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This chapter introduces the basic concept of the entire course, namely probability. We
discuss why probability was introduced as a scientific concept and how it has been
formalized mathematically in terms of a probability model. Following this we develop
some of the basic mathematical results associated with the probability model.

1.1 Probability: A Measure of Uncertainty
Often in life we are confronted by our own ignorance. Whether we are pondering
tonight’s traffic jam, tomorrow’s weather, next week’s stock prices, an upcoming elec-
tion, or where we left our hat, often we do not know an outcome with certainty. Instead,
we are forced to guess, to estimate, to hedge our bets.

Probability is the science of uncertainty. It provides precise mathematical rules for
understanding and analyzing our own ignorance. It does not tell us tomorrow’s weather
or next week’s stock prices; rather, it gives us a framework for working with our limited
knowledge and for making sensible decisions based on what we do and do not know.

To say there is a 40% chance of rain tomorrow is not to know tomorrow’s weather.
Rather, it is to know what we do not know about tomorrow’s weather.

In this text, we will develop a more precise understanding of what it means to say
there is a 40% chance of rain tomorrow. We will learn how to work with ideas of
randomness, probability, expected value, prediction, estimation, etc., in ways that are
sensible and mathematically clear.
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2 Section 1.1: Probability: A Measure of Uncertainty

There are also other sources of randomness besides uncertainty. For example, com-
puters often use pseudorandom numbers to make games fun, simulations accurate, and
searches efficient. Also, according to the modern theory of quantum mechanics, the
makeup of atomic matter is in some sense truly random. All such sources of random-
ness can be studied using the techniques of this text.

Another way of thinking about probability is in terms of relative frequency. For ex-
ample, to say a coin has a 50% chance of coming up heads can be interpreted as saying
that, if we flipped the coin many, many times, then approximately half of the time it
would come up heads. This interpretation has some limitations. In many cases (such
as tomorrow’s weather or next week’s stock prices), it is impossible to repeat the ex-
periment many, many times. Furthermore, what precisely does “approximately” mean
in this case? However, despite these limitations, the relative frequency interpretation is
a useful way to think of probabilities and to develop intuition about them.

Uncertainty has been with us forever, of course, but the mathematical theory of
probability originated in the seventeenth century. In 1654, the Paris gambler Le Cheva-
lier de Méré asked Blaise Pascal about certain probabilities that arose in gambling
(such as, if a game of chance is interrupted in the middle, what is the probability that
each player would have won had the game continued?). Pascal was intrigued and cor-
responded with the great mathematician and lawyer Pierre de Fermat about these ques-
tions. Pascal later wrote the book Traité du Triangle Arithmetique, discussing binomial
coefficients (Pascal’s triangle) and the binomial probability distribution.

At the beginning of the twentieth century, Russians such as Andrei Andreyevich
Markov, Andrey Nikolayevich Kolmogorov, and Pafnuty L. Chebyshev (and Ameri-
can Norbert Wiener) developed a more formal mathematical theory of probability. In
the 1950s, Americans William Feller and Joe Doob wrote important books about the
mathematics of probability theory. They popularized the subject in the western world,
both as an important area of pure mathematics and as having important applications in
physics, chemistry, and later in computer science, economics, and finance.

1.1.1 Why Do We Need Probability Theory?

Probability theory comes up very often in our daily lives. We offer a few examples
here.

Suppose you are considering buying a “Lotto 6/49” lottery ticket. In this lottery,
you are to pick six distinct integers between 1 and 49. Another six distinct integers
between 1 and 49 are then selected at random by the lottery company. If the two sets
of six integers are identical, then you win the jackpot.

After mastering Section 1.4, you will know how to calculate that the probability
of the two sets matching is equal to one chance in 13,983,816. That is, it is about 14
million times more likely that you will not win the jackpot than that you will. (These
are not very good odds!)

Suppose the lottery tickets cost $1 each. After mastering expected values in Chap-
ter 3, you will know that you should not even consider buying a lottery ticket unless the
jackpot is more than $14 million (which it usually is not). Furthermore, if the jackpot
is ever more than $14 million, then likely many other people will buy lottery tickets
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that week, leading to a larger probability that you will have to share the jackpot with
other winners even if you do win — so it is probably not in your favor to buy a lottery
ticket even then.

Suppose instead that a “friend” offers you a bet. He has three cards, one red on
both sides, one black on both sides, and one red on one side and black on the other.
He mixes the three cards in a hat, picks one at random, and places it flat on the table
with only one side showing. Suppose that one side is red. He then offers to bet his $4
against your $3 that the other side of the card is also red.

At first you might think it sounds like the probability that the other side is also red is
50%; thus a good bet. However, after mastering conditional probability (Section 1.5),
you will know that, conditional on one side being red, the conditional probability that
the other side is also red is equal to 2/3. So, by the theory of expected values (Chap-
ter 3), you will know that you should not accept your “friend’s” bet.

Finally, suppose your “friend” suggests that you flip a coin one thousand times.
Your “friend” says that if the coin comes up heads at least six hundred times, then he
will pay you $100; otherwise, you have to pay him just $1.

At first you might think that, while 500 heads is the most likely, there is still a
reasonable chance that 600 heads will appear — at least good enough to justify accept-
ing your friend’s $100 to $1 bet. However, after mastering the laws of large numbers
(Chapter 4), you will know that as the number of coin flips gets large, it becomes more
and more likely that the number of heads is very close to half of the total number of
coin flips. In fact, in this case, there is less than one chance in ten billion of getting
more than 600 heads! Therefore, you should not accept this bet, either.

As these examples show, a good understanding of probability theory will allow you
to correctly assess probabilities in everyday situations, which will in turn allow you to
make wiser decisions. It might even save you money!

Probability theory also plays a key role in many important applications of science
and technology. For example, the design of a nuclear reactor must be such that the
escape of radioactivity into the environment is an extremely rare event. Of course, we
would like to say that it is categorically impossible for this to ever happen, but reac-
tors are complicated systems, built up from many interconnected subsystems, each of
which we know will fail to function properly at some time. Furthermore, we can never
definitely say that a natural event like an earthquake cannot occur that would damage
the reactor sufficiently to allow an emission. The best we can do is try to quantify our
uncertainty concerning the failures of reactor components or the occurrence of natural
events that would lead to such an event. This is where probability enters the picture.
Using probability as a tool to deal with the uncertainties, the reactor can be designed to
ensure that an unacceptable emission has an extremely small probability — say, once
in a billion years — of occurring.

The gambling and nuclear reactor examples deal essentially with the concept of
risk — the risk of losing money, the risk of being exposed to an injurious level of
radioactivity, etc. In fact, we are exposed to risk all the time. When we ride in a car,
or take an airplane flight, or even walk down the street, we are exposed to risk. We
know that the risk of injury in such circumstances is never zero, yet we still engage in
these activities. This is because we intuitively realize that the probability of an accident
occurring is extremely low.
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So we are using probability every day in our lives to assess risk. As the problems
we face, individually or collectively, become more complicated, we need to refine and
develop our rough, intuitive ideas about probability to form a clear and precise ap-
proach. This is why probability theory has been developed as a subject. In fact, the
insurance industry has been developed to help us cope with risk. Probability is the
tool used to determine what you pay to reduce your risk or to compensate you or your
family in case of a personal injury.

Summary of Section 1.1

• Probability theory provides us with a precise understanding of uncertainty.

• This understanding can help us make predictions, make better decisions, assess
risk, and even make money.

DISCUSSION TOPICS

1.1.1 Do you think that tomorrow’s weather and next week’s stock prices are “really”
random, or is this just a convenient way to discuss and analyze them?
1.1.2 Do you think it is possible for probabilities to depend on who is observing them,
or at what time?
1.1.3 Do you find it surprising that probability theory was not discussed as a mathe-
matical subject until the seventeenth century? Why or why not?
1.1.4 In what ways is probability important for such subjects as physics, computer
science, and finance? Explain.
1.1.5 What are examples from your own life where thinking about probabilities did
save — or could have saved — you money or helped you to make a better decision?
(List as many as you can.)
1.1.6 Probabilities are often depicted in popular movies and television programs. List
as many examples as you can. Do you think the probabilities were portrayed there in a
“reasonable” way?

1.2 Probability Models
A formal definition of probability begins with a sample space, often written S. This
sample space is any set that lists all possible outcomes (or, responses) of some unknown
experiment or situation. For example, perhaps

S = {rain, snow, clear}
when predicting tomorrow’s weather. Or perhaps S is the set of all positive real num-
bers, when predicting next week’s stock price. The point is, S can be any set at all,
even an infinite set. We usually write s for an element of S, so that s ∈ S. Note that S
describes only those things that we are interested in; if we are studying weather, then
rain and snow are in S, but tomorrow’s stock prices are not.
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A probability model also requires a collection of events, which are subsets of S
to which probabilities can be assigned. For the above weather example, the subsets
{rain}, {snow}, {rain, snow}, {rain, clear}, {rain, snow, clear}, and even the empty set
∅ = {}, are all examples of subsets of S that could be events. Note that here the comma
means “or”; thus, {rain, snow} is the event that it will rain or snow. We will generally
assume that all subsets of S are events. (In fact, in complicated situations there are
some technical restrictions on what subsets can or cannot be events, according to the
mathematical subject of measure theory. But we will not concern ourselves with such
technicalities here.)

Finally, and most importantly, a probability model requires a probability measure,
usually written P . This probability measure must assign, to each event A, a probability
P(A). We require the following properties:

1. P(A) is always a nonnegative real number, between 0 and 1 inclusive.

2. P(∅) = 0, i.e., if A is the empty set ∅, then P(A) = 0.

3. P(S) = 1, i.e., if A is the entire sample space S, then P(A) = 1.

4. P is (countably) additive, meaning that if A1, A2, . . . is a finite or countable
sequence of disjoint events, then

P(A1 ∪ A2 ∪ · · · ) = P(A1)+ P(A2)+ · · · . (1.2.1)

The first of these properties says that we shall measure all probabilities on a scale
from 0 to 1, where 0 means impossible and 1 (or 100%) means certain. The second
property says the probability that nothing happens is 0; in other words, it is impossible
that no outcome will occur. The third property says the probability that something
happens is 1; in other words, it is certain that some outcome must occur.

The fourth property is the most subtle. It says that we can calculate probabilities
of complicated events by adding up the probabilities of smaller events, provided those
smaller events are disjoint and together contain the entire complicated event. Note that
events are disjoint if they contain no outcomes in common. For example, {rain} and
{snow, clear} are disjoint, whereas {rain} and {rain, clear} are not disjoint. (We are
assuming for simplicity that it cannot both rain and snow tomorrow.) Thus, we should
have P({rain}) + P({snow, clear}) = P({rain, snow, clear}), but do not expect to
have P({rain}) + P({rain, clear}) = P({rain, rain, clear}) (the latter being the same
as P({rain, clear})).

We now formalize the definition of a probability model.

Definition 1.2.1 A probability model consists of a nonempty set called the sample
space S; a collection of events that are subsets of S; and a probability measure P
assigning a probability between 0 and 1 to each event, with P(∅) = 0 and P(S) = 1
and with P additive as in (1.2.1).
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EXAMPLE 1.2.1
Consider again the weather example, with S = {rain, snow, clear}. Suppose that the
probability of rain is 40%, the probability of snow is 15%, and the probability of a
clear day is 45%. We can express this as P({rain}) = 0.40, P({snow}) = 0.15, and
P({clear}) = 0.45.

For this example, of course P(∅) = 0, i.e., it is impossible that nothing will happen
tomorrow. Also P({rain, snow, clear}) = 1, because we are assuming that exactly
one of rain, snow, or clear must occur tomorrow. (To be more realistic, we might say
that we are predicting the weather at exactly 11:00 A.M. tomorrow.) Now, what is the
probability that it will rain or snow tomorrow? Well, by the additivity property, we see
that

P({rain, snow}) = P({rain})+ P({snow}) = 0.40+ 0.15 = 0.55.

We thus conclude that, as expected, there is a 55% chance of rain or snow tomorrow.

EXAMPLE 1.2.2
Suppose your candidate has a 60% chance of winning an election in progress. Then
S = {win, lose}, with P(win) = 0.6 and P(lose) = 0.4. Note that P(win)+P(lose) =
1.

EXAMPLE 1.2.3
Suppose we flip a fair coin, which can come up either heads (H) or tails (T ) with equal
probability. Then S = {H, T }, with P(H) = P(T ) = 0.5. Of course, P(H)+P(T ) =
1.

EXAMPLE 1.2.4
Suppose we flip three fair coins in a row and keep track of the sequence of heads and
tails that result. Then

S = {H H H, H HT, HT H, HT T, T H H, T HT, T T H, T T T }.
Furthermore, each of these eight outcomes is equally likely. Thus, P(H H H) = 1/8,
P(T T T ) = 1/8, etc. Also, the probability that the first coin is heads and the second
coin is tails, but the third coin can be anything, is equal to the sum of the probabilities
of the events HT H and HT T , i.e., P(HT H)+ P(HT T ) = 1/8 + 1/8 = 1/4.

EXAMPLE 1.2.5
Suppose we flip three fair coins in a row but care only about the number of heads
that result. Then S = {0, 1, 2, 3}. However, the probabilities of these four outcomes
are not all equally likely; we will see later that in fact P(0) = P(3) = 1/8, while
P(1) = P(2) = 3/8.

We note that it is possible to define probability models on more complicated (e.g.,
uncountably infinite) sample spaces as well.

EXAMPLE 1.2.6
Suppose that S = [0, 1] is the unit interval. We can define a probability measure P on
S by saying that

P([a, b]) = b − a , whenever 0 ≤ a ≤ b ≤ 1. (1.2.2)
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In words, for any1 subinterval [a, b] of [0, 1], the probability of the interval is simply
the length of that interval. This example is called the uniform distribution on [0, 1].
The uniform distribution is just the first of many distributions on uncountable state
spaces. Many further examples will be given in Chapter 2.

1.2.1 Venn Diagrams and Subsets

Venn diagrams provide a very useful graphical method for depicting the sample space
S and subsets of it. For example, in Figure 1.2.1 we have a Venn diagram showing the
subset A ⊂ S and the complement

Ac = {s : s /∈ A}
of A. The rectangle denotes the entire sample space S. The circle (and its interior) de-
notes the subset A; the region outside the circle, but inside S, denotes Ac.

1

A

S

S

A

Ac

Figure 1.2.1: Venn diagram of the subsets A and Ac of the sample space S.

Two subsets A ⊂ S and B ⊂ S are depicted as two circles, as in Figure 1.2.2 on
the next page. The intersection

A ∩ B = {s : s ∈ A and s ∈ B}
of the subsets A and B is the set of elements common to both sets and is depicted by
the region where the two circles overlap. The set

A ∩ Bc = {s : s ∈ A and s ∈ B}
is called the complement of B in A and is depicted as the region inside the A circle,
but not inside the B circle. This is the set of elements in A but not in B. Similarly, we
have the complement of A in B, namely, Ac ∩ B. Observe that the sets A∩ B, A∩ Bc,
and Ac ∩ B are mutually disjoint.

1For the uniform distribution on [0, 1], it turns out that not all subsets of [0, 1] can properly be regarded
as events for this model. However, this is merely a technical property, and any subset that we can explicitly
write down will always be an event. See more advanced probability books, e.g., page 3 of A First Look at
Rigorous Probability Theory, Second Edition, by J. S. Rosenthal (World Scientific Publishing, Singapore,
2006).
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The union
A ∪ B = {s : s ∈ A or s ∈ B}

of the sets A and B is the set of elements that are in either A or B. In Figure 1.2.2, it
is depicted by the region covered by both circles. Notice that A ∪ B = (A ∩ Bc) ∪
(A ∩ B) ∪ (Ac ∩ B) .

There is one further region in Figure 1.2.2. This is the complement of A ∪ B,
namely, the set of elements that are in neither A nor B. So we immediately have

(A ∪ B)c = Ac ∩ Bc.

Similarly, we can show that

(A ∩ B)c = Ac ∪ Bc,

namely, the subset of elements that are not in both A and B is given by the set of ele-
ments not in A or not in B.

S

A B

Ac ∩ BA ∩ Bc

A ∩ B

Ac ∩ Bc

Figure 1.2.2: Venn diagram depicting the subsets A, B, A ∩ B, A ∩ Bc, Ac ∩ B, Ac ∩ Bc,
and A ∪ B.

Finally, we note that if A and B are disjoint subsets, then it makes sense to depict
these as drawn in Figure 1.2.3, i.e., as two nonoverlapping circles because they have
no elements in common.

1

A

S

A B

Figure 1.2.3: Venn diagram of the disjoint subsets A and B.
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Summary of Section 1.2

• A probability model consists of a sample space S and a probability measure P
assigning probabilities to each event.

• Different sorts of sets can arise as sample spaces.

• Venn diagrams provide a convenient method for representing sets and the rela-
tionships among them.

EXERCISES

1.2.1 Suppose S = {1, 2, 3}, with P({1}) = 1/2, P({2}) = 1/3, and P({3}) = 1/6.
(a) What is P({1, 2})?
(b) What is P({1, 2, 3})?
(c) List all events A such that P(A) = 1/2.
1.2.2 Suppose S = {1, 2, 3, 4, 5, 6, 7, 8}, with P({s}) = 1/8 for 1 ≤ s ≤ 8.
(a) What is P({1, 2})?
(b) What is P({1, 2, 3})?
(c) How many events A are there such that P(A) = 1/2?
1.2.3 Suppose S = {1, 2, 3}, with P({1}) = 1/2 and P({1, 2}) = 2/3. What must
P({2}) be?
1.2.4 Suppose S = {1, 2, 3}, and we try to define P by P({1, 2, 3}) = 1, P({1, 2}) =
0.7, P({1, 3}) = 0.5, P({2, 3}) = 0.7, P({1}) = 0.2, P({2}) = 0.5, P({3}) = 0.3. Is
P a valid probability measure? Why or why not?
1.2.5 Consider the uniform distribution on [0, 1]. Let s ∈ [0, 1] be any outcome. What
is P({s})? Do you find this result surprising?
1.2.6 Label the subregions in the Venn diagram in Figure 1.2.4 using the sets A, B, and
C and their complements (just as we did in Figure 1.2.2).

A B

C

a b c

d
e

f

g

S

Figure 1.2.4: Venn diagram of subsets A, B, and C .

1.2.7 On a Venn diagram, depict the set of elements that are in subsets A or B but not
in both. Also write this as a subset involving unions and intersections of A, B, and
their complements.
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1.2.8 Suppose S = {1, 2, 3}, and P({1, 2}) = 1/3, and P({2, 3}) = 2/3. Compute
P({1}), P({2}), and P({3}).
1.2.9 Suppose S = {1, 2, 3, 4}, and P({1}) = 1/12, and P({1, 2}) = 1/6, and
P({1, 2, 3}) = 1/3. Compute P({1}), P({2}), P({3}), and P({4}).
1.2.10 Suppose S = {1, 2, 3}, and P({1}) = P({3}) = 2 P({2}). Compute P({1}),
P({2}), and P({3}).
1.2.11 Suppose S = {1, 2, 3}, and P({1}) = P({2}) + 1/6, and P({3}) = 2 P({2}).
Compute P({1}), P({2}), and P({3}).
1.2.12 Suppose S = {1, 2, 3, 4}, and P({1})− 1/8 = P({2}) = 3 P({3}) = 4 P({4}).
Compute P({1}), P({2}), P({3}), and P({4}).

PROBLEMS

1.2.13 Consider again the uniform distribution on [0, 1]. Is it true that

P([0, 1]) =
;

s∈[0,1]

P({s})?

How does this relate to the additivity property of probability measures?
1.2.14 Suppose S is a finite or countable set. Is it possible that P({s}) = 0 for every
single s ∈ S? Why or why not?
1.2.15 Suppose S is an uncountable set. Is it possible that P({s}) = 0 for every single
s ∈ S? Why or why not?

DISCUSSION TOPICS

1.2.16 Does the additivity property make sense intuitively? Why or why not?
1.2.17 Is it important that we always have P(S) = 1? How would probability theory
change if this were not the case?

1.3 Properties of Probability Models
The additivity property of probability measures automatically implies certain basic
properties. These are true for any probability model at all.

If A is any event, we write Ac (read “A complement”) for the event that A does not
occur. In the weather example, if A = {rain}, then Ac = {snow, clear}. In the coin
examples, if A is the event that the first coin is heads, then Ac is the event that the first
coin is tails.

Now, A and Ac are always disjoint. Furthermore, their union is always the entire
sample space: A ∪ Ac = S. Hence, by the additivity property, we must have P(A) +
P(Ac) = P(S). But we always have P(S) = 1. Thus, P(A)+ P(Ac) = 1, or

P(Ac) = 1− P(A). (1.3.1)

In words, the probability that any event does not occur is equal to one minus the prob-
ability that it does occur. This is a very helpful fact that we shall use often.
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Now suppose that A1, A2, . . . are events that form a partition of the sample space
S. This means that A1, A2, . . . are disjoint and, furthermore, that their union is equal
to S, i.e., A1 ∪ A2 ∪ · · · = S. We have the following basic theorem that allows us to
decompose the calculation of the probability of B into the sum of the probabilities of
the sets Ai ∩ B. Often these are easier to compute.

Theorem 1.3.1 (Law of total probability, unconditioned version) Let A1, A2, . . .
be events that form a partition of the sample space S. Let B be any event. Then

P(B) = P(A1 ∩ B)+ P(A2 ∩ B)+ · · · .

PROOF The events (A1∩B), (A2∩B), . . . are disjoint, and their union is B. Hence,
the result follows immediately from the additivity property (1.2.1).

A somewhat more useful version of the law of total probability, and applications of its
use, are provided in Section 1.5.

Suppose now that A and B are two events such that A contains B (in symbols,
A ⊇ B). In words, all outcomes in B are also in A. Intuitively, A is a “larger” event
than B, so we would expect its probability to be larger. We have the following result.

Theorem 1.3.2 Let A and B be two events with A ⊇ B. Then

P(A) = P(B)+ P(A ∩ Bc). (1.3.2)

PROOF We can write A = B∪ (A∩ Bc), where B and A∩ Bc are disjoint. Hence,
P(A) = P(B)+ P(A ∩ Bc) by additivity.

Because we always have P(A ∩ Bc) ≥ 0, we conclude the following.

Corollary 1.3.1 (Monotonicity) Let A and B be two events, with A ⊇ B. Then

P(A) ≥ P(B).

On the other hand, rearranging (1.3.2), we obtain the following.

Corollary 1.3.2 Let A and B be two events, with A ⊇ B. Then

P(A ∩ Bc) = P(A)− P(B) . (1.3.3)

More generally, even if we do not have A ⊇ B, we have the following property.

Theorem 1.3.3 (Principle of inclusion–exclusion, two-event version) Let A and B
be two events. Then

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B). (1.3.4)
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PROOF We can write A ∪ B = (A ∩ Bc) ∪ (B ∩ Ac) ∪ (A ∩ B), where A ∩ Bc,
B ∩ Ac, and A ∩ B are disjoint. By additivity, we have

P(A ∪ B) = P(A ∩ Bc)+ P(B ∩ Ac)+ P(A ∩ B). (1.3.5)

On the other hand, using Corollary 1.3.2 (with B replaced by A ∩ B), we have

P(A ∩ Bc) = P(A ∩ (A ∩ B)c) = P(A)− P(A ∩ B) (1.3.6)

and similarly,
P(B ∩ Ac) = P(B)− P(A ∩ B). (1.3.7)

Substituting (1.3.6) and (1.3.7) into (1.3.5), the result follows.

A more general version of the principle of inclusion–exclusion is developed in Chal-
lenge 1.3.10.

Sometimes we do not need to evaluate the probability content of a union; we need
only know it is bounded above by the sum of the probabilities of the individual events.
This is called subadditivity.

Theorem 1.3.4 (Subadditivity) Let A1, A2, . . . be a finite or countably infinite se-
quence of events, not necessarily disjoint. Then

P(A1 ∪ A2 ∪ · · · ) ≤ P(A1)+ P(A2)+ · · · .

PROOF See Section 1.7 for the proof of this result.

We note that some properties in the definition of a probability model actually follow
from other properties. For example, once we know the probability P is additive and
that P(S) = 1, it follows that we must have P(∅) = 0. Indeed, because S and ∅ are
disjoint, P(S ∪ ∅) = P(S) + P(∅). But of course, P(S ∪ ∅) = P(S) = 1, so we
must have P(∅) = 0.

Similarly, once we know P is additive on countably infinite sequences of disjoint
events, it follows that P must be additive on finite sequences of disjoint events, too.
Indeed, given a finite disjoint sequence A1, . . . , An , we can just set Ai = ∅ for all
i > n, to get a countably infinite disjoint sequence with the same union and the same
sum of probabilities.

Summary of Section 1.3

• The probability of the complement of an event equals one minus the probability
of the event.

• Probabilities always satisfy the basic properties of total probability, subadditivity,
and monotonicity.

• The principle of inclusion–exclusion allows for the computation of P(A ∪ B) in
terms of simpler events.
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EXERCISES

1.3.1 Suppose S = {1, 2, . . . , 100}. Suppose further that P({1}) = 0.1.
(a) What is the probability P({2, 3, 4, . . . , 100})?
(b) What is the smallest possible value of P({1, 2, 3})?
1.3.2 Suppose that Al watches the six o’clock news 2/3 of the time, watches the eleven
o’clock news 1/2 of the time, and watches both the six o’clock and eleven o’clock news
1/3 of the time. For a randomly selected day, what is the probability that Al watches
only the six o’clock news? For a randomly selected day, what is the probability that Al
watches neither news?
1.3.3 Suppose that an employee arrives late 10% of the time, leaves early 20% of the
time, and both arrives late and leaves early 5% of the time. What is the probability that
on a given day that employee will either arrive late or leave early (or both)?
1.3.4 Suppose your right knee is sore 15% of the time, and your left knee is sore 10%
of the time. What is the largest possible percentage of time that at least one of your
knees is sore? What is the smallest possible percentage of time that at least one of your
knees is sore?
1.3.5 Suppose a fair coin is flipped five times in a row.
(a) What is the probability of getting all five heads?
(b) What is the probability of getting at least one tail?
1.3.6 Suppose a card is chosen uniformly at random from a standard 52-card deck.
(a) What is the probability that the card is a jack?
(b) What is the probability that the card is a club?
(c) What is the probability that the card is both a jack and a club?
(d) What is the probability that the card is either a jack or a club (or both)?
1.3.7 Suppose your team has a 40% chance of winning or tying today’s game and has
a 30% chance of winning today’s game. What is the probability that today’s game will
be a tie?
1.3.8 Suppose 55% of students are female, of which 4/5 (44%) have long hair, and 45%
are male, of which 1/3 (15% of all students) have long hair. What is the probability
that a student chosen at random will either be female or have long hair (or both)?

PROBLEMS

1.3.9 Suppose we choose a positive integer at random, according to some unknown
probability distribution. Suppose we know that P({1, 2, 3, 4, 5}) = 0.3, that P({4, 5, 6})
= 0.4, and that P({1}) = 0.1. What are the largest and smallest possible values of
P({2})?

CHALLENGES

1.3.10 Generalize the principle of inclusion–exclusion, as follows.
(a) Suppose there are three events A, B, and C . Prove that

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩ C)

− P(B ∩ C)+ P(A ∩ B ∩ C).
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(b) Suppose there are n events A1, A2, . . . , An . Prove that

P(A1 ∪ · · · ∪ An) =
n;

i=1

P(Ai)−
n;

i, j=1
i< j

P(Ai ∩ A j )+
n;

i, j,k=1
i< j<k

P(Ai ∩ A j ∩ Ak)

− · · · ± P(A1 ∩ · · · ∩ An).

(Hint: Use induction.)

DISCUSSION TOPICS

1.3.11 Of the various theorems presented in this section, which ones do you think are
the most important? Which ones do you think are the least important? Explain the
reasons for your choices.

1.4 Uniform Probability on Finite Spaces
If the sample space S is finite, then one possible probability measure on S is the uniform
probability measure, which assigns probability 1/|S| to each outcome. Here |S| is the
number of elements in the sample space S. By additivity, it then follows that for any
event A we have

P(A) = |A||S| . (1.4.1)

EXAMPLE 1.4.1
Suppose we roll a six-sided die. The possible outcomes are S = {1, 2, 3, 4, 5, 6}, so
that |S| = 6. If the die is fair, then we believe each outcome is equally likely. We thus
set P({i}) = 1/6 for each i ∈ S so that P({3}) = 1/6, P({4}) = 1/6, etc. It follows
from (1.4.1) that, for example, P({3, 4}) = 2/6 = 1/3, P({1, 5, 6}) = 3/6 = 1/2, etc.
This is a good model of rolling a fair six-sided die once.

EXAMPLE 1.4.2
For a second example, suppose we flip a fair coin once. Then S = {heads, tails}, so
that |S| = 2, and P({heads}) = P({tails}) = 1/2.

EXAMPLE 1.4.3
Suppose now that we flip three different fair coins. The outcome can be written as a
sequence of three letters, with each letter being H (for heads) or T (for tails). Thus,

S = {H H H, H HT, HT H, HT T, T H H, T HT, T T H, T T T }.
Here |S| = 8, and each of the events is equally likely. Hence, P({H H H}) = 1/8,
P({H H H, T T T }) = 2/8 = 1/4, etc. Note also that, by additivity, we have, for
example, that P(exactly two heads) = P({H HT, HT H, T H H}) = 1/8 + 1/8 +
1/8 = 3/8, etc.
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EXAMPLE 1.4.4
For a final example, suppose we roll a fair six-sided die and flip a fair coin. Then we
can write

S = {1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T }.
Hence, |S| = 12 in this case, and P(s) = 1/12 for each s ∈ S.

1.4.1 Combinatorial Principles

Because of (1.4.1), problems involving uniform distributions on finite sample spaces
often come down to being able to compute the sizes |A| and |S| of the sets involved.
That is, we need to be good at counting the number of elements in various sets. The
science of counting is called combinatorics, and some aspects of it are very sophisti-
cated. In the remainder of this section, we consider a few simple combinatorial rules
and their application in probability theory when the uniform distribution is appropriate.

EXAMPLE 1.4.5 Counting Sequences: The Multiplication Principle
Suppose we flip three fair coins and roll two fair six-sided dice. What is the prob-
ability that all three coins come up heads and that both dice come up 6? Each coin
has two possible outcomes (heads and tails), and each die has six possible outcomes
{1, 2, 3, 4, 5, 6}. The total number of possible outcomes of the three coins and two dice
is thus given by multiplying three 2’s and two 6’s, i.e., 2×2×2×6×6 = 288. This is
sometimes referred to as the multiplication principle. There are thus 288 possible out-
comes of our experiment (e.g., H H H66, HT H24, T T H15, etc.). Of these outcomes,
only one (namely, H H H66) counts as a success. Thus, the probability that all three
coins come up heads and both dice come up 6 is equal to 1/288.

Notice that we can obtain this result in an alternative way. The chance that any
one of the coins comes up heads is 1/2, and the chance that any one die comes up 6 is
1/6. Furthermore, these events are all independent (see the next section). Under inde-
pendence, the probability that they all occur is given by the product of their individual
probabilities, namely,

(1/2)(1/2)(1/2)(1/6)(1/6) = 1/288.

More generally, suppose we have k finite sets S1, . . . , Sk and we want to count the
number of sequences of length k where the i th element comes from Si , i.e., count the
number of elements in

S = {(s1, . . . , sk) : si ∈ Si } = S1 × · · · × Sk .

The multiplication principle says that the number of such sequences is obtained by
multiplying together the number of elements in each set Si , i.e.,

|S| = |S1| · · · |Sk | .
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EXAMPLE 1.4.6
Suppose we roll two fair six-sided dice. What is the probability that the sum of the
numbers showing is equal to 10? By the above multiplication principle, the total
number of possible outcomes is equal to 6 × 6 = 36. Of these outcomes, there are
three that sum to 10, namely, (4, 6), (5, 5), and (6, 4). Thus, the probability that the
sum is 10 is equal to 3/36, or 1/12.

EXAMPLE 1.4.7 Counting Permutations
Suppose four friends go to a restaurant, and each checks his or her coat. At the end
of the meal, the four coats are randomly returned to the four people. What is the
probability that each of the four people gets his or her own coat? Here the total number
of different ways the coats can be returned is equal to 4 × 3 × 2 × 1, or 4! (i.e., four
factorial). This is because the first coat can be returned to any of the four friends,
the second coat to any of the three remaining friends, and so on. Only one of these
assignments is correct. Hence, the probability that each of the four people gets his or
her own coat is equal to 1/4!, or 1/24.

Here we are counting permutations, or sequences of elements from a set where
no element appears more than once. We can use the multiplication principle to count
permutations more generally. For example, suppose |S| = n and we want to count the
number of permutations of length k ≤ n obtained from S, i.e., we want to count the
number of elements of the setj

(s1, . . . , sk) : si ∈ S, si /= s j when i /= j
k
.

Then we have n choices for the first element s1, n − 1 choices for the second ele-
ment, and finally n − (k − 1) = n − k + 1 choices for the last element. So there are
n (n − 1) · · · (n − k + 1) permutations of length k from a set of n elements. This can
also be written as n!/(n − k)!. Notice that when k = n, there are

n! = n (n − 1) · · · 2 · 1
permutations of length n.

EXAMPLE 1.4.8 Counting Subsets
Suppose 10 fair coins are flipped. What is the probability that exactly seven of them
are heads? Here each possible sequence of 10 heads or tails (e.g., H H HT T T HT T T ,
T HT T T T H H HT , etc.) is equally likely, and by the multiplication principle the total
number of possible outcomes is equal to 2 multiplied by itself 10 times, or 210 = 1024.
Hence, the probability of any particular sequence occurring is 1/1024. But of these
sequences, how many have exactly seven heads?

To answer this, notice that we may specify such a sequence by giving the positions
of the seven heads, which involves choosing a subset of size 7 from the set of possible
indices {1, . . . , 10}. There are 10!/3! = 10 · 9 · · · 5 · 4 different permutations of length
7 from {1, . . . , 10} , and each such permutation specifies a sequence of seven heads
and three tails. But we can permute the indices specifying where the heads go in 7!
different ways without changing the sequence of heads and tails. So the total number
of outcomes with exactly seven heads is equal to 10!/3!7! = 120. The probability that
exactly seven of the ten coins are heads is therefore equal to 120/1024, or just under
12%.
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In general, if we have a set S of n elements, then the number of different subsets of
size k that we can construct by choosing elements from S ist

n

k

u
= n!

k! (n − k)!
,

which is called the binomial coefficient. This follows by the same argument, namely,
there are n!/(n− k)! permutations of length k obtained from the set; each such permu-
tation, and the k! permutations obtained by permuting it, specify a unique subset of S.

It follows, for example, that the probability of obtaining exactly k heads when
flipping a total of n fair coins is given byt

n

k

u
2−n = n!

k! (n − k)!
2−n.

This is because there are
bn

k

c
different patterns of k heads and n − k tails, and a total of

2n different sequences of n heads and tails.
More generally, if each coin has probability θ of being heads (and probability 1−θ

of being tails), where 0 ≤ θ ≤ 1, then the probability of obtaining exactly k heads
when flipping a total of n such coins is given byt

n

k

u
θk(1− θ)n−k = n!

k! (n − k)!
θk(1− θ)n−k, (1.4.2)

because each of the
bn

k

c
different patterns of k heads and n − k tails has probability

θk(1−θ)n−k of occurring (this follows from the discussion of independence in Section
1.5.2). If θ = 1/2, then this reduces to the previous formula.

EXAMPLE 1.4.9 Counting Sequences of Subsets and Partitions
Suppose we have a set S of n elements and we want to count the number of elements
of j

(S1, S2, . . . , Sl) : Si ⊂ S, |Si | = ki , Si ∩ Sj = ∅ when i /= j
k
,

namely, we want to count the number of sequences of l subsets of a set where no
two subsets have any elements in common and the i th subset has ki elements. By the
multiplication principle, this equalst

n

k1

ut
n − k1

k2

u
· · ·
t

n − k1 − · · · − kl−1

kl

u
= n!

k1! · · · kl−1!kl! (n − k1 − · · · − kl)!
, (1.4.3)

because we can choose the elements of S1 in
b n

k1

c
ways, choose the elements of S2 inbn−k1

k2

c
ways, etc.

When we have that S = S1 ∪ S2 ∪ · · · ∪ Sl , in addition to the individual sets being
mutually disjoint, then we are counting the number of ordered partitions of a set of n
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elements with k1 elements in the first set, k2 elements in the second set, etc. In this
case, (1.4.3) equals t

n

k1 k2 . . . kl

u
= n!

k1!k2! · · · kl!
, (1.4.4)

which is called the multinomial coefficient.

For example, how many different bridge hands are there? By this we mean how
many different ways can a deck of 52 cards be divided up into four hands of 13 cards
each, with the hands labelled North, East, South, and West, respectively. By (1.4.4),
this equals t

52
13 13 13 13

u
= 52!

13! 13! 13! 13!
≈ 5.364474× 1028,

which is a very large number.

Summary of Section 1.4

• The uniform probability distribution on a finite sample space S satisfies P(A) =
|A| / |S|.

• Computing P(A) in this case requires computing the sizes of the sets A and S.
This may require combinatorial principles such as the multiplication principle,
factorials, and binomial/multinomial coefficients.

EXERCISES

1.4.1 Suppose we roll eight fair six-sided dice.
(a) What is the probability that all eight dice show a 6?
(b) What is the probability that all eight dice show the same number?
(c) What is the probability that the sum of the eight dice is equal to 9?
1.4.2 Suppose we roll 10 fair six-sided dice. What is the probability that there are
exactly two 2’s showing?
1.4.3 Suppose we flip 100 fair independent coins. What is the probability that at least
three of them are heads? (Hint: You may wish to use (1.3.1).)
1.4.4 Suppose we are dealt five cards from an ordinary 52-card deck. What is the
probability that
(a) we get all four aces, plus the king of spades?
(b) all five cards are spades?
(c) we get no pairs (i.e., all five cards are different values)?
(d) we get a full house (i.e., three cards of a kind, plus a different pair)?
1.4.5 Suppose we deal four 13-card bridge hands from an ordinary 52-card deck. What
is the probability that
(a) all 13 spades end up in the same hand?
(b) all four aces end up in the same hand?
1.4.6 Suppose we pick two cards at random from an ordinary 52-card deck. What
is the probability that the sum of the values of the two cards (where we count jacks,
queens, and kings as 10, and count aces as 1) is at least 4?
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1.4.7 Suppose we keep dealing cards from an ordinary 52-card deck until the first jack
appears. What is the probability that at least 10 cards go by before the first jack?
1.4.8 In a well-shuffled ordinary 52-card deck, what is the probability that the ace of
spades and the ace of clubs are adjacent to each other?
1.4.9 Suppose we repeatedly roll two fair six-sided dice, considering the sum of the
two values showing each time. What is the probability that the first time the sum is
exactly 7 is on the third roll?
1.4.10 Suppose we roll three fair six-sided dice. What is the probability that two of
them show the same value, but the third one does not?
1.4.11 Consider two urns, labelled urn #1 and urn #2. Suppose urn #1 has 5 red and
7 blue balls. Suppose urn #2 has 6 red and 12 blue balls. Suppose we pick three balls
uniformly at random from each of the two urns. What is the probability that all six
chosen balls are the same color?
1.4.12 Suppose we roll a fair six-sided die and flip three fair coins. What is the proba-
bility that the total number of heads is equal to the number showing on the die?
1.4.13 Suppose we flip two pennies, three nickels, and four dimes. What is the proba-
bility that the total value of all coins showing heads is equal to $0.31?

PROBLEMS

1.4.14 Show that a probability measure defined by (1.4.1) is always additive in the
sense of (1.2.1).
1.4.15 Suppose we roll eight fair six-sided dice. What is the probability that the sum
of the eight dice is equal to 9? What is the probability that the sum of the eight dice is
equal to 10? What is the probability that the sum of the eight dice is equal to 11?
1.4.16 Suppose we roll one fair six-sided die, and flip six coins. What is the probability
that the number of heads is equal to the number showing on the die?
1.4.17 Suppose we roll 10 fair six-sided dice. What is the probability that there are
exactly two 2’s showing and exactly three 3’s showing?
1.4.18 Suppose we deal four 13-card bridge hands from an ordinary 52-card deck.
What is the probability that the North and East hands each have exactly the same num-
ber of spades?
1.4.19 Suppose we pick a card at random from an ordinary 52-card deck and also flip
10 fair coins. What is the probability that the number of heads equals the value of the
card (where we count jacks, queens, and kings as 10, and count aces as 1)?

CHALLENGES

1.4.20 Suppose we roll two fair six-sided dice and flip 12 coins. What is the probability
that the number of heads is equal to the sum of the numbers showing on the two dice?
1.4.21 (The birthday problem) Suppose there are C people, each of whose birthdays
(month and day only) are equally likely to fall on any of the 365 days of a normal (i.e.,
non-leap) year.
(a) Suppose C = 2. What is the probability that the two people have the same exact
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birthday?
(b) Suppose C ≥ 2. What is the probability that all C people have the same exact
birthday?
(c) Suppose C ≥ 2. What is the probability that some pair of the C people have the
same exact birthday? (Hint: You may wish to use (1.3.1).)
(d) What is the smallest value of C such that the probability in part (c) is more than
0.5? Do you find this result surprising?

1.5 Conditional Probability and Independence
Consider again the three-coin example as in Example 1.4.3, where we flip three differ-
ent fair coins, and

S = {H H H, H HT, HT H, HT T, T H H, T HT, T T H, T T T },

with P(s) = 1/8 for each s ∈ S. What is the probability that the first coin comes
up heads? Well, of course, this should be 1/2. We can see this more formally by
saying that P(first coin heads) = P({H H H, H HT, HT H, HT T }) = 4/8 = 1/2, as
it should.

But suppose now that an informant tells us that exactly two of the three coins came
up heads. Now what is the probability that the first coin was heads?

The point is that this informant has changed our available information, i.e., changed
our level of ignorance. It follows that our corresponding probabilities should also
change. Indeed, if we know that exactly two of the coins were heads, then we know
that the outcome was one of H HT , HT H , and T H H . Because those three outcomes
should (in this case) still all be equally likely, and because only the first two correspond
to the first coin being heads, we conclude the following: If we know that exactly two
of the three coins are heads, then the probability that the first coin is heads is 2/3.

More precisely, we have computed a conditional probability. That is, we have de-
termined that, conditional on knowing that exactly two coins came up heads, the con-
ditional probability of the first coin being heads is 2/3. We write this in mathematical
notation as

P(first coin heads | two coins heads) = 2/3.

Here the vertical bar | stands for “conditional on,” or “given that.”

1.5.1 Conditional Probability

In general, given two events A and B with P(B) > 0, the conditional probability of
A given B, written P(A | B), stands for the fraction of the time that A occurs once we
know that B occurs. It is computed as the ratio of the probability that A and B both
occur, divided by the probability that B occurs, as follows.
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Definition 1.5.1 Given two events A and B, with P(B) > 0, the conditional prob-
ability of A given B is equal to

P(A | B) = P(A ∩ B)

P(B)
. (1.5.1)

The motivation for (1.5.1) is as follows. The event B will occur a fraction P(B) of
the time. Also, both A and B will occur a fraction P(A ∩ B) of the time. The ratio
P(A ∩ B)/P(B) thus gives the proportion of the times when B occurs, that A also
occurs. That is, if we ignore all the times that B does not occur and consider only those
times that B does occur, then the ratio P(A ∩ B)/P(B) equals the fraction of the time
that A will also occur. This is precisely what is meant by the conditional probability of
A given B.

In the example just computed, A is the event that the first coin is heads, while B
is the event that exactly two coins were heads. Hence, in mathematical terms, A =
{H H H, H HT, HT H, HT T } and B = {H HT, HT H, T H H}. It follows that A ∩
B = {H HT, HT H}. Therefore,

P(A | B) = P(A ∩ B)

P(B)
= P({H HT, HT H})

P({H HT, HT H, T H H}) =
2/8
3/8

= 2/3,

as already computed.
On the other hand, we similarly compute that

P(first coin tails | two coins heads) = 1/3.

We thus see that conditioning on some event (such as “two coins heads”) can make
probabilities either increase (as for the event “first coin heads”) or decrease (as for the
event “first coin tails”).

The definition of P(B | A) immediately leads to the multiplication formula

P(A ∩ B) = P(A)P(B | A). (1.5.2)

This allows us to compute the joint probability of A and B when we are given the
probability of A and the conditional probability of B given A.

Conditional probability allows us to express Theorem 1.3.1, the law of total proba-
bility, in a different and sometimes more helpful way.

Theorem 1.5.1 (Law of total probability, conditioned version) Let A1, A2, . . . be
events that form a partition of the sample space S, each of positive probability. Let
B be any event. Then P(B) = P(A1)P(B | A1)+ P(A2)P(B | A2)+ · · · .

PROOF The multiplication formula (1.5.2) gives that P(Ai∩B) = P(Ai )P(Ai | B) .
The result then follows immediately from Theorem 1.3.1.
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EXAMPLE 1.5.1
Suppose a class contains 60% girls and 40% boys. Suppose that 30% of the girls have
long hair, and 20% of the boys have long hair. A student is chosen uniformly at random
from the class. What is the probability that the chosen student will have long hair?

To answer this, we let A1 be the set of girls and A2 be the set of boys. Then
{A1, A2} is a partition of the class. We further let B be the set of all students with long
hair.

We are interested in P(B). We compute this by Theorem 1.5.1 as

P(B) = P(A1)P(B | A1)+ P(A2)P(B | A2) = (0.6)(0.3)+ (0.4)(0.2) = 0.26,

so there is a 26% chance that the randomly chosen student has long hair.

Suppose now that A and B are two events, each of positive probability. In some ap-
plications, we are given the values of P(A), P(B), and P(B | A) and want to compute
P(A | B). The following result establishes a simple relationship among these quanti-
ties.

Theorem 1.5.2 (Bayes’ theorem) Let A and B be two events, each of positive prob-
ability. Then

P(A | B) = P(A)

P(B)
P(B | A).

PROOF We compute that

P(A)

P(B)
P(B | A) = P(A)

P(B)

P(A ∩ B)

P(A)
= P(A ∩ B)

P(B)
= P(A | B).

This gives the result.
Standard applications of the multiplication formula, the law of total probabilities,

and Bayes’ theorem occur with two-stage systems. The response for such systems can
be thought of as occurring in two steps or stages. Typically, we are given the prob-
abilities for the first stage and the conditional probabilities for the second stage. The
multiplication formula is then used to calculate joint probabilities for what happens at
both stages; the law of total probability is used to compute the probabilities for what
happens at the second stage; and Bayes’ theorem is used to calculate the conditional
probabilities for the first stage, given what has occurred at the second stage. We illus-
trate this by an example.

EXAMPLE 1.5.2
Suppose urn #1 has 3 red and 2 blue balls, and urn #2 has 4 red and 7 blue balls.
Suppose one of the two urns is selected with probability 1/2 each, and then one of the
balls within that urn is picked uniformly at random.

What is the probability that urn #2 is selected at the first stage (event A) and a blue
ball is selected at the second stage (event B)? The multiplication formula provides the
correct way to compute this probability as

P (A ∩ B) = P(A)P(B | A) = 1
2

7
11
= 7

22
.
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Suppose instead we want to compute the probability that a blue ball is obtained.
Using the law of total probability (Theorem 1.5.1), we have that

P(B) = P(A)P(B | A)+ P(Ac)P(B | Ac) = 1

2

2

5
+ 1

2

7

11
.

Now suppose we are given the information that the ball picked is blue. Then, using
Bayes’ theorem, the conditional probability that we had selected urn #2 is given by

P(A | B) = P(A)

P(B)
P(B | A) =

t
1/2

(1/2)(2/5)+ (1/2)(7/11)

u
7
11

= 35/57 = 0.614.

Note that, without the information that a blue ball occurred at the second stage, we
have that

P(urn #2 selected) = 1/2.

We see that knowing the ball was blue significantly increases the probability that urn
#2 was selected.

We can represent a two-stage system using a tree, as in Figure 1.5.1. It can be help-
ful to draw such a figure when carrying out probability computations for such systems.
There are two possible outcomes at the first stage and three possible outcomes at the
second stage.

first stage
outcome 1

first stage
outcome 2

second stage
outcome 3

second stage
outcome 1

second stage
outcome 2

second stage
outcome 3

second stage
outcome 1

second stage
outcome 2

S

Figure 1.5.1: A tree depicting a two-stage system with two possible outcomes at the first stage
and three possible outcomes at the second stage.

1.5.2 Independence of Events

Consider now Example 1.4.4, where we roll one fair die and flip one fair coin, so that

S = {1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T }
and P({s}) = 1/12 for each s ∈ S. Here the probability that the die comes up 5 is
equal to P({5H, 5T }) = 2/12 = 1/6, as it should be.
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But now, what is the probability that the die comes up 5, conditional on knowing
that the coin came up tails? Well, we can compute that probability as

P(die = 5 | coin = tails) = P (die = 5 and coin = tails)
P (coin = tails)

= P({5T })
P ({1T, 2T, 3T, 4T, 5T, 6T })

= 1/12
6/12

= 1/6.

This is the same as the unconditional probability, P(die = 5). It seems that knowing
that the coin was tails had no effect whatsoever on the probability that the coin came
up 5. This property is called independence. We say that the coin and the die are
independent in this example, to indicate that the occurrence of one does not have any
influence on the probability of the other occurring.

More formally, we make the following definition.

Definition 1.5.2 Two events A and B are independent if

P(A ∩ B) = P(A) P(B).

Now, because P(A | B) = P(A ∩ B)/P(B), we see that A and B are independent
if and only if P(A | B) = P(A) or P(B | A) = P(B), provided that P(A) > 0 and
P(B) > 0. Definition 1.5.2 has the advantage that it remains valid even if P(B) = 0
or P(A) = 0, respectively. Intuitively, events A and B are independent if neither one
has any impact on the probability of the other.

EXAMPLE 1.5.3
In Example 1.4.4, if A is the event that the die was 5, and B is the event that the coin
was tails, then P(A) = P({5H, 5T }) = 2/12 = 1/6, and

P(B) = P({1T, 2T, 3T, 4T, 5T, 6T }) = 6/12 = 1/2.

Also, P(A ∩ B) = P({5T }) = 1/12, which is indeed equal to (1/6)(1/2). Hence, A
and B are independent in this case.

For multiple events, the definition of independence is somewhat more involved.

Definition 1.5.3 A collection of events A1, A2, A3, . . . are independent if

P(Ai1 ∩ · · · ∩ Ai j ) = P(Ai1) · · · P(Ai j )

for any finite subcollection Ai1, . . . , Ai j of distinct events.
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EXAMPLE 1.5.4
According to Definition 1.5.3, three events A, B, and C are independent if all of the
following equations hold:

P(A ∩ B) = P(A)P(B),

P(A ∩ C) = P(A)P(C),

P(B ∩ C) = P(B)P(C), (1.5.3)

and
P(A ∩ B ∩ C) = P(A)P(B)P(C). (1.5.4)

It is not sufficient to check just some of these conditions to verify independence. For
example, suppose that S = {1, 2, 3, 4}, with P({1}) = P({2}) = P({3}) = P({4}) =
1/4. Let A = {1, 2}, B = {1, 3}, and C = {1, 4}. Then each of the three equations
(1.5.3) holds, but equation (1.5.4) does not hold. Here, the events A, B, and C are
called pairwise independent, but they are not independent.

Summary of Section 1.5

• Conditional probability measures the probability that A occurs given that B oc-
curs; it is given by P(A | B) = P(A ∩ B) / P(B).

• Conditional probability satisfies its own law of total probability.

• Events are independent if they have no effect on each other’s probabilities. For-
mally, this means that P(A ∩ B) = P(A)P(B).

• If A and B are independent, and P(A) > 0 and P(B) > 0, then P(A | B) =
P(A) and P(B | A) = P(B).

EXERCISES

1.5.1 Suppose that we roll four fair six-sided dice.
(a) What is the conditional probability that the first die shows 2, conditional on the
event that exactly three dice show 2?
(b) What is the conditional probability that the first die shows 2, conditional on the
event that at least three dice show 2?
1.5.2 Suppose we flip two fair coins and roll one fair six-sided die.
(a) What is the probability that the number of heads equals the number showing on the
die?
(b) What is the conditional probability that the number of heads equals the number
showing on the die, conditional on knowing that the die showed 1?
(c) Is the answer for part (b) larger or smaller than the answer for part (a)? Explain
intuitively why this is so.
1.5.3 Suppose we flip three fair coins.
(a) What is the probability that all three coins are heads?
(b) What is the conditional probability that all three coins are heads, conditional on
knowing that the number of heads is odd?
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(c) What is the conditional probability that all three coins are heads, given that the
number of heads is even?
1.5.4 Suppose we deal five cards from an ordinary 52-card deck. What is the con-
ditional probability that all five cards are spades, given that at least four of them are
spades?
1.5.5 Suppose we deal five cards from an ordinary 52-card deck. What is the condi-
tional probability that the hand contains all four aces, given that the hand contains at
least four aces?
1.5.6 Suppose we deal five cards from an ordinary 52-card deck. What is the condi-
tional probability that the hand contains no pairs, given that it contains no spades?
1.5.7 Suppose a baseball pitcher throws fastballs 80% of the time and curveballs 20%
of the time. Suppose a batter hits a home run on 8% of all fastball pitches, and on 5%
of all curveball pitches. What is the probability that this batter will hit a home run on
this pitcher’s next pitch?
1.5.8 Suppose the probability of snow is 20%, and the probability of a traffic accident
is 10%. Suppose further that the conditional probability of an accident, given that it
snows, is 40%. What is the conditional probability that it snows, given that there is an
accident?
1.5.9 Suppose we roll two fair six-sided dice, one red and one blue. Let A be the event
that the two dice show the same value. Let B be the event that the sum of the two dice
is equal to 12. Let C be the event that the red die shows 4. Let D be the event that the
blue die shows 4.
(a) Are A and B independent?
(b) Are A and C independent?
(c) Are A and D independent?
(d) Are C and D independent?
(e) Are A, C, and D all independent?
1.5.10 Consider two urns, labelled urn #1 and urn #2. Suppose, as in Exercise 1.4.11,
that urn #1 has 5 red and 7 blue balls, that urn #2 has 6 red and 12 blue balls, and that
we pick three balls uniformly at random from each of the two urns. Conditional on the
fact that all six chosen balls are the same color, what is the conditional probability that
this color is red?
1.5.11 Suppose we roll a fair six-sided die and then flip a number of fair coins equal to
the number showing on the die. (For example, if the die shows 4, then we flip 4 coins.)
(a) What is the probability that the number of heads equals 3?
(b) Conditional on knowing that the number of heads equals 3, what is the conditional
probability that the die showed the number 5?
1.5.12 Suppose we roll a fair six-sided die and then pick a number of cards from a
well-shuffled deck equal to the number showing on the die. (For example, if the die
shows 4, then we pick 4 cards.)
(a) What is the probability that the number of jacks in our hand equals 2?
(b) Conditional on knowing that the number of jacks in our hand equals 2, what is the
conditional probability that the die showed the number 3?
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PROBLEMS

1.5.13 Consider three cards, as follows: One is red on both sides, one is black on both
sides, and one is red on one side and black on the other. Suppose the cards are placed
in a hat, and one is chosen at random. Suppose further that this card is placed flat on
the table, so we can see one side only.
(a) What is the probability that this one side is red?
(b) Conditional on this one side being red, what is the probability that the card showing
is the one that is red on both sides? (Hint: The answer is somewhat surprising.)
(c) Suppose you wanted to verify the answer in part (b), using an actual, physical
experiment. Explain how you could do this.
1.5.14 Prove that A and B are independent if and only if AC and B are independent.
1.5.15 Let A and B be events of positive probability. Prove that P(A | B) > P(A) if
and only if P(B | A) > P(B).

CHALLENGES

1.5.16 Suppose we roll three fair six-sided dice. Compute the conditional probability
that the first die shows 4, given that the sum of the three numbers showing is 12.
1.5.17 (The game of craps) The game of craps is played by rolling two fair, six-sided
dice. On the first roll, if the sum of the two numbers showing equals 2, 3, or 12, then
the player immediately loses. If the sum equals 7 or 11, then the player immediately
wins. If the sum equals any other value, then this value becomes the player’s “point.”
The player then repeatedly rolls the two dice, until such time as he or she either rolls
the point value again (in which case he or she wins) or rolls a 7 (in which case he or
she loses).
(a) Suppose the player’s point is equal to 4. Conditional on this, what is the conditional
probability that he or she will win (i.e., will roll another 4 before rolling a 7)? (Hint:
The final roll will be either a 4 or 7; what is the conditional probability that it is a 4?)
(b) For 2 ≤ i ≤ 12, let pi be the conditional probability that the player will win,
conditional on having rolled i on the first roll. Compute pi for all i with 2 ≤ i ≤ 12.
(Hint: You’ve already done this for i = 4 in part (b). Also, the cases i = 2, 3, 7, 11, 12
are trivial. The other cases are similar to the i = 4 case.)
(c) Compute the overall probability that a player will win at craps. (Hint: Use part (b)
and Theorem 1.5.1.)
1.5.18 (The Monty Hall problem) Suppose there are three doors, labeled A, B, and C.
A new car is behind one of the three doors, but you don’t know which. You select one
of the doors, say, door A. The host then opens one of doors B or C, as follows: If the
car is behind B, then they open C; if the car is behind C, then they open B; if the car
is behind A, then they open either B or C with probability 1/2 each. (In any case, the
door opened by the host will not have the car behind it.) The host then gives you the
option of either sticking with your original door choice (i.e., A), or switching to the
remaining unopened door (i.e., whichever of B or C the host did not open). You then
win (i.e., get to keep the car) if and only if the car is behind your final door selection.
(Source: Parade Magazine, “Ask Marilyn” column, September 9, 1990.) Suppose for
definiteness that the host opens door B.
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(a) If you stick with your original choice (i.e., door A), conditional on the host having
opened door B, then what is your probability of winning? (Hint: First condition on the
true location of the car. Then use Theorem 1.5.2.)
(b) If you switch to the remaining door (i.e., door C), conditional on the host having
opened door B, then what is your probability of winning?
(c) Do you find the result of parts (a) and (b) surprising? How could you design a
physical experiment to verify the result?
(d) Suppose we change the rules so that, if you originally chose A and the car was in-
deed behind A, then the host always opens door B. How would the answers to parts (a)
and (b) change in this case?
(e) Suppose we change the rules so that, if you originally chose A, then the host al-
ways opens door B no matter where the car is. We then condition on the fact that door
B happened not to have a car behind it. How would the answers to parts (a) and (b)
change in this case?

DISCUSSION TOPICS

1.5.19 Suppose two people each flip a fair coin simultaneously. Will the results of the
two flips usually be independent? Under what sorts of circumstances might they not be
independent? (List as many such circumstances as you can.)
1.5.20 Suppose you are able to repeat an experiment many times, and you wish to
check whether or not two events are independent. How might you go about this?
1.5.21 The Monty Hall problem (Challenge 1.5.18) was originally presented by Mar-
ilyn von Savant, writing in the “Ask Marilyn” column of Parade Magazine. She gave
the correct answer. However, many people (including some well-known mathemati-
cians, plus many laypeople) wrote in to complain that her answer was incorrect. The
controversy dragged on for months, with many letters and very strong language written
by both sides (in the end, von Savant was vindicated). Part of the confusion lay in the
assumptions being made, e.g., some people misinterpreted her question as that of the
modified version of part (e) of Challenge 1.5.18. However, a lot of the confusion was
simply due to mathematical errors and misunderstandings. (Source: Parade Magazine,
“Ask Marilyn” column, September 9, 1990; December 2, 1990; February 17, 1991;
July 7, 1991.)
(a) Does it surprise you that so many people, including well-known mathematicians,
made errors in solving this problem? Why or why not?
(b) Does it surprise you that so many people, including many laypeople, cared so
strongly about the answer to this problem? Why or why not?

1.6 Continuity of P
Suppose A1, A2, . . . is a sequence of events that are getting “closer” (in some sense) to
another event, A. Then we might expect that the probabilities P(A1), P(A2), . . . are
getting close to P(A), i.e., that limn→∞ P(An) = P(A). But can we be sure about
this?
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Properties like this, which say that P(An) is close to P(A) whenever An is “close”
to A, are called continuity properties. The above question can thus be translated,
roughly, as asking whether or not probability measures P are “continuous.” It turns
out that P is indeed continuous in some sense.

Specifically, let us write {An} � A and say that the sequence {An} increases to
A, if A1 ⊆ A2 ⊆ A3 ⊆ · · · , and also

6∞
n=1 An = A. That is, the sequence of

events is an increasing sequence, and furthermore its union is equal to A. For ex-
ample, if An = (1/n, n

e
, then A1 ⊆ A2 ⊆ · · · and

6∞
n=1 An = (0,∞) . Hence,j

(1/n, n
ek� (0,∞) . Figure 1.6.1 depicts an increasing sequence of subsets.

1

A

S

S

A1 A2 A3 …A1 A

Figure 1.6.1: An increasing sequence of subsets A1 ⊆ A2 ⊆ A3 ⊆ . . . .

Similarly, let us write {An} � A and say that the sequence {An} decreases to
A, if A1 ⊇ A2 ⊇ A3 ⊇ · · · , and also

7∞
n=1 An = A. That is, the sequence of

events is a decreasing sequence, and furthermore its intersection is equal to A. For
example, if An = (−1/n, 1/n

e
, then A1 ⊇ A2 ⊇ · · · and

7∞
n=1 An = {0} . Hence,j

(−1/n, 1/n
ek� {0} . Figure 1.6.2 depicts a decreasing sequence of subsets.

1

A

S

S

A1A2… A3A

Figure 1.6.2: A decreasing sequence of subsets A1 ⊇ A2 ⊇ A3 ⊇ . . . .

We will consider such sequences of sets at several points in the text. For this we
need the following result.

Theorem 1.6.1 Let A, A1, A2, . . . be events, and suppose that either {An} � A or
{An} � A. Then

lim
n→∞ P(An) = P(A).
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PROOF See Section 1.7 for the proof of this theorem.

EXAMPLE 1.6.1
Suppose S is the set of all positive integers, with P(s) = 2−s for all s ∈ S. Then what
is P({5, 6, 7, 8, . . .})?

We begin by noting that the events An = {5, 6, 7, 8, . . . , n} increase to A =
{5, 6, 7, 8, . . .}, i.e., {An} � A. Hence, using continuity of probabilities, we must
have

P({5, 6, 7, 8, . . .}) = lim
n→∞ P({5, 6, 7, 8, . . . , n})

= lim
n→∞ (P(5)+ P(6)+ · · · + P(n))

= lim
n→∞

r
2−5 + 2−6 + · · · + 2−n

s
= lim

n→∞

t
2−5 − 2−n−1

1− 2−1

u
= lim

n→∞
r

2−4 − 2−n
s
= 2−4 = 1/16.

Alternatively, we could use countable additivity directly, to conclude that

P({5, 6, 7, 8, . . .}) = P(5) + P(6) + P(7) + · · · ,
which amounts to the same thing.

EXAMPLE 1.6.2
Let P be some probability measure on the space S = R1. Suppose

P ((3, 5+ 1/n)) ≥ δ
for all n, where δ > 0. Let An = (3, 5 + 1/n). Then {An} � A where A = (3, 5].
Hence, we must have P(A) = P((3, 5]) ≥ δ as well.

Note, however, that we could still have P((3, 5)) = 0. For example, perhaps
P({5}) = δ, but P((3, 5)) = 0.

Summary of Section 1.6

• If {An} � A or {An} � A, then limn→∞ P(An) = P(A).

• This allows us to compute or bound various probabilities that otherwise could
not be understood.

EXERCISES

1.6.1 Suppose that S = {1, 2, 3, . . .} is the set of all positive integers and that P({s}) =
2−s for all s ∈ S. Compute P(A) where A = {2, 4, 6, . . .} is the set of all even
positive integers. Do this in two ways — by using continuity of P (together with finite
additivity) and by using countable additivity.
1.6.2 Consider the uniform distribution on [0, 1]. Compute (with proof)

lim
n→∞ P([1/4, 1− e−n]).
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1.6.3 Suppose that S = {1, 2, 3, . . .} is the set of all positive integers and that P is
some probability measure on S. Prove that we must have

lim
n→∞ P({1, 2, . . . , n}) = 1.

1.6.4 Suppose P([0, 8
4+n ]) = 2+e−n

6 for all n = 1, 2, 3, . . . . What must P({0}) be?
1.6.5 Suppose P([0, 1]) = 1, but P([1/n, 1]) = 0 for all n = 1, 2, 3, . . . . What must
P({0}) be?
1.6.6 Suppose P([1/n, 1/2]) ≤ 1/3 for all n = 1, 2, 3, . . . .
(a) Must we have P((0, 1/2]) ≤ 1/3?
(b) Must we have P([0, 1/2]) ≤ 1/3?
1.6.7 Suppose P([0,∞)) = 1. Prove that there is some n such that P([0, n]) > 0.9.
1.6.8 Suppose P((0, 1/2]) = 1/3. Prove that there is some n such that P([1/n, 1/2]) >
1/4.
1.6.9 Suppose P([0, 1/2]) = 1/3. Must there be some n such that P([1/n, 1/2]) >
1/4?

PROBLEMS

1.6.10 Let P be some probability measure on sample space S = [0, 1].
(a) Prove that we must have limn→∞ P((0, 1/n) = 0.
(b) Show by example that we might have limn→∞ P ([0, 1/n)) > 0.

CHALLENGES

1.6.11 Suppose we know that P is finitely additive, but we do not know that it is
countably additive. In other words, we know that P(A1 ∪· · · ∪ An) = P(A1) + · · · +
P(An) for any finite collection of disjoint events {A1, . . . , An}, but we do not know
about P(A1 ∪ A2 ∪ · · · ) for infinite collections of disjoint events. Suppose further
that we know that P is continuous in the sense of Theorem 1.6.1. Using this, give a
proof that P must be countably additive. (In effect, you are proving that continuity of
P is equivalent to countable additivity of P , at least once we know that P is finitely
additive.)

1.7 Further Proofs (Advanced)
Proof of Theorem 1.3.4

We want to prove that whenever A1, A2, . . . is a finite or countably infinite sequence of
events, not necessarily disjoint, then P(A1 ∪ A2 ∪ · · · ) ≤ P(A1)+ P(A2)+ · · · .

Let B1 = A1, and for n ≥ 2, let Bn = An ∩ (A1 ∪ · · · ∪ An−1)
c. Then B1, B2, . . .

are disjoint, B1 ∪ B2 ∪ · · · = A1 ∪ A2 ∪ · · · and, by additivity,

P(A1 ∪ A2 ∪ · · · ) = P(B1 ∪ B2 ∪ · · · ) = P(B1)+ P(B2)+ · · · . (1.7.1)



Furthermore, An ⊇ Bn, so by monotonicity, we have P(An) ≥ P(Bn). It follows from
(1.7.1) that

P(A1 ∪ A2 ∪ · · · ) = P(B1)+ P(B2)+ · · · ≤ P(A1)+ P(A2)+ · · ·
as claimed.

Proof of Theorem 1.6.1

We want to prove that when A, A1, A2, . . . are events, and either {An} � A or {An} �
A, then limn→∞ P(An) = P(A).

Suppose first that {An} � A. Then we can write

A = A1 ∪ (A2 ∩ Ac
1) ∪ (A3 ∩ Ac

2) ∪ · · ·
where the union is disjoint. Hence, by additivity,

P(A) = P(A1)+ P(A2 ∩ Ac
1)+ P(A3 ∩ Ac

2)+ · · · .
Now, by definition, writing this infinite sum is the same thing as writing

P(A) = lim
n→∞

b
P(A1)+ P(A2 ∩ Ac

1)+ · · · + P(An ∩ Ac
n−1)

c
. (1.7.2)

However, again by additivity, we see that

P(A1)+ P(A2 ∩ Ac
1)+ P(A3 ∩ Ac

2)+ · · · + P(An ∩ Ac
n−1) = P(An).

Substituting this information into (1.7.2), we obtain P(A) = limn→∞ P(An), which
was to be proved.

Suppose now that {An} � A. Let Bn = Ac
n, and let B = Ac. Then

we see that {Bn} � B (why?). Hence, by what we just proved, we must have P(B) =
limn→∞ P(Bn). But then, using (1.3.1), we have

1− P(A) = lim
n→∞{1− P(An)} ,

from which it follows that P(A) = limn→∞ P(An). This completes the proof.


