Plot the probability function and record
the distribution function.)

5.2.17 Suppose that X ~ Geometric(1/3) and we are told that X > 5. What value
would you record as a prediction of afuture value of X? Determine the shortest interval
containing 0.95 of the probability for a future X. (Hint: Plot the probability function
and record the distribution function.)

DISCUSSION TOPICS|

5.2.18 Do you think it is realistic for a practitioner to proceed asif he knows the true
probability distribution for aresponse in a problem?

5.3 | Statistical Models

In a dtatistical problem, we are faced with uncertainty of a different character than
that arising in Section 5.2. In a statistical context, we observe the data s, but we are
uncertain about P. In such a situation, we want to construct inferences about P based
on s. Thisistheinverse of the situation discussed in Section 5.2.

How we should go about making these statistical inferences is probably not at all
obvious. In fact, there are severa possible approaches that we will discuss in subse-
quent chapters. In this chapter, we will develop the basic ingredients of al the ap-
proaches.

Common to virtually all approaches to statistical inference is the concept of the
statistical model for the datas. Thistakesthe form of aset {Py : 0 € Q} of probability
measures, one of which corresponds to the true unknown probability measure P that
produced the data s. In other words, we are asserting that there is arandom mechanism
generating s, and we know that the corresponding probability measure P is one of the
probability measuresin {Py : 6 € Q}.

The dtatistica model {Py : 0 € Q} corresponds to the information a statistician
brings to the application about what the true probability measure is, or at least what
oneiswilling to assume about it. The variable 8 is called the parameter of the model,
and the set Q is called the parameter space. Typicaly, we use models where 0 € Q
indexes the probability measuresin the model, i.e., Py, = Py, if and only if 81 = 0>.
If the probability measures Py can all be presented via probability functions or den-
sity functions fy (for convenience we will not distinguish between the discrete and
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continuous case in the notation), then it is common to write the statistical model as
{fo: 0 € Q}.

From the definition of a statistical model, we see that there is a unique value 8 €
Q, such that Py is the true probability measure. We refer to this value as the true
parameter value. It is obviously equivalent to talk about making inferences about the
true parameter value rather than the true probability measure, i.e., an inference about
thetruevalue of 4 is at once an inference about the true probability distribution. So, for
example, we may wish to estimate the true value of 8, construct small regionsin Q that
are likely to contain the true value, or assess whether or not the data are in agreement
with some particular value 6o, suggested as being the true value. These are types of
inferences, just like those we discussed in Section 5.2, but the situation here is quite
different.

EXAMPLE 5.3.1
Suppose we have an urn containing 100 chips, each colored either black B or white W.
Suppose further that we are told there are either 50 or 60 black chipsin the urn. The
chips are thoroughly mixed, and then two chips are withdrawn without replacement.
The goal is to make an inference about the true number of black chips in the urn,
having observed the datas = (s1, &) , where s isthe color of theith chip drawn.

In this case, we can take the statistical model to be {Py : 0 € Q}, where § is the
number of black chips in the urn, so that Q = {50, 60}, and Py is the probability
measure on

S= {(B) B) ) (B’ W) > (W9 B) > (W9 W)}

corresponding to 6. Therefore, Psg assignsthe probability 50- 49/ (100 - 99) to each of
the sequences (B, B) and (W, W) and the probability 50 - 50/ (100 - 99) to each of the
sequences (B, W) and (W, B), and Psp assigns the probability 60 - 59/ (100 - 99) to
the sequence (B, B), the probability 40 - 39/ (100 - 99) to the sequence (W, W), and
the probability 60 - 40/ (100 - 99) to each of the sequences (B, W) and (W, B).

The choice of the parameter is somewhat arbitrary, as we could have easily la
belled the possible probability measures as P; and Py, respectively. The parameter is
in essence only alabel that allows us to distinguish amongst the possible candidates for
the true probability measure. It is typical, however, to choose this label conveniently
so that it means something in the problem under discussion. i

We note some additional terminology in common usage. |f asingle observed value
for aresponse X has the statistical model {fy : 0 € Q}, then asample (Xq, ..., Xp)
(recall that sample here means that the X; are independent and identically distributed
— see Definition 2.8.6) has joint density given by fy (x1) fg (x2) - - - g (Xn) for some
6 € Q. This specifies the statistical model for the response (X1, ..., Xn) . We refer to
thisasthe statistical model for a sample. Of course, thetrue value of 6 for the statistical
model for asampleisthe same asthat for asingle observation. Sometimes, rather than
referring to the statistical model for a sample, we speak of a sample from the statistical
modd {fy: 6 € Q}.

Note that, wherever possible, we will use uppercase letters to denote an unobserved
value of arandom variable X and lowercase letters to denote the observed value. So an
observed sample (X4, ..., Xp) will be denoted (X1, ..., Xn) .
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EXAMPLE 5.3.2

Suppose there are two manufacturing plants for machines. It is known that machines
built by thefirst plant have lifelengths distributed Exponential (1), while machines man-
ufactured by the second plant have lifelengths distributed Exponential (1.5). The den-
sities of these distributions are depicted in Figure 5.3.1.

<1

Figure 5.3.1: Plot of the Exponential (1) (solid line) and Exponential (1.5) (dashed line)
densities.

You have purchased five of these machines knowing that al five came from the
same plant, but you do not know which plant. Subsequently, you observethelifelengths
of these machines, obtaining the sample (x4, ..., X5), and want to make inferences
about the true P.

In this case, the statistical model for a single observation comprises two probability
measures { Py, P}, where P is the Exponentia (1) probability measure and P, is the
Exponential (1.5) probability measure. Here we take the parameter tobe§ € Q =
{1,2}.

Clearly, longer observed lifelengths favor & = 2. For example, if

(X1,...,%5) = (5.0,35,3.3,4.1,2.8),
then intuitively we are more certain that = 2 than if
(x1,...,%s) = (2.0,25,3.0,3.1,18).

The subject of statistical inference is concerned with making statements like this more
precise and quantifying our uncertainty concerning the validity of such assertions.

We note again that the quantity 6 serves only as alabel for the distributions in the
model. The value of 8 has no interpretation other than as a label and we could just
as easily have used different values for the labels. In many applications, however, the
parameter 6 is taken to be some characteristic of the distribution that takes a unique
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value for each distribution in the model. Here, we could have taken 6 to be the mean
and then the parameter space would be Q = {1, 1.5} . Notice that we could just aswell
have used the first quartile, or for that matter any other quantile, to have labelled the
distributions, provided that each distribution in the family yields a unique value for the
characteristic chosen. Generally, any 1-1 transformation of a parameter is acceptable
as a parameterization of a statistical model. When we relabel, we refer to this as a
reparameterization of the statistical model. i

We now consider two important examples of statistical models. Theseareimportant
because they commonly arisein applications.

EXAMPLE 5.3.3 Bernoulli Model
Supposethat (X1, . .., Xn) isasample from a Bernoulli(9) distribution with 8 € [0, 1]
unknown. We could be observing the results of tossing a coin and recording X; equal
to 1 whenever ahead is observed on theith toss and equal to O otherwise. Alternatively,
we could be observing items produced in an industrial process and recording X; equal
to 1 whenever the ith item is defective and 0 otherwise. In a biomedical application,
the response X; = 1 might indicate that a treatment on a patient has been successful,
whereas X; = O indicates afailure. In all these cases, we want to know the true value
of 9, asthistels us something important about the coin we are tossing, the industrial
process, or the medical treatment, respectively.

Now suppose we have no information whatsoever about the true probability 6. Ac-
cordingly, we take the parameter space to be Q = [0, 1], the set of all possible values
for 6. The probability function for the ith sasmpleitem is given by

fo () = 0% (L= 0)'%,
and the probability function for the sample is given by

ﬁ fo (%) = ﬁgxi (1- 0)1—xi — "% (1— H)n(l_)_() .
i=1 i=1

This specifies the model for asample.
Note that we could parameterize this model by any 1-1 function of 8. For example,
o = 62 would work (asitis 1-1 on Q), aswould y = In{9/(1 — 6)}. 1

EXAMPLE 5.3.4 Location-Scale Normal Model
Supposethat (X, . . ., Xn) isasamplefroman N (u, o2) distributionwith@ = (u, 2) €
R! x RT unknown, where R = (0, 0o). For example, we may have observations of
heights in centimeters of individuals in a population and fedl that it is reasonable to
assume that the distribution of heightsin the population is normal with some unknown
mean and standard deviation.

The density for the sample is then given by
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because (Problem 5.3.13)
n n
D6 —wP=nE—w)?+ D (i —%7, (5.3.1)
i=1 i=1
where

i

1
Sl
) =)

Il
N

is the sample mean, and

1 n
2 2
s = X — X
n_12;(' )
isthe sample variance.

Alternative parameterizations for this model are commonly used. For example,
rather than using (u, o2), sometimes (., o —2) or (u, o) or (x,Ing) are convenient
choices. Note that Ing rangesin R! as¢ variesin Rt

Actualy, we might wonder how appropriate the model of Example 5.3.4 isfor the
distribution of heightsin a population, for in any finite population the true distribution
is discrete (there are only finitely many students). Of course, a norma distribution
may provide a good approximation to a discrete distribution, asin Example 4.4.9. So,
in Example 5.3.4, we are also assuming that a continuous probability distribution can
provide a close approximation to the true discrete distribution. As it turns out, such
approximations can lead to great simplifications in the derivation of inferences, so we
use them whenever feasible. Such an approximation is, of course, not applicable in
Example 5.3.3.

Also note that heights will always be expressed in some specific unit, e.g., centime-
ters; based on this, we know that the population mean must be in a certain range of
values, e.g., 1« € (0, 300), but the statistical model allows for any value for u. So we
often do have additional information about the true value of the parameter for amodel,
but it is somewhat imprecise, e.g., we also probably have i € (100, 300). In Chapter
7, we will discuss ways of incorporating such information into our analysis.

Where does the model information {Py : & € Q} come from in an application? For
example, how could we know that heights are approximately normally distributed in
Example 5.3.4? Sometimes there is such information based upon previous experience
with related applications, but often it is an assumption that requires checking before
inference procedures can be used. Procedures designed to check such assumptions are
referred to as model-checking procedures, which will be discussed in Chapter 9. In
practice, model-checking procedures are required, or else inferences drawn from the
data and statistical model can be erroneous if the model iswrong.

Summary of Section 5.3

e Inadatistical application, we do not know the distribution of a response, but we
know (or are willing to assume) that the true probability distribution is one of a
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set of possible distributions { fy : 6 € Q}, where fy isthe density or probability
function (whichever is relevant) for the response. The set of possible distribu-
tionsis called the statistical model.

e Theset Qiscalled the parameter space, and the variable 6 is cdled the parame-
ter of the model. Because each value of 6 corresponds to a distinct probability
distribution in the model, we can talk about the true value of 8, asthis givesthe
true distribution via fy.

EXERCISES|

5.3.1 Supposethere arethree coins— oneisknown to befair, one has probability 1/3
of yielding ahead on asingletoss, and one has probability 2/3 for head on asingletoss.
A coin is selected (not randomly) and then tossed five times. The goa is to make an
inference about which of the coinsis being tossed, based on the sample. Fully describe
adtatistical model for a single response and for the sample.

5.3.2 Supposethat one face of asymmetrical six-sided dieis duplicated but we do not
know which one. We do know that if 1 is duplicated, then 2 does not appear; otherwise,
1 does not appear. Describe the statistical model for asingleroll.

5.3.3 Suppose we have two populations (I and I1) and that variable X is known to be
distributed N (10, 2) on population | and distributed N (8, 3) on population II. A sam-
ple (X1, ..., Xp) is generated from one of the populations; you are not told which
population the sample came from, but you are required to draw inferences about the
true distribution based on the sample. Describe the statistical model for this problem.
Could you parameterize this model by the population mean, by the population vari-
ance? Sometimes problems like this are called classification problems because making
inferences about the true distribution is equivalent to classifying the sample as bel ong-
ing to one of the populations.

5.3.4 Suppose the situation is as described in Exercise 5.3.3, but now the distribution
for population | is N (10, 2) and the distribution for population Il is N(10, 3). Could
you parameterize the model by the population mean? By the population variance?
Justify your answer.

5.3.5 Suppose that a manufacturing process produces batteries whose lifelengths are
known to be exponentially distributed but with the mean of the distribution completely
unknown. Describe the statistical model for a single observation. Is it possible to
parameterize this model by the mean? Isit possible to parameterize this model by the
variance? Is it possible to parameterize this model by the coefficient of variation (the
coefficient of variation of a distribution equals the standard deviation divided by the
mean)?

5.3.6 Suppose it is known that aresponse X is distributed Uniform[0, 8], where g >
0 is unknown. Is it possible to parameterize this model by the first quartile of the
distribution? (Thefirst quartile of the distribution of arandom variable X isthe point ¢
satisfying P(X < ¢) = 0.25.) Explain why or why not.
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5.3.7 Supposeit is known that arandom variable X follows one of the following dis-
tributions.

0 [P(X=1) | P(X=2) | P(X=23)
A 12 12 0
B 0 12 1/2

(a) What is the parameter space Q?

(b) Suppose we observe avalue X = 1. What is the true value of the parameter? What
isthe true distribution of X?

(c) What could you say about the true value of the parameter if you had observed
X=2?

5.3.8 Suppose we have a statistical model { Py, P>}, where P; and P, are probability
measures on a sample space S. Further suppose there is a subset C S such that
P1(C) = 1 while P>(C® = 1. Discuss how you would make an inference about the
true distribution of aresponse s after you have observed a single observation.

5.3.9 Suppose you know that the probability distribution of avariable X is either Py
or P. If you observe X = 1and P1(X = 1) = 0.75 while P,(X = 1) = 0.001,
then what would you guess as the true distribution of X? Give your reasoning for this
conclusion.

5.3.10 Suppose you are told that class #1 has 35 males and 65 females while class #2
has 45 males and 55 females. You are told that a particular student from one of these
classesisfemale, but you are not told which class she came from.

(a) Construct a statistical model for this problem, identifying the parameter, the para-
meter space, and the family of distributions. Also identify the data.

(b) Based on the data, do you think areliable inference is feasible about the true para-
meter value? Explain why or why not.

(c) If you had to make a guess about whi ch distribution the data came from, what choice
would you make? Explain why.

PROBLEMS

5.3.11 Suppose in Example 5.3.3 we parameterize the model by w = In{6/(1 — 6)}.
Record the dtatistical model using this parameterization, i.e., record the probability
function using y asthe parameter and record the relevant parameter space.

5.3.12 Suppose in Example 5.3.4 we parameterize the model by (u,Ing) = (u, y).
Record the statistical model using this parameterization, i.e., record the density func-
tion using (u, y) asthe parameter and record the relevant parameter space.

5.3.13 Establish theidentity (5.3.1).

5.3.14 A sample (X1, ..., Xp) isgenerated from a Bernoulli(9) distribution with 6 €
[0, 1] unknown, but only T = Zin=1 X is observed by the statistician. Describe the
statistical model for the observed data.

5.3.15 Suppose it is known that a response X is distributed N(u, 02), where § =
(u,0%) € Rl x Rt and 6 is completely unknown. Show how to calculate the first
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quartile of each distribution in this model from the values (u, 02). Is it possible to
parameterize the model by the first quartile? Explain your answer.

5.3.16 Suppose response X isknown to be distributed N (Y, o2), where Y ~ N(0, 6%)
and 62, 92 > 0 are completely unknown. Describe the statistical model for an obser-
vation (X, Y). If Y isnot observed, describe the statistical model for X.

5.3.17 Suppose we have a satistical model {P1, P.}, where P; isan N(10, 1) distrib-
ution while P> isan N (0, 1) distribution.

(a) Isit possible to make any kind of reliable inference about the true distribution based
on asingle observation? Why or why not?

(b) Repeat part (a) but now supposethat P; isa N (1, 1) distribution.

5.3.18 Suppose we have a statistical model {Py, P>}, where P; isan N(1, 1) distri-
bution while P, is an N(0, 1) distribution. Further suppose that we had a sample
X1, ..., X100 from the true distribution. Discuss how you might go about making an
inference about the true distribution based on the sample.

DISCUSSION TOPICS|

5.3.19 Explain why you think it is important that statisticians state very clearly what
they are assuming any timethey carry out a statistical analysis.

5.3.20 Consider the statistical model given by the collection of N (u, a%) distributions
where 1 € R is considered completely unknown, but 0(2) is assumed known. Do you
think this is a reasonable model to use in an application? Give your reasons why or
why not.

5.4 | Data Collection

The developments of Sections 5.2 and 5.3 are based on the observed response s being
a redlization from a probability measure P. In fact, in many applications, thisis an
assumption. We are often presented with data that could have been produced in this
way, but we cannot always be sure.

When we cannot be sure that the data were produced by arandom mechanism, then
the statistical analysis of the data is known as an observational study. In an observa-
tional study, the statistician merely observes the data rather than intervening directly
in generating the data, to ensure that the randomness assumption holds. For example,
suppose a professor collects data from his students for a study that examines the rela
tionship between grades and part-time employment. Isit reasonable to regard the data
collected as having come from a probability distribution? If so, how would we justify
this?

It isimportant for a statistician to distinguish carefully between situations that are
observational studies and those that are not. As the following discussion illustrates,
there are qualifications that must be applied to the analysis of an observational study.
While statistical analyses of observational studies are valid and indeed important, we
must be aware of their limitations when interpreting their results.
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5.4.1 Finite Populations

Suppose we have a finite set 1T of objects, called the population, and a real-valued
function X (sometimes called a measurement) defined on I1. So for each = € II, we
have area -valued quantity X (r) that measures some aspect or feature of 7 .

For example, I could be the set of al students currently enrolled full-time at a
particular university, with X(z) the height of student = in centimeters. Or, for the
same I1, we could take X () to be the gender of student =, where X (z) = 1 denotes
femaleand X (z) = 2 denotesmale. Here, height isaquantitative variable, becauseits
values mean something on a numerical scale, and we can perform arithmetic on these
values, e.g., calculate amean. On the other hand, gender isan example of acategorical
variable because its values serve only to classify, and any other choice of unique real
numbers would have served as well as the ones we chose. The first step in a statistical
analysisisto determine the types of variables we are working with because the rel evant
statistical analysis techniques depend on this.

The population and the measurement together produce a population distribution
over the population. Thisis specified by the population cumulative distribution func-
tion Fx : Rt — [0, 1], where

{z : X(@) < x}|
N 2
with | A] being the number of elementsintheset A, and N = |II|. Therefore, Fx(x)

isthe proportion of elementsin IT with their measurement less than or equal to x.
Consider the following simple example where we can calculate Fyx exactly.

EXAMPLE54.1

Suppose that 1T is a population of N = 20 plots of land of the same size. Further
suppose that X () is a measure of the fertility of plot # on a 10-point scale and that
the following measurements were obtained.

Fx(X) =

4 86 78 375 46
9 57583478 3
Then we have )
0 X <3
3/20 3<x<4
6/20 4<x<5b
_ ) 9/20 5<Xx<6
Fx0O=1 11,20 6<x<7
15/20 7<x<8
19/20 8<x<9
| 1 9<x
because, for example, 6 out of the 20 plots have fertility measurements less than or
equal to 4.1

The goal of a statistician in this context is to know the function Fx as precisely
as possible. If we know Fyx exactly, then we have identified the distribution of X



Chapter 5: Statistical Inference 271

over I1. One way of knowing the distribution exactly isto conduct a census, wherein,
the statistician goes out and observes X () for every = € II and then calculates Fx.
Sometimesthisisfeasible, but oftenit isnot possible or even desirable, dueto the costs
involved in the accurate accumulation of al the measurements — think of how difficult
it might be to collect the heights of al the students at your school.

While sometimes a census is necessary, even mandated by law, often a very accu-
rate approximation to Fx can be obtained by selecting a subset

{mq,...,an} C I

for somen < N. We then approximate Fy (x) by the empirical distribution function
defined by

Hzi : X(zj) < X,i=1,...,n}
n

1<
ﬁél(—oo,x] (X(xi)).

Fx(x) =

We could also measure more than one aspect of z to produce a multivariate mea-
surement X : I1 — RX for some k. For example, if I is again the population of
students, we might have X (z) = (X1(x), X2(x)) , where X41(x) isthe height in cen-
timeters of student 7 and X2(7) isthe weight of student = in kilograms. We will dis-
cuss multivariate measurements in Chapter 10, where our concern is the relationships
amongst variables, but we focus on univariate measurements here.

There are two questions we need to answer now — namely, how should we select
thesubset {71, ..., 7n} and how large should n be?

5.4.2 | Simple Random Sampling

Wewill first address the issue of selecting {z 1, . .., 7 n}. Suppose we select this subset
according to some given rule based on the unique label that each 7 € TI possesses.
For example, if the label is a number, we might order the numbers and then take the n
dements with the smallest labels. Or we could order the numbers and take every other
element until we have a subset of n, etc.

There are many such rules we could apply, and there is a basic problem with all
of them. If we want Fx to approximate Fy for the full population, then, when we
employ arule, we run the risk of only selecting {1, ..., 7} from a subpopulation.
For example, if we use student numbers to identify each element of a population of
students, and more senior students have lower student numbers, then, when n is much
smaller than N and we select the students with smallest student numbers, Fx is really
only approximating the distribution of X in the population of senior students at best.
This distribution could be very different from Fx. Similarly, for any other rule we
employ, even if we cannot imagine what the subpopulation could be, there may be
such a selection effect, or bias, induced that renders the estimate invalid.

This is the qualification we need to apply when analyzing the results of observa-
tional studies. In an observational study, the data are generated by somerule, typically
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unknown to the statistician; this means that any conclusions drawn based on the data
X(z1),,..., X(zn) may not bevalid for the full population.

There seems to be only one way to guarantee that selection effects are avoided,
namely, the set {z 1, ..., 7n} Must be selected using randomness. For simple random
sampling, this means that a random mechanism is used to select the z; in such a way
that each subset of n has probability 1/(’;]') of being chosen. For example, we might
place N chipsin abowl, each with a unique label corresponding to a population ele-
ment, and then randomly draw n chips from the bow! without replacement. The labels
on the drawn chips identify the individuals that have been selected from T1. Alterna
tively, for the randomization, we might use a table of random numbers, such as Table
D.1 in Appendix D (see Table D.1 for a description of how it is used) or generate
random values using a computer algorithm (see Section 2.10).

Note that with simple random sampling (X(z 1), , ..., X(x)) israndom. In par-
ticular, when n = 1, we then have

P(X(z1) < X) = Fx(x),

namely, the probability distribution of the random variable X (z 1) is the same as the
population distribution.

EXAMPLE 5.4.2
Consider the context of Example 5.4.1. When we randomly select the first plot from
I, it is clear that each plot has probability 1/20 of being selected. Then we have

{m : X(z) < x}|

P(X(z1) < Xx) = 0

= Fx(x)

for every x € RL. 1

Prior to observing the sample, we aso have P(X(z2) < X) = Fx(x). Consider,
however, the distribution of X (z2) giventhat X(x 1) = X1. Because we have removed
one population member, with measurement value x1, then NFx (x) — 1 isthe number
of individuals left in IT with X () < X3. Therefore,

NFﬁgxl!—l X > X
P(X(z2) < x| X(71) =X1) = N -

Note that thisis not equal to Fx (X).
So with ssimple random sampling, X (z 1) and X ( 2) are not independent. Observe,
however, that when N islarge, then

P (X(z2) < x| X(71) = X1) & Fx(X),

so that X(z1) and X () are approximately independent and identically distributed
(i.i.d.). Similar calculations lead to the conclusion that, when N islargeand n is small
relative to N, then with simple random sampling from the population, the random
variables

X(1),..., X(wn)
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areapproximately i.i.d. and with distribution given by Fx. Sowewill treat the observed
values (X1, ..., Xpn) of (X(x1),..., X(zn)) as a sample (in the sense of Definition
2.8.6) from Fy. In this text, unless we indicate otherwise, we will aways assume that
nissmall relativeto N so that this approximation makes sense.

Under thei.i.d. assumption, theweak law of large numbers(Theorem 4.2.1) implies
that the empirical distribution function Fx satisfies

A 1
Fx(0 == > limsen (X (@) 5 Fx(0
i=1

asn — oo. Sowe see that Fx can be considered as an estimate of the population
cumulative distribution function (cdf) Fx.

Whenever the data have been collected using simple random sampling, we will re-
fer to the statistical investigation as a sampling study. It is a basic principle of good
statistical practice that sampling studies are always preferred over observational stud-
ies, whenever they are feasible. This is because we can be sure that, with a sampling
study, any conclusions we draw based onthe samplez 1, ..., 7z will apply to the pop-
ulation IT of interest. With observational studies, we can never be sure that the sample
data have not actually been selected from some proper subset of T1. For example, if you
were asked to make inferences about the distribution of student heights at your school
but selected some of your friends as your sample, then it is clear that the estimated cdf
may be very unlike the true cdf (possibly more of your friends are of one gender than
the other).

Often, however, we have no choice but to use observational data for a statistical
analysis. Sampling directly from the population of interest may be extremely difficult
or evenimpossible. We can still treat the results of such analyses asaform of evidence,
but we must be wary about possible selection effects and acknowledge this possibility.
Sampling studies congtitute a higher level of statistical evidence than observational
studies, as they avoid the possibility of selection effects.

In Chapter 10, we will discuss experiments that constitute the highest level of sta-
tistical evidence. Experiments are appropriate when we are investigating the possibility
of cause—effect relationships existing amongst variables defined on populations.

The second question we need to address concernsthe choice of the samplesizen. It
seems hatural that we would like to choose this as large as possible. On the other hand,
there are aways costs associated with sampling, and sometimes each sample value is
very expensiveto obtain. Furthermore, itis often the case that the more datawe collect,
the more difficulty we have in making sure that the data are not corrupted by various
errors that can arise in the collection process. So our answer, concerning how large n
need be, isthat we want it chosen large enough so that we obtain the accuracy necessary
but no larger. Accordingly, the statistician must specify what accuracy is required, and
then n is determined.

Wewill seein the subsequent chaptersthat there are various methods for specifying
the required accuracy in a problem and then determining an appropriate value for n.
Determining n is a key component in the implementation of a sampling study and is
often referred to as a sample-size calculation.
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If we define

 X(m) = 1
@_%%;ﬂzﬁzmmmm,

rell

fx(x) =

namely, fx(X) isthe proportion of population members satisfying X (z) = X, thenwe
seethat fx playstherole of the probability function because

Fx(0 =D fx@.

z<X

We refer to fx as the population relative frequency function. Now, fx(x) may be
estimated, based onthesample {z 1, ..., 7n}, by

. i X@)=x,i=1,..., 18
fo = M2 RE) =] R NIV
i=1

namely, the proportion of sample members z satisfying X (z) = x.

With categorical variables, fx(x) estimates the population proportion fx(x) in
the category specified by x. With some quantitative variables, however, fx is not an
appropriate quantity to estimate, and an alternative function must be considered.

5.4.3 | Histograms

Quantitative variables can be further classified as either discrete or continuous vari-
ables. Continuous variables are those that we can measure to an arbitrary precision as
we increase the accuracy of a measuring instrument. For example, the height of an
individual could be considered a continuous variable, whereas the number of years of
education an individual possesses would be considered a discrete quantitative variable.
For discrete quantitative variables, fx isan appropriate quantity to describe a popula-
tion distribution, but we proceed differently with continuous quantitative variables.

Suppose that X is a continuous quantitative variable. In this case, it makes more
senseto group vauesinto intervals, given by

(h].) hz]n (h29 h3]9 cees (hm—].) hm]n

where the h; are chosen to satisfy hy < hy < .-+ < hy with (hy, hy) effectively
covering the range of possible values for X. Then we define

[{z : X(=)e(hi,hi+al}| o
hX(X) = [ O N(hi+1—hi) X e (h|> h|+1]

otherwise

and refer to hx as a density histogram function. Here, hx(x) is the proportion of
population elements z that have their measurement X () in the intervd (h;, hj 1]
containing X, divided by the length of the interval.

In Figure 5.4.1, we have plotted a density histogram based on a sample of 10,000
from an N(O, 1) distribution (we are treating this sample as the full population) and
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usingthevaluesh; = —5, h, = —4, ..., hy; = 5. Note that the vertical lines are only
artifacts of the plotting software and do not represent values of hy, asthese are given
by the horizontal lines.

0.35 —

0.30 —

0.25 —

0.20 —

0.15 —

0.10 —

0.05 —
0.00

Figure 5.4.1: Density histogram function for a sample of 10,000 from an N (0, 1) distribution
using thevaluesh1= —5, h,= —4, ..., h;;=>5.

If x € (hi, hjt+1], then hx (X) (hi+1 — hi) givesthe proportion of individualsin the
population that have their measurement X () in (hi, hi+1]. Furthermore, we have

hj
Fx(hj)=/ hx(X)dX
—0oQ
for each interval endpoint and
hj
Frlhi) = Fxh) = [ hx(o dx
when h; < hj. If theintervals (hj, hi1] are small, then we expect that
b
) = Fx(@ ~ [ hx() dx
a
for any choiceof a < b.
Now suppose that the lengths hj 1 — h; are small and N is very large. Then it

makes sense to imagine a smooth, continuous function fx, e.g., perhaps a normal or
gammadensity function, that approximates hx in the sense that

/ab fx (X) dx %/ab hy (x) dx

for every a < b. Then wewill aso have

b
/ fx (x) dx ~ Fx(b) — Fx (@)
a
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for every a < b. We will refer to such an fx as adensity function for the population
distribution.

In essence, this is how many continuous distributions arise in practice. In Figure
5.4.2, we have plotted a density histogram for the same values used in Figure 5.4.1, but
thistime we used the interval endpointshy; = —5, hp = —4.75, ..., hs; = 5. We note
that Figure 5.4.2 looks much more like a continuous function than does Figure 5.4.1.

03 —

0.1 —

0.0 —

\ \ \
-5 0 5

Figure 5.4.2: Density histogram function for a sample of 10,000 from an N (0, 1) distribution
using thevalueshy = —5, hy = —4.75, ..., hs1 = 5.

5.4.4 Survey Sampling

Finite population sampling provides the formulation for a very important application
of statistics, namely, survey sampling or polling. Typically, a survey consists of a set of
questionsthat are asked of asample {z 1, ..., =} from apopulation IT. Each question
corresponds to a measurement, so if there are m questions, the response from arespon-
dent 7 is the m-dimensional vector (Xi(x), X2(z), ..., Xm(x7)) . A very important
example of survey sampling isthe pre-election polling that is undertaken to predict the
outcome of avote. Also, many consumer product companies engage in extensive mar-
ket surveysto try to learn what consumers want and so gain information that can lead
to improved sales.

Typicaly, the analysis of the resultswill be concerned not only with the population
distributions of the individual X; over the population but also the joint population dis-
tributions. For example, the joint cumulative distribution function of (X1, X2) isgiven
by
l{m : Xi(7) < X1, Xa(7) < X2}

N )
namely, F(x,,x,) (X1, X2) is the proportion of the individuals in the population whose
X1 measurement is no greater than x; and whose X2 measurement is no greater than
Xo. Of course, we can a so define the joint distributions of three or more measurements.

Fx1, %) (X1, X2) =
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Thesejoint distributions are what we useto answer questionslike, istherearelationship
between X1 and X2, and if so,what form does it take? This topic will be extensively
discussed in Chapter 10. We can aso define f(x,, x,) for thejoint distribution, and joint
density histograms are again useful when X1 and X, are both continuous quantitative
variables.

EXAMPLE 5.4.3

Suppose there are four candidates running for mayor in a particular city. A random
sample of 1000 voters is selected; they are each asked if they will vote and, if so,
which of the four candidates they will vote for. Additionally, the respondents are asked
their age. We denote the answer to the question of whether or not they will vote by X,
with X1(z) = 1 meaning yesand X1(z) = 0 meaning no. For those voting, we denote
by X, the response concerning which candidate they will vote for, with Xo(z) = i
indicating candidatei. Finaly, the age in years of the respondent is denoted by Xs3. In
addition to the distributions of X1 and X5, the pollster is aso interested in the joint
distributions of (X1, X3) and (X2, X3), asthese tell us about the relationship between
voter participation and age in the first case and candidate choice and age in the second
case. 1

There are many interesting and important aspects to survey sampling that go well
beyond this book. For example, it is often the case with human populations that aran-
domly selected person will not respond to a survey. Thisis called nonresponse error,
and it is a serious selection effect. The sampler must design the study carefully to try
to mitigate the effects of nonresponse error. Furthermore, there are variants of ssimple
random sampling (see Challenge 5.4.20) that can be preferable in certain contexts, as
these increase the accuracy of the results. The design of the actual questionnaire used
is also very important, as we must ensure that responses address the issues intended
without biasing the results.

Summary of Section 5.4

e Simple random sampling from a population IT means that we randomly select
a subset of size n from II in such a way that each subset of n has the same
probability — namely, 1/ (") — of being selected.

e Datathat arise from a sampling study are generated from the distribution of the
measurement of interest X over the whole population IT rather than some sub-
population. Thisiswhy sampling studies are preferred to observational studies.

e Whenthesamplesizen issmall relativeto |I1| , we can treat the observed values
of X asasample from the distribution of X over the population.

EXERCISES|
5.4.1 SupposewehaveapopulationIl = {x1, ..., = 10} and quantitative measurement
X given by:

i 1 2 3 45 6 7 8 9 10

Xz)|1 1 2 1 2 3 3 1 2 4
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Calculate Fx, fx, ux, and 2.

5.4.2 Suppose you take a sample of n = 3 (without replacement) from the population
in Exercise 5.4.1.

(a) Can you consider this as an approximatei.i.d. sample from the population distribu-
tion? Why or why not?

(b) Explain how you would actualy physically carry out the sampling from the popu-
lation inthis case. (Hint: TableD.1.)

(¢) Using the method you outlined in part (b), generate three samples of sizen = 3and
calculate X for each sample.

5.4.3 Suppose you take a sample of n = 4 (with replacement) from the population in
Exercise 5.4.1.

(a) Can you consider this as an approximatei.i.d. sample from the population distribu-
tion? Why or why not?

(b) Explain how you would actually physically carry out the sampling in this case.

(¢) Using the method you outlined in part (b), generate three samples of sizen = 3and
calculate X for each sample.

5.4.4 Suppose we have a finite population IT and a measurement X : II — {0, 1}
where |IT| = N and |{z : X(7) = 0}| = a.

(a) Determine fx (0) and fx(1). Can you identify this population distribution?

(b) For asimple random sample of size n, determine the probability that n fx (0) = x.
() Under the assumption of i.i.d. sampling, determine the probability that n fx (0) = x.

5.4.5 Suppose the following sample of size of n = 20 is obtained from an industrial
process.

39 72 69 45 58 37 44 45 56 25
48 85 43 12 23 31 34 48 18 37

(a) Construct adensity histogram for thisdataset using theintervals (1, 4.5], (4.5, 5.5],
(5.5, 6.5](6.5, 10].

(b) Construct adensity histogram for thisdataset using theintervals (1, 3.5], (3.5, 4.5],
(4.5, 6.5], (6.5, 10].

(c) Based on the results of parts (@) and (b), what do you conclude about histograms?
5.4.6 Supposeitisknown that in a population of 1000 students, 350 students will vote
for party A, 550 students will vote for party B, and the remaining students will vote
for party C.

(8) Explain how such information can be obtained.

(b) If welet X : I1 — {A, B, C} be such that X (x) is the party that = will vote for,
then explain why we cannot represent the population distribution of X by Fy.

(c) Compute fx.

(d) Explain how one might go about estimating fx prior to the election.

(e) What is unrealistic about the population distribution specified via fx? (Hint: Does
it seem redlistic, based on what you know about voting behavior?)
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5.4.7 Consider the population IT to be files stored on a computer at a particular time.
Suppose that X (x) is the type of file asindicated by its extension, e.qg., .mp3. Is X a
categorica or quantitative variable?

5.4.8 Suppose that you are asked to estimate the proportion of studentsin a college of
15, 000 students who intend to work during the summer.

(a) Identify the population I1, the variable X, and fx. What kind of variableis X?
(b) How could you determine fx exactly?

() Why might you not be able to determine fx exactly? Propose a procedure for
estimating fx in such asituation.

(d) Suppose you were also asked to estimate the proportion of students who intended
towork but could not find ajob. Repeat parts (a), (b), and (c) for this situation.

5.4.9 Sometimes participants in a poll do not respond truthfully to a question. For
example, students who are asked “Have you ever illegally downloaded music?’ may
not respond truthfully even if they are assured that their responses are confidential.
Suppose a simple random sample of students was chosen from a college and students
were asked this question.

(a) If students were asked this question by a person, comment on how you think the
results of the sampling study would be affected.

(b) If students were allowed to respond anonymously, perhaps by mailing in a ques-
tionnaire, comment on how you think the results would be affected.

(c) One technique for dealing with the respondent bias induced by such questionsis
to have students respond truthfully only when a certain random event occurs. For
example, we might ask a student to toss afair coin three times and lie whenever they
obtain two heads. What is the probability that a student tells the truth? Once you have
completed the study and have recorded the proportion of students who said they did
cheat, what proportion would you record as your estimate of the proportion of students
who actually did cheat?

5.4.10 A market research company isasked to determine how satisfied owners are with
their purchase of a new car in the last 6 months. Satisfaction isto be measured by re-
spondents choosing a point on a seven-point scale {1, 2, 3, 4, 5, 6, 7}, where 1 denotes
completely dissatisfied and 7 denotes completely satisfied (such a scale is commonly
called aLikert scale).

(a) Identify I1, the variable X, and fx.

(b) It is common to treat a variable such as X as a quantitative variable. Do you think
thisis correct? Would it be correct to treat X as a categorical variable?

(c) A common criticism of using such a scale is that the interpretation of a statement
such as3 = “I'm somewhat dissatisfied” varies from one person to another. Comment
on how this affects the validity of the study.

COMPUTER EXERCISES|

5.4.11 Generate asample of 1000 from an N (3, 2) distribution.
() Calculate Fx for this sample.
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(b) Plot adensity histogram based on these data using the intervals of length 1 over the
range (-5, 10) .

(c) Plot a density histogram based on these data using the intervals of length 0.1 over
the range (-5, 10) .

(d) Comment on the difference in the look of the histograms in parts (b) and (c). To
what do you attribute this?

(e) What limits the size of the intervals we use to group observations when we are
plotting histograms?

5.4.12 Suppose we have a population of 10,000 elements, each with a unique label
fromtheset {1,2,3,..., 10, 000}.

(a) Generate a sample of 500 labels from this population using simple random sam-
pling.

(b) Generate asample of 500 labels from this population using i.i.d. sampling.

PROBLEMS

5.4.13 Suppose we have afinite population IT and a measurement X : IT — {0, 1, 2},
where |TT| = Nand |{x : X(z) =0} = aand |{z : X(x) = 1}| = b. This problem
generalizes Exercise 5.4.4.

(a) Determine fx(0), fx(1), and fx (2).

(b) For a simple random sample of size n, determine the probability that fx 0 =
fo, fx(l) = fl, and fx(2) = f2.

(¢) Under the assumption of i.i.d. sampling, determine the probability that fx ©O =
fo, fx(l) = fl, and fx(2) = f2.

5.4.14 Suppose X is aquantitative measurement defined on afinite population.

(8) Provethat the population mean equals iy = >, Xfx(X), i.e., theaverage of X (w)
over all population elements = equals u .

(b) Prove that the population varianceisgiven by 62 = >, (x — ux)? fx(x), i.e, the
average of (X(z) — px)? over al population elements = equals % .

5.4.15 Supposewe have the situation described in Exercise 5.4.4, and wetakeasimple
random sample of size n from IT where |T1| = N.

(a) Prove that the mean of fx(0) is given by fx(0). (Hint: Note that we can write
fo(O) =n-1 Zin:l lioy (X(7i)) and lyoy (X(i)) ~ Bernoulli(fx(0)).)

(b) Prove that the variance of fx (0) is given by

fx(0) (1 — fx(0)) N —n
n N-1

(Hint: Usethe hint in part (&), but note that the Iy, (X(zi)) are not independent. Use
Theorem 3.3.4(b) and evaluate Cov (I (X(i)), lj0) (X(xi))) intermsof fx(0).)
(¢) Repeat the calculations in parts (a) and (b), but this time assume that you take a
sample of n with replacement. (Hint: Use Exercise 5.4.4(c).)
(d) Explain why the factor (N — n)/(N — 1) in (5.4.1) is called the finite sample
correction factor.

(5.4.1)
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5.4.16 Suppose we have a finite population IT and we do not know |II| = N. In
addition, suppose we have a measurement variable X : II — {0, 1} and we know
that Nfx(0) = a where a is known. Based on a simple random sample of n from I1,
determine an estimator of N. (Hint: Use a function of fx(0).)

5.4.17 Supposethat X isaquantitative variable defined on a population IT and that we
take a simple random sample of size n from II.

(a) If we estimate the population mean .y by the samplemean X = 1 > | X(z)),
prove that E(X) = uyx where uy isdefined in Problem 5.4.14(a). (Hint: What is the
distribution of each X (7j)?)

(b) Under the assumption that i.i.d. sampling makes sense, show that the variance of X
equals a2 /n, where 5% is defined in Problem 5.4.14(b).

5.4.18 Suppose we have a finite population IT and we do not know |ITI| = N. In
addition, suppose we have a measurement variable X : II — R! andweknow T =
> . X (x) . Based on asimple random sample of n from I1, determine an estimator of
N. (Hint: Use afunction of X.)

5.4.19 Under i.i.d. sampling, provethat fx(x) 3 fx(x) asn — oo. (Hint: fx(x) =

N300 g (X (7))

CHALLENGES|

5.4.20 (Stratified sampling) Supposethat X isaquantitative variable defined on apop-
ulation IT and that we can partition IT into two subpopulations IT; and I, such that a
proportion p of the full populationisin IT;. Let fjx denote the conditional population
distribution of X on IT; .

(a) Provethat fx(x) = pfix(x) + (1 — p) fax(X).

(b) Establishthat uyx = puix + (1 — p) wox, Where ujx isthe mean of X on IT;.

(c) Establishthat 0% = pofy + (1= p) o5y + P(L = P) (uax — t2x)*-

(d) Suppose that it makes sense to assume i.i.d. sampling whenever we take a sample
from either the full population or either of the subpopulations, i.e., whenever the sam-
ple sizes we are considering are small relative to the sizes of these populations. We
implement stratified sampling by taking a simple random sample of size n; from sub-
population IT;. We then estimate ux by pX1 + (1 — p) X2, where X; is the sample
mean based on the sample from IT;. Prove that E(pX1 + (1 — p) X2) = ux and

2 2
Var (pXy+ (L— p) Xg) = P22 4 (1 p)? 22X,
1 2

(e) Under the assumptions of part (d), prove that
Var (pX1+ (1— p) X2) < Var(X)

when X is based on a simple random sample of size n from the full population and
ny = pn, n2 = (1 — p)n. Thisiscalled proportional stratified sampling.

(f) Under what conditions is there no benefit to proportional stratified sampling? What
do you conclude about situations in which stratified sampling will be most beneficial?
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DISCUSSION TOPICS |

5.4.21 Sometimesitisargued that it is possible for askilled practitioner to pick amore
accurate representative sample of a population deterministically rather than by employ-
ing s mple random sampling. This argument is based in part on the argument that it is
aways possible with simple random sampling that we could get a very unrepresenta-
tive sampl e through pure chance and that this can be avoided by an expert. Comment
on this assertion.

5.4.22 Suppose it is claimed that a quantitative measurement X defined on a finite

population IT is approximately distributed according to a normal distribution with un-
known mean and unknown variance. Explain fully what this claim means.

5.5/ Some Basic Inferences

Now suppose we are in a situation involving a measurement X, whose distribution is
unknown, and we have obtained the data (x1, X2, . . ., Xn) , i.€., observed n values of X.
Hopefully, these datawere the result of simple random sampling, but perhapsthey were
collected as part of an observational study. Denote the associated unknown population
relative frequency function, or an approximating density, by fx and the population
distribution function by Fx.

What we do now with the data depends on two things. First, we have to determine
what we want to know about the underlying population distribution. Typically, our
interest is in only a few characteristics of this distribution — the mean and variance.
Second, we have to use statistical theory to combine the data with the statistical model
to make inferences about the characteristics of interest.

We now discuss some typical characteristics of interest and present some informal
estimation methods for these characteristics, known as descriptive statistics. These
are often used as a preliminary step before more formal inferences are drawn and are
justified on simple intuitive grounds. They are called descriptive because they are
estimating quantities that describe features of the underlying distribution.

5.5.1| Descriptive Statistics

Statisticians often focus on various characteristics of distributions. We present some of
these in the following examples.

EXAMPLE 5.5.1 Estimating Proportions and Cumulative Proportions
Often we want to make inferences about the value fx(x) or the value Fx(x) for a
specific x. Recall that fy (X) is the proportion of population members whose X mea
surement equals x. In general, Fx (x) isthe proportion of population members whose
X measurement is less than or equal to x.

Now suppose we have a sample (X1, X2, ..., Xn) from fx. A natural estimate of
fx (x) isgivenby fx(x), the proportion of samplevalues equal to x. A natural estimate
of Fx(x) isgivenby Fx(x) = n™1 31 1(_.x (%) , the proportion of samplevalues
lessthan or equal to x, otherwise known asthe empirical distribution function eval uated
a X.
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Suppose we obtained the following sample of n = 10 data values.

[12 21 04 33 —21 40 —03 22 15 50]

In this case, fx(x) = 0.1 whenever x is adata value and is O otherwise. To compute
Fx(x), we ssimply count how many sample values are less than or equal to x and
divide by n = 10. For example, Fx(—3) = 0/10 = 0, Fx(0) = 2/10 = 0.2, and
Fx(4) =9/10=0.9.1

Animportant class of characteristics of the distribution of a quantitative variable X
is given by the following definition.

Definition 5.5.1 For p € [0, 1], the pth quantile (or 100pth percentile) xp, for
the distribution with cdf Fx, is defined to be the smallest number xp satisfying
p < Fx(Xp).

For example, if your mark on atest placed you at the 90th percentile, then your mark
equals xp.g and 90% of your fellow test takers achieved your mark or lower. Note that
by the definition of the inverse cumulative distribution function (Definition 2.10.1), we
can write Xp = F;l(p) =min{x: p < Fx(X)}.

When Fx isstrictly increasing and continuous, then Fy L(p) isthe unique value Xp
satisfying

Fx(Xp) = p. (5.5.1)

Figure5.5.1 illustrates the situation in which thereisaunique solution to (5.5.1). When
Fx isnot gtrictly increasing or continuous (as when X is discrete), then there may be
more than one, or no, solutionsto (5.5.1). Figure 5.5.2 illustrates the situation in which
thereisno solution to (5.5.1).

v

Xp X

Figure5.5.1: The pth quantile X, when there isaunique solution to (5.5.1).
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Xy

Figure 5.5.2: The pth quantile X, determined by a cdf Fx when thereis no solution to
(5.5.1).

So, when X is a continuous measurement, a proportion p of the population have
their X measurement less than or equal to xp. As particular cases, Xo5 = F;1(0.5)
is the median, while xo25 = F*(0.25) and xo.75 = Fy *(0.75) are the first and third
quartiles, respectively, of the distribution.

EXAMPLE 5.5.2 Estimating Quantiles

A natural estimate of a population quantile xp = F;l(p) istouseXp = If;l(p). Note,

however, that Fx isnot continuous, so there may not be a solution to (5.5.1) using Fx.
Applying Definition 5.5.1, however, leadsto the following estimate. First, order the

observed samplevalues (xy, . . ., Xn) to obtainthe order statistics x(y) < - -+ < Xn) (see

Section 2.8.4). Then, notethat i) isthe (i /n)-th quantile of the empirical distribution,

because

A i
Fx (X)) = 5

and Fx (X) < i/n whenever x < Xy. In general, we have that the sample pth quantile
isXp = X(i) whenever

i i

A number of modificationsto this estimate are sometimes used. For example, if we
findi such that (5.5.2) is satisfied and put

. i—1
Xp = X(i-1) +n (X(i) — X(i_]_)) (p — T) , (5.5.3)
then Xp isthe linear interpolation between X -1y and X(). When n is even, this defin-
ition gives the sample median as Xo5 = X(n/2); asimilar formula holds when n is odd
(Problem 5.5.21). Also see Problem 5.5.22 for more discussion of (5.5.3).
Quite often the sample median is defined to be

X((n+1)/2) n odd ( |
Xo5 = 554
3 (X2 + X(/2+1) n even,
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namely, the middle value when n is odd and the average of the two middle values when
niseven. For n large enough, all these definitions will yield similar answers. The use
of any of theseis permissiblein an application.

Consider the data in Example 5.5.1. Sorting the data from smallest to largest, the
order statistics are given by the following table.

Xa) = -21 X@) = -0.3 X@) = 0.4 X@) = 12 X)) = 15
Xe =21 X7 =22 Xg =33 Xg =40 Xuo =50

Then, using (5.5.3), the sample median is given by Xo5 = X(5) = 1.5, whilethe sample
quartiles are given by

Xo2s = X@) + 10 (X(3) - X(z)) (0.25-0.2)
—0.3+10(0.4 - (—0.3)) (0.25—-0.2) = 0.05

and

Xo75 = X@) + 10 (X(g) - X(7)) (0.75-0.7)
= 22+410(33-22)(0.75-0.7) =2.75.

So inthis case, we estimate that 25% of the population under study has an X measure-
ment less than 0.05, etc. I

EXAMPLE 5.5.3 Measuring Location and Scale of a Population Distribution
Often we are asked to make inferences about the value of the population mean

1
ﬂx=ﬁzx(ﬂ)

rell
and the population variance

1

2
Ox = 70—
1]

> X(x) = ux)?,

rell

where IT isafinite population and X is areal-valued measurement defined on it. These
are measures of the location and spread of the population distribution about the mean,
respectively. Note that calculating a mean or variance makes sense only when X is a
quantitative variable.

When X isdiscrete, we can also write

nx =D xfx(x)

because |T1| fx(x) equals the number of elements # € II with X(z) = x. In the
continuous case, using an approximating density fy, we can write

o
,ux’fz/ xfx (x) dx.

—00

Similar formulas exist for the population variance of X (see Problem 5.4.14).



286 Section 5.5: Some Basic Inferences

It will probably occur to you that a natural estimate of the population mean uy is
given by the sample mean
n
Z X .
i=1

Also, anatural estimate of the population variance a§< is given by the sample variance

X =

S|k

o 1 & o
s _n_li;(x. %)2. (5.5.5)

Later we will explain why we divided by n — 1 in (5.5.5) rather than n. Actually, it
makeslittle difference which we use, for even modest values of n. The sample standard
deviation is given by s, the positive square root of s2. For the data in Example 5.1.1,
weobtan X = 1.73 and s = 2.097.

The population mean wx and population standard deviation o x Serve as a pair, in
which x x measures where the distribution is located on the real line and o x measures
how much spread there isin the distribution about x i . Clearly, the greater the value of
o x, the more variability there isin the distribution.

Alternatively, we could use the population median xg 5 as a measure of location
of the distribution and the population interquartile range Xo.75 — Xg.25 as a measure
of the amount of variability in the distribution around the median. The median and
interquartile range are the preferred choice to measure these aspects of the distribution
whenever the distribution is skewed, i.e., not symmetrical. Thisis because the median
isinsensitive to very extreme values, while the mean is not. For example, house prices
in an area are well known to exhibit a right-skewed distribution. A few houses selling
for very high prices will not change the median price but could result in a big change
in the mean price.

When we have a symmetric distribution, the mean and median will agree (provided
the mean exists). The greater the skewness in a distribution, however, the greater will
be the discrepancy between its mean and median. For example, in Figure 5.5.3 we have
plotted the density of a y2 (4) distribution. This distribution is skewed to the right, and
the mean is 4 while the median is 3.3567.

f 0.03 A

0.02 1

0.00

Figure 5.5.3: Thedensity f of a y2 (4) distribution.
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We estimate the population interquartile range by the sample interquartile range
(IQR) given by | QR = Xo.75 — Xo.25. For the datain Example 5.5.1, we obtain the
sample median to be %5 = 1.5, while | QR = 2.75 — 0.05 = 2.70.

If we change the largest value in the sample from x(10) = 5.0 to X(109) = 500.0 the
sample median remains Xo5 = 1.5, but note that the sample mean goes from 1.73 to
51.2311

5.5.2 Plotting Data

Itisalwaysagoodideato plot the data. For discrete quantitative variables, we can plot
fx, i.e., plot the sample proportions (relative frequencies). For continuous quantitative
variables, we introduced the density histogram in section 5.4.3. These plots give us
some idea of the shape of the distribution from which we are sampling. For example,
we can seeif there is any evidence that the distribution is strongly skewed.

We now consider another very useful plot for quantitative variables.

EXAMPLE 5.5.4 Boxplots and Outliers

Another useful plot for quantitative variables is known as a boxplot. For example,
Figure 5.5.4 gives a boxplot for the datain Example 5.5.1. Thelinein the center of the
box is the median. The line below the median is the first quartile, and the line above
the median is the third quartile.

The vertical lines from the quartiles are called whiskers, which run from the quar-
tiles to the adjacent values. The adjacent values are given by the greatest value less
than or equal to the upper limit (the third quartile plus 1.5 times the | QR) and by the
least value greater than or equal to the lower limit (the first quartile minus 1.5 times
the | OR). Values beyond the adjacent values, when these exist, are plotted with a x;
in this case, there are none. If we changed X109y = 5.0 to X(19) = 15.0, however, we
see this extreme value plotted as a *, as shown in Figure 5.5.5.

Figure 5.5.4: A boxplot of the datain Example 5.5.1.
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15 — *

10 —

Figure 5.5.5: A boxplot of the datain Example 5.5.1, changing x(10) = 5.0 to
X(10) = 15.0.

Points outside the upper and lower limits, and thus plotted by =, are commonly
referred to as outliers. An outlier is a value that is extreme with respect to the rest
of the observations. Sometimes outliers occur because a mistake has been made in
collecting or recording the data, but they also occur simply because we are sampling
from a long-tailed distribution. It is often difficult to ascertain which is the case in
a particular application, but each such observation should be noted. We have seen in
Example 5.5.3 that outliers can have a big impact on statistical analyses. Their effects
should be recorded when reporting the results of a statistical analysis. I

For categorical variables, it istypical to plot the datain a bar chart, as described in
the next example.

EXAMPLE 5.5.5 Bar Charts
For categorical variables, we code the values of the variable as equispaced numbers
and then plot constant-width rectangles (the bars) over these values so that the height
of the rectangle over avalue equal s the proportion of timesthat valueis assumed. Such
aplotiscaled abar chart. Note that the values aong the x-axis are only labels and
not to be treated as numbers that we can do arithmetic on, etc.

For example, suppose we take a simple random sample of 100 students and record
their favorite flavor of ice cream (from amongst four possibilities), obtaining the results
given in the following table.

Flavor Count  Proportion
Chocolate 42 0.42
Vanilla 28 0.28
Butterscotch 22 0.22
Strawberry 8 0.08

Coding Chocolate as 1, Vanilla as 2, Butterscotch as 3, and Strawberry as 4, Figure
5.5.6 presents a bar chart of these data. It istypical for the bars in these charts not to
touch. 1
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04 —

03 —

Proportion

02 —

Flavor

Figure 5.5.6: A bar chart for the data of Example 5.5.5.

5.5.3| Types of Inference

Certainly quoting descriptive statistics and plotting the data are methods used by a sta-
tistician to try to learn something about the underlying population distribution. There
aredifficultieswith this approach, however, as we have just chosen these methods based
on intuition. Often it is not clear which descriptive statistics we should use. Further-
more, these data summaries make no use of theinformation we have about the true pop-
ulation distribution as expressed by the statistical model, namely, fx € {fyp : 6 € Q}.
Taking account of thisinformation leads us to develop atheory of statistical inference,
i.e., to specify how we should combine the model information together with the datato
make inferences about population quantities. We will do thisin Chapters 6, 7, and 8,
but first we discuss the types of inferences that are commonly used in applications.

In Section 5.2, we discussed three types of inference in the context of a known
probability model as specified by some density or probability function f. We noted
that we might want to do any of the following concerning an unobserved response
values.

(i) Predict an unknown response value s viaa prediction t.

(i) Construct asubset C of the sample space Sthat has ahigh probability of containing
an unknown response value s.

(iii) Assess whether or not 59 € Sisaplausible value from the probability distribution
specified by f.

We refer to (i), (ii), and (iii) as inferences about the unobserved s. The examples of
Section 5.2 show that these are intuitively reasonable concepts.

In astatistical application, we do not know f; weknow only that f € {fy : § € Q},
and we observe the data s. We are uncertain about which candidate fy is correct, or,
equivaently, which of the possible values of 6 is correct.

As mentioned in Section 5.5.1, our primary goal may be to determine not the true
fg, but some characteristic of the true distribution such as its mean, median, or the
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value of the true distribution function F at a specified value. We will denote this
characteristic of interest by w(0). For example, when the characteristic of interest
isthe mean of the true distribution of a continuous random variable, then

o0
w(0) = / xfg (X) dx.
—0oQ

Alternatively, we might be interested in w (0) = F9‘1(0.5), the median of the distribu-
tion of arandom variable with distribution function given by Fy.

Different values of 6 lead to possibly different values for the characteristic w (9).
After observing the data s, we want to make inferences about what the correct valueis.
We will consider the three types of inference for v (0).

(i) Choose an estimate T (s) of w (0), referred to as the problem of estimation.

(if) Construct a subset C(s) of the set of possible values for y(9) that we believe
contains the true value, referred to as the problem of credible region or confidence
region construction.

(iii) Assess whether or not y is a plausible value for y (8) after having observed s,
referred to as the problem of hypothesis assessment.

So estimates, credible or confidence regions, and hypothesis assessment are examples
of types of inference. In particular, we want to construct estimates T(s) of v (0),
construct credible or confidence regions C(s) for (), and assess the plausibility of a
hypothesized value wq for w (0).

The problem of statistical inference entails determining how we should combine
the information in the model { fy : € Q} and the data s to carry out these inferences
about v (9).

A very important statistical model for applications is the location-scale normal
model introduced in Example 5.3.4. We illustrate some of the ideas discussed in this
section viathat model.

EXAMPLE 5.5.6 Application of the Location-Scale Normal Model
Suppose the following simple random sample of the heights (in inches) of 30 students
has been collected.

649 614 663 643 651 644 59.8 636 665 650
649 643 625 631 650 658 634 619 666 60.9
616 640 615 642 668 664 658 714 678 663

The statistician believes that the distribution of heights in the population can be well
approximated by a normal distribution with some unknown mean and variance, and
sheis unwilling to make any further assumptions about the true distribution. Accord-
ingly, the statistical model is given by the family of N(u, ¢?) distributions, where
0 = (u,0%) € Q=R x Rt isunknown.

Does this statistical model make sensg, i.e., is the assumption of normality appro-
priate for this situation? The density histogram (based on 12 equal-length intervals
from 59.5to 71.5) in Figure 5.5.7 looks very roughly normal, but the extreme observa-
tion in the right tail might be some grounds for concern. In any case, we proceed as if
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this assumption is reasonable. In Chapter 9, we will discuss more refined methods for
ng this assumption.

02 — —

BEn

Density

T T
60 65

heights

Figure 5.5.7: Density histogram of heightsin Example 5.5.6.

Suppose we are interested in making inferences about the population mean height,
namely, the characteristic of interest is y (u, o) = u. Alternatively, we might want to
make inferences about the 90th percentile of this distribution, i.e., w(u, 02) = Xp.90 =
I+ 02090, Where g o9 is the 90th percentile of the N (0, 1) distribution (when X ~
N(u,5?), then P(X < u+02090) = P((X — 1) /o < 20.90) = P (20.90) = 0.90).
So 90% of the population under study have height less than xg.gp, a value unknown
to us because we do not know the value of (u, ). Obviously, there are many other
characteristics of the true distribution about which we might want to make inferences.

Just using our intuition, T (X1, ..., Xn) = X seemslikeasensible estimate of 4 and
T(X1,...,%Xn) = X+ SZp.g0 Seemslike asensible estimate of 1 + oz 99. TO justify the
choice of these estimates, we will need the theories developed in later chapters. In this
case, we obtain X = 64.517, and from (5.5.5) we compute s = 2.379. From Table D.2
we obtain zg g9 = 1.2816, so that

X + Szg.o0 = 64.517 + 2.379 (1.2816) = 67.566.

How accurate isthe estimate X of x? A natural approach to answering this question
is to construct a credible interval, based on the estimate, that we believe has a high
probability of containing the true value of 1 and is as short as possible. For example,
the theory in Chapter 6 leads to using confidence intervalsfor u, of the form

[X — sc, X + sc]

for some choice of the constant ¢. Notice that X is at the center of the interval. The
theory in Chapter 6 will show that, in this case, choosing ¢ = 0.3734 leads to what is
known as a0.95-confidenceinterval for 1. Wethen take the half-length of thisinterval,
namely,

sc = 2.379(0.3734) = 0.888,
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as a measure of the accuracy of the estimate X = 64.517 of . In this case, we have
enough information to say that we know the true value of « to within oneinch, at least
with “confidence” equal to 0.95.

Finally, suppose we have a hypothesized value u for the population mean height.
For example, we may believe that the mean height of the population of individuals
under study isthe same asthe mean height of another population for which this quantity
is known to equal i = 65. Then, based on the observed sample of heights, we want
to assess whether or not the value ug = 65 makes sense. If the sample mean height
X isfar from uq, this would seem to be evidence against the hypothesized value. In
Chapter 6, we will show that we can base our assessment on the value of

X -y 6451765

t= = —1.112.

s/y/N  2379/4/30

If the value of |t| is very large, then we will conclude that we have evidence against
the hypothesized value 1o = 65. We have to prescribe what we mean by large here,
and we will do thisin Chapter 6. It turnsout thatt = —1.112 isaplausible valuefor t,
when the true value of u equals 65, so we have no evidence against the hypothesis. i

Summary of Section 5.5

e Descriptive statistics represent informal statistical methods that are used to make
inferences about the distribution of avariable X of interest, based on an observed
sample from this distribution. These quantities summarize characteristics of the
observed sample and can be thought of as estimates of the corresponding un-
known population quantities. More formal methods are required to assess the
error in these estimates or even to replace them with estimates having greater
accuracy.

e It isimportant to plot the data using relevant plots. These give us some idea of
the shape of the population distribution from which we are sampling.

e There are three main types of inference: estimates, credible or confidence inter-
vals, and hypothesis assessment.

EXERCISES|

5.5.1 Suppose the following data are obtained by recording X, the number of cus-
tomers that arrive at an automatic banking machine during 15 successive one-minute
timeintervals.

4 2
4

(a) Record estimates of fx(0), fx (1), fx(2), fx(3), and fx(4).
(b) Record estimates of Fx (0), Fx(1), Fx(2), Fx(3), and Fx(4).
(c) Plot fx.

(d) Record the mean and variance.
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(e) Record the median and IQR and provide a boxplot. Using the rule prescribed in
Example 5.5.4, decide whether there are any outliers.

5.5.2 Suppose the following sample of waiting times (in minutes) was obtained for
customers in a queue at an automatic banking machine.

2 31 0 4 5
3 4 2 1 45

(a) Record the empirical distribution function.

(b) Plot fx.

(¢) Record the mean and variance.

(d) Record the median and | QR and provide aboxplot. Using therule givenin Example
5.5.4, decide whether there are any outliers.

5.5.3 Suppose an experiment was conducted to see whether mosquitoes are attracted
differentially to different colors. Three different colors of fabric were used and the
number of mosquitoes landing on each piece was recorded over a 15-minute interval.
The following data were obtained.

Number of landings
Calor 1 25
Coalor 2 35
Coalor 3 22

(a) Record estimates of fx (1), fx(2), and fx(3) wherewe usei for colori.
(b) Does it make sense to estimate Fx (i )? Explain why or why not.
(c) Plot abar chart of these data.

5.5.4 A student istold that his score on atest was at the 90th percentile in the popula-
tion of al students who took the test. Explain exactly what this means.

5.5.5 Determine the empirical distribution function based on the sample given below.

10 -12 04 13 -03
-14 04 -05 -02 -13
00 -10 -13 20 10
09 04 21 00 -13

Plot this function. Determine the sample median, the first and third quartiles, and the
interquartile range. What is your estimate of F(1)?

5.5.6 Consider the density histogram in Figure 5.5.8. If you were asked to record
measures of location and spread for the data corresponding to this plot, what would
you choose? Justify your answer.
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0.3

02 —

0.1 —

00 — — —
I I I
0 5 10

Figure 5.5.8: Density histogram for Exercise 5.5.6.

5.5.7 Suppose that a statistical model is given by the family of N(x, ag) distributions
where 8 = u e R! is unknown, while a% is known. If our interest is in making
inferences about the first quartile of the true distribution, then determine w (u).

5.5.8 Suppose that a statistical model is given by the family of N (u, ag) distributions
where 8 = u e R! is unknown, while a% is known. If our interest is in making
inferences about the third moment of the distribution, then determine w (u).

5.5.9 Suppose that a statistical model is given by the family of N (u, 0(2)) distributions
where 9 = u e R! is unknown, while a% is known. If our interest is in making
inferences about the distribution function evaluated at 3, then determine w (u).

5.5.10 Supposethat astatistical model is given by thefamily of N(u, o2) distributions
where 0 = (u,0%) € R! x Rt isunknown. If our interest is in making inferences
about the first quartile of the true distribution, then determine y («, o2).

5.5.11 Supposethat astatistical model isgiven by thefamily of N(u, o2) distributions
where 0 = (u,0%) € Rl x Rt isunknown. If our interest is in making inferences
about the distribution function evaluated at 3, then determine y (1, o2).

5.5.12 Suppose that a statistical model is given by the family of Bernoulli(9) distribu-
tionswhered € Q = [0, 1]. If our interest isin making inferences about the probability
that two independent observations from this model are the same, then determine w ().
5.5.13 Suppose that a statistical model is given by the family of Bernoulli () distribu-
tionswhered € Q = [0, 1]. If our interest isin making inferences about the probability
that in two independent observations from this model we obtain a0 and a 1, then de-
termine y (9).

5.5.14 Suppose that a statistical model is given by the family of Uniform[0, 9] dis-
tributions where 8 € Q = (0, 00) . If our interest is in making inferences about the
coefficient of variation (see Exercise 5.3.5) of the true distribution, then determine
w(0). What do you notice about this characteristic?

5.5.15 Suppose that a stetistical model is given by the family of Gamma(a.o, £) distri-
butionswhere = f € Q = (0, 00) . If our interest is in making inferences about the
variance of the true distribution, then determine  (9).
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COMPUTER EXERCISES|

5.5.16 Do thefollowing based on the datain Exercise 5.4.5.

(a) Compute the order statistics for these data.

(b) Calculate the empirical distribution function at the data points.

(c) Calculate the sample mean and the sample standard deviation.

(d) Obtain the sample median and the sample interquartile range.

(e) Based on the histograms obtained in Exercise 5.4.5, which set of descriptive statis-
ticsdo you feel are appropriate for measuring location and spread?

(f) Suppose the first data value was recorded incorrectly as 13.9 rather than as 3.9.
Repeat parts (¢) and (d) using this data set and compare your answers with those previ-
oudly obtained. Can you draw any general conclusions about these measures? Justify
your reasoning.

5.5.17 Do thefollowing based on the datain Example 5.5.6.

(a) Compute the order statistics for these data.

(b) Plot the empirical distribution function (only at the sample points).

(c) Calculate the sample median and the sample interquartile range and obtain a box-
plot. Arethere any outliers?

(d) Based on the boxplot, which set of descriptive statistics do you feel are appropriate
for measuring location and spread?

(e) Suppose the first data value was recorded incorrectly as 84.9 rather than as 64.9.
Repeat parts (¢) and (d) using this data set and see whether any observations are deter-
mined to be outliers.

5.5.18 Generate a sample of 30 from an N (10, 2) distribution and a sample of 1 from
an N (30, 2) distribution. Combine these together to make a single sample of 31.

(a) Produce a boxplot of these data.
(b) What do you notice about this plot?

(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.

5.5.19 Generate asample of 50 from a y2(1) distribution.

(a) Produce a boxplot of these data.

(b) What do you notice about this plot?

(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.

5.5.20 Generate asample of 50 from an N (4, 1) distribution. Suppose your interest is
in estimating the 90th percentile xo g of this distribution and we pretend that 1 = 4 and
o = lareunknown.

(a) Compute an estimate of xg,g based on the appropriate order statistic.

(b) Compute an estimate based on the fact that Xp 9 = u + o 20,9 Where zp g isthe 90th
percentile of the N (0, 1) distribution.

(c) If you knew, or at least were willing to assume, that the sample came from a normal
distribution, which of the estimates in parts (a) or (b) would you prefer? Explain why.
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PROBLEMS

5.5.21 Determine aformulafor the sample median, based on interpolation (i.e., using
(5.5.3)) when nisodd. (Hint: Use the least integer function or ceiling [x] = smallest
integer greater than or equal to x.)

5.5.22 An dternative to the empirical distribution function is to define a distribution
function F by F(x) = 0if X < Xy, F(X) = 1if x > Xn), F(X) = F (X)) if X = Xg),
and

F(Xi+1) — F(XG)) (x

F(x) = F (X)) +
) @) X(i+1) — X)

- X))

if Xy <X <Xiqp fori=1,...,n

(a) Show that If(x(i)) = If(x(i)) fori =1,...,nandisincreasing from0to 1.

(b) Provethat F is continuous on (x(l), oo) and right continuous everywhere.

(c) Show that, for p e [1/n, 1), the value Xp defined in (5.5.3) is the solution to
F(Xp) = p.

DISCUSSION TOPICS|

5.5.23 Sometimesit isargued that statistics does not need aformal theory to prescribe
inferences. Rather, statistical practice is better |eft to the skilled practitioner to decide
what is a sensible approach in each problem. Comment on these statements.

5.5.24 How reasonable do you think it is for an investigator to assume that a random
variable is normally distributed? Discuss the role of assumptions in scientific mod-
eling.




