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Summary 10

Bayes classifiers for functional data pose a challenge. One difficulty is that probability
density functions do not exist for functional data, so the classical Bayes classifier using
density quotients needs to be modified. We propose to use density ratios of projections
on a sequence of eigenfunctions that are common to the groups to be classified. The
density ratios are then factored into density ratios of individual projection scores, re- 15

ducing the classification problem to obtaining a series of one-dimensional nonparametric
density estimates. The proposed classifiers can be viewed as an extension to functional
data of some of the very earliest nonparametric Bayes classifiers that were based on
simple density ratios in the one-dimensional case. By means of the factorization of the
density quotients the curse of dimensionality that would otherwise severely affect Bayes 20

classifiers for functional data can be avoided. We demonstrate that in the case of Gaus-
sian functional data, the proposed functional Bayes classifier reduces to a functional
version of the classical quadratic discriminant. A study of the asymptotic behaviour of
the proposed classifiers in the large sample limit shows that under certain conditions
the misclassification rate converges to zero, a phenomenon that has been referred to as 25

perfect classification. The proposed classifiers also perform favourably in finite sample
applications, as we demonstrate through comparisons with other functional classifiers in
simulations and various data applications, including spectral data, functional magnetic
resonance imaging data for attention deficit hyperactivity disorder patients, and yeast
gene expression data. 30

Some key words: Common functional principal component; Density estimation; Functional classification;
Gaussian process; Quadratic discriminant analysis.

1. Introduction

For the classification of functional data, predictors may be viewed as random trajec-
tories and responses are indicators for two or more categories. The goal of functional 35

classification is to assign a group label to each predictor function, i.e., to predict the
group label for each of the observed random curves. Functional classification is a rich
topic with applications in many areas of commerce, medicine, the sciences, chemometrics,
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and genetics (Leng & Müller, 2006; Song et al., 2008; Zhu et al., 2010, 2012; Francisco-
Fernández et al., 2012; Coffey et al., 2014). Within the functional data analysis framework40

(Wang et al., 2016), each observation is viewed as a smooth random curve on a compact
domain. Functional classification also has recently been extended to the related task of
classifying longitudinal data (Wu & Liu, 2013; Wang & Qu, 2014; Yao et al., 2016) and
also has close connections with functional clustering (Chiou & Li, 2008). The vast litera-
ture on functional classification includes distance-based classifiers (Ferraty & Vieu, 2003;45

Alonso et al., 2012), k-nearest neighbour classifiers (Biau et al., 2005; Cérou & Guyader,
2006; Biau et al., 2010), Bayesian methods (Wang et al., 2007), logistic regression (Araki
et al., 2009), or partial least squares (Preda & Saporta, 2005; Preda et al., 2007),

Bayes classifiers based on density quotients are optimal in the sense of minimizing
misclassification rates, and this provides one of the major motivations for developing50

nonparametric density estimation (technical report by Fix & Hodges Jr, 1951 commented
by Sillverman & Jones, 1989; Rosenblatt, 1956; Parzen, 1962; Wegman, 1972). However,
for multiple predictors unrestricted nonparametric approaches are subject to the curse of
dimensionality (Scott, 2015). This leads to very slow rates of convergence for estimating
the nonparametric densities for dimensions larger than three or four and renders the55

resulting classifiers practically worthless. The situation is exacerbated in the case of
functional predictors, which are infinite-dimensional and hence afflicted by a particularly
bad curse of dimensionality, as small ball probabilities in function space imply that the
expected number of functions falling into balls with small radius is so small that densities
do not even exist in most cases (Li & Linde, 1999; Delaigle & Hall, 2010).60

Hence, in order to define a Bayes classifier through density quotients with reasonably
good estimation properties, one needs to invoke sensible restrictions, for example on the
class of predictor processes. This approach was adopted in Delaigle & Hall (2012), who
consider two Gaussian populations with equal covariance using a functional linear dis-
criminant, in analogy to the linear discriminant, corresponding to the Bayes classifier in65

the analogous multivariate Gaussian case. Galeano et al. (2015) proposed a closely re-
lated functional quadratic method for discriminating two general Gaussian populations,
making use of a suitably defined Mahalanobis distance for functional data. In contrast
to these previous approaches, we aim here at the construction of a nonparametric Bayes
classifier for functional data. The idea is to project the observations onto an orthonormal70

basis that is common to the two populations, then to construct density ratios through
products of the density ratios of the projection scores. This corresponds to the Bayes
classifier if scores are independent. The densities themselves are nonparametrically esti-
mated, which is feasible as they are only one-dimensional. We establish the asymptotic
equivalence of the proposed functional nonparametric Bayes classifiers and their esti-75

mated versions as well as asymptotic perfect classification for the proposed classifiers.
The term perfect classification was introduced in Delaigle & Hall (2012) to denote

conditions where the misclassification rate converges to zero as an increasing number of
projection scores is used, and we use it in the same sense here. Perfect classification in the
Gaussian case requires that there are certain differences between the mean or covariance80

functions, while such differences are not a prerequisite for the proposed nonparametric
approach to succeed. In the special case of Gaussian functional predictors, the proposed
classifiers simplify to those considered in Delaigle & Hall (2013). Additionally, we extend
our theoretical results to cover the practically important situation where the functional
data are not fully observed, but rather are observed as noisy measurements that are made85
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on a dense grid, while previous approaches were based on the less realistic assumption
of fully observed trajectories without noise.

2. Functional Bayes Classifiers

We consider the situation where the observed data come from a common distribution
(X,Y ), where X is a fully observed square integrable random function in L2(T ), T is 90

a compact interval, and Y ∈ {0, 1} is a group label. Assuming that X shares the same
distribution with X(k) if X is from population Πk (k = 0, 1), that is, X(k) has the same
distribution as X given Y = k, and that πk = pr(Y = k) is the prior probability that an
observation falls into Πk, our goal is to infer the group label Y of a new observation X.
The optimal Bayes classification rule that minimizes misclassification error classifies an 95

observation X = x to Π1 if

Q(x) =
pr(Y = 1 | X = x)

pr(Y = 0 | X = x)
> 1,

where we denote realized functional observations by x and random predictor functions
by X. We denote the conditional densities of the functional observations X when condi-
tioning on the group label 0 or 1 by g0 and g1, assuming that these conditional densities
exist. Then Bayes’ theorem implies that 100

Q(x) =
π1g1(x)

π0g0(x)
. (1)

Since translation-invariant densities for functional data do not usually exist (Delaigle
& Hall, 2010) and the density quotients are known only for certain classes of Gaussian
processes (Báıllo et al., 2011; Berrendero et al., 2015, arXiv:1507.04398), we consider
a sequence of approximations with increasing number of components and then use the
density ratios (1). 105

Specifically, we represent x and the random X by projecting onto an orthogonal basis
{ψj}∞j=1, yielding the projection scores {xj}∞j=1 and {ξj}∞j=1, where xj =

∫

T
x(t)ψj(t) dt

and ξj =
∫

T
X(t)ψj(t) dt (j = 1, 2, . . . ). As noted in Hall et al. (2001), when comparing

the conditional probabilities, it is sensible to project the data from both groups onto the
same basis. Our goal is to approximate the conditional probabilities pr(Y = k | X = x) 110

by pr(Y = k | the first J scores of x), where J → ∞. Then by Bayes’ theorem,

Q(x) ≈ pr(Y = 1 | the first J scores of x)

pr(Y = 0 | the first J scores of x)
=
π1f1(x1, . . . , xJ)

π0f0(x1, . . . , xJ)
, (2)

where f1 and f0 are the conditional densities for the first J random projection scores
ξ1, . . . , ξJ .

Since estimating the joint density of (ξ1, . . . , ξJ) is impractical and subject to the curse 115

of dimensionality when J is large, it is sensible to introduce conditions that simplify
(2). A first simplification is to assume the auto-covariances of the stochastic processes
that generate the observed data have the same ordered eigenfunctions for both popula-
tions. Denote the mean functions as µk(t) = E{X(k)(t)}, and the covariance functions as
Gk(s, t) = cov{X(k)(s),X(k)(t)} with associated covariance operators 120

Gk : L2(T ) → L2(T ), Gk(f) =

∫

T

Gk(s, t)f(s) ds.
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Assuming Gk(s, t) is continuous, by Mercer’s theorem (see e.g. Bosq, 2000)

Gk(s, t) =

∞
∑

j=1

λjkφjk(s)φjk(t),

where λ1k ≥ λ2k ≥ · · · ≥ 0 are the eigenvalues of Gk, φjk are the corresponding orthonor-
mal eigenfunctions (j = 1, 2, . . . ), and

∑∞
j=1 λjk <∞ (k = 0, 1). The common eigenfunc-

tion condition is then φj0 = φj1 = φj , where φj is the jth common eigenfunction (Flury,125

1984; Benko et al., 2009; Boente et al., 2010; Coffey et al., 2011). This assumption can
be weakened to the requirement of equality of the set of eigenfunctions, which ignores
their order, in which case one can reorder the eigenfunctions and eigenvalues such that
φj0 = φj1 = φj. Choosing the projection directions {ψj}∞j=1 as the shared eigenfunctions
{φj}∞j=1, one has cov(ξj , ξl) = 0 if j 6= l, where the scores ξj correspond to the functional130

principal components
∫

T
{X(t) − µk(t)}φj(t) dt only if µk ≡ 0.

A second simplification is that we assume that the projection scores are independent
under both populations, whence the densities in (2) factor and the criterion function can
be rewritten by taking logarithms as

QJ(x) = log

(

π1
π0

)

+
J
∑

j=1

log

{

fj1(xj)

fj0(xj)

}

, (3)

where fjk is the density of the jth score under Πk. We classify into Π1 if and only if135

QJ(x) > 0. Due to the zero divided by zero problem, (3) is defined only on a set X
with pr(X ∈ X ) = 1, and our theoretical arguments in the following are restricted to
this set. For the asymptotic analysis we will consider the case where J = J(n) → ∞ as
n→ ∞. The independent projections assumption is commonly made in functional data
analysis, and is satisfied by a large class of processes, including Gaussian processes. For140

processes with dependent projection scores, the performance of our method will depend
on how well the process can be approximated through independent projection scores.
Our proposed classifiers demonstrated good performance relative to other classifiers even
under violations of the independence assumption; see Section 5·2.

When predictor processes X are Gaussian for group k = 0, 1, the projection scores ξj145

are independent and one may substitute Gaussian densities for the densities fjk in (3).
Writing the jth projection of the mean function µk(t) of Πk as µjk = E(ξj | Y = k) =
∫

T
µk(t)φj(t) dt, in this special case of our general nonparametric approach, one obtains

the simplified version

QG
J (x) = log

(

π1
π0

)

+
1

2

J
∑

j=1

[

(log λj0 − log λj1)−
{

1

λ j1
(xj − µj1)

2 − 1

λ j0
(xj − µj0)

2

}]

.

(4)

150

Here QG
J (X) either converges to a random variable almost surely if

∑

j≥1(µj1 −
µj0)

2/λj0 <∞ and
∑

j≥1(λj0/λj1 − 1)2 <∞, or otherwise diverges to ∞ or −∞ al-

most surely, as J → ∞. More details about the properties of QG
J (X) can be found in the

Supplementary Material. It is apparent that (4) is the quadratic discriminant rule using
the first J projection scores, which is the Bayes classifier for multivariate Gaussian data155

with different covariance structures. If further λj0 = λj1 (j = 1, 2, . . .) then one has equal
covariances and (4) reduces to the functional linear discriminant (Delaigle & Hall, 2012).
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As the proposed method does not assume Gaussianity and allows for densities fjk of
general form in (3), one may expect better performance than Gaussian-based functional
classifiers when the distributions are non-Gaussian. This is borne out by the simulation 160

results in Section 5·2. The densities of the projection scores can be estimated nonpara-
metrically by kernel density estimation (Silverman, 1986) as described in Section 3.

3. Estimation

Under the common eigenfunction assumption, we may write Gk(s, t) =
cov{X(k)(s),X(k)(t)} =

∑∞
j=1 λjkφj(s)φj(t) where the φj are the common eigen- 165

functions. We then estimate the φj , which serve as the projection directions, by
pooling data from the two groups in the training data to obtain a joint covariance
estimate for the joint covariance operator G = π0G0 + π1G1. Then φj is also the jth
eigenfunction of G with eigenvalue λj = π0λj0 + π1λj1. Assume we have n = n0 + n1

functional predictors X
(0)
1 , . . . ,X

(0)
n0

and X
(1)
1 , . . . ,X

(1)
n1

sampled from Π0 and Π1. 170

We estimate the mean and covariance functions by µ̂k(t) and Ĝk(s, t), the sample
mean and sample covariance function for group k, and estimate πk by π̂k = nk/n.

Setting Ĝ(s, t) = π̂0Ĝ0(s, t) + π̂1Ĝ1(s, t) and denoting the jth eigenvalue-eigenfunction

pair of Ĝ by (λ̂j, φ̂j), we obtain the projections for a generic functional observation

X as ξ̂j =
∫

T
X(t)φ̂j(t) dt (j = 1, . . . , J), denoting the projection scores of X

(k)
i by 175

ξ̂ijk, where we assume fully observed noise-free predictor trajectories. The eigenval-

ues λjk are estimated by λ̂jk =
∫

T

∫

T
Ĝk(s, t)φ̂j(s)φ̂j(t) ds dt, which is motivated by

λjk =
∫

T

∫

T
Gk(s, t)φj(s)φj(t) ds dt, the pooled eigenvalues by λ̂j = π̂0λ̂j0 + π̂1λ̂j1, and

the jth projection scores µjk of µk(t) by µ̂jk =
∫

T
µ̂k(t)φ̂j(t) dt. The resulting estimators

for µk, Gk, φj , and λjk are consistent; see the Appendix. 180

We then proceed to obtain nonparametric estimates of the densities for each of the
projection scores by applying kernel density estimates (Silverman, 1986) to the sample
projection scores from group k. The kernel density estimate for the jth projection in
group k is

f̂jk(u) =
1

nkhjk

nk
∑

i=1

K
(u− ξ̂ijk

hjk

)

, (5)

where u ∈ R and hjk = hλ̂
1/2
jk are bandwidths adapted to the variance of the j-th projec- 185

tion score, see Sections 4 and 5·1, leading to corresponding estimates of the density ratios
f̂j1(u)/f̂j0(u) that are used to obtain an estimated version of (3). An alternative esti-
mate for the density ratios based on nonparametric kernel regression (Nadaraya, 1964;

Watson, 1964) is discussed in the Supplementary Material. Writing x̂j =
∫

T
x(t)φ̂j(t) dt,

the estimated criterion function based on kernel density estimate is thus 190

Q̂J(x) = log
π̂1
π̂0

+
∑

j≤J

log
f̂j1(x̂j)

f̂j0(x̂j)
. (6)

In practice, the assumption that functional data are fully observed trajectories is often
unrealistic. Rather, one encounters observations of the functions that have been taken
on a regular or irregular design, possibly with some missing observations, where the
measurements are contaminated with measurement errors that one may assume are in-



6 X. Dai, H. Müller, and F. Yao

dependent with zero mean and finite variance. In this situation, one can smooth the195

discrete observations using local linear kernel smoothers, and then regard the smoothed
trajectory as a fully observed functional predictor. We provide theoretical justification for
this approach by showing that one may obtain the same asymptotic classification results
as for fully observed functional data, with details given before Theorem 1. Specifically,
for each curve we pre-smooth the noisy measurements200

Wikl = X
(k)
i (tikl) + εikl (i = 1, . . . , nk; k = 0, 1; l = 1, . . . ,mik),

by local linear smoothers, where mik is the number of measurements per curve. For each

t ∈ T we set X̃
(k)
i (t) = β̂0, where

(β̂0, β̂1) = argmin
β0,β1

mik
∑

l=1

K0

(

t− tikl
wik

)

{Wikl − β0 − β1(t− tikl)}2,

K0 is a kernel function, and wik is the bandwidth used for pre-smoothing.
Denoting the sample covariance function of the smoothed predictors in group k

by G̃k, the estimated pooled covariance by G̃(s, t) = π̂0G̃0(s, t) + π̂1G̃1(s, t), the esti-205

mated jth eigenfunction of G̃ by φ̃j(t), and the estimated projection scores by ξ̃ijk =
∫

T
X̃

(k)
i (t)φ̃j(t) dt and x̃j =

∫

T
x(t)φ̃j(t) dt for a random function X̃

(k)
i or fixed function

x, the densities of the projection scores are obtained by kernel density estimates

f̃jk(u) =
1

nkhjk

nk
∑

i=1

K

(

u− ξ̃ijk
hjk

)

(7)

analogous to (5). Finally, Q̃J is the criterion function using J components analogous to

Q̂J in (6), but with kernel density estimates f̃jk as in (7).210

4. Asymptotic Properties

We present the asymptotic equivalence of the estimated and the true Bayes classifiers
in Theorem 1 and give conditions for the proposed nonparametric Bayes classifiers to
achieve perfect classification in Theorem 2, with proofs in the Supplementary Material.
We assume here the following simplifications, which can easily be weakened. Without215

loss of generality we denote the mean functions of Π0 and Π1 by 0 and µ(t), respectively,
since we can subtract the mean function of Π0 from all samples, whereupon µ(t) becomes
the difference in the mean functions. We also assume that π0 = π1 and n0 = n1 and use

a common multiplier h for all bandwidths hjk = hλ
1/2
jk in the kernel density estimates.

Write I(·) for the indicator function that has value 1 if the condition inside the brackets220

holds and 0 otherwise. In order for I{QJ (x) ≥ 0} to be the Bayes classifier based on the
first J projection scores, we need the following assumptions:

Condition 1. the covariance operators Gk(s, t) under Π0 and Π1 have common eigen-
functions;

Condition 2. for all j ≥ 1, the projection scores ξj onto the common eigenfunctions φj225

are independent under Π0 and Π1, and their densities exist.

Condition 1 means that the covariance functions Gk(s, t) under Π0 and Π1 can be
decomposed as Gk(s, t) = cov{X(k)(s),X(k)(t)} =

∑

j λjkφj(s)φj(t), where the φj are
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the common eigenfunctions and λjk are the associated eigenvalues. For our analysis, the
common eigenfunctions serve as projection directions and are assumed to be such that the 230

projection scores become independent, as is for example the case if predictor processes
satisfy the more restrictive Gaussian assumption; see Section 6 for further discussion.
Additional assumptions are provided in the Appendix.

Theorem 1. Under Conditions 1–2 and A1–A9, for any ǫ > 0 there exist a set S
with pr(S) > 1− ǫ and a sequence J = J(n, ǫ) → ∞ such that pr(S ∩ [I{Q̃J (X) ≥ 0} 6= 235

I{QJ (X) ≥ 0}]) → 0 as n→ ∞.

Theorem 1 provides the asymptotic equivalence of the estimated classifier based on
the kernel density estimates (7) of pre-smoothed observations and the Bayes classifier
I{QJ (x) ≥ 0} based on the first J projections. This implies that it is sufficient to inves-
tigate the asymptotics of the Bayes classifier based on QJ to establish asymptotic perfect 240

classification.
The next result shows that the proposed nonparametric Bayes classifiers achieve perfect

classification under certain conditions. Let mj = µj/λ
1/2
j0 and rj = λj0/λj1.

Theorem 2. Under Conditions 1–2 and A10–A11, the Bayes classifier I{QJ(x) ≥ 0}
achieves perfect classification if

∑

j≥1(rj − 1)2 = ∞ or
∑

j≥1m
2
j = ∞, as J → ∞. 245

This theorem extends previous results on perfect classification, as in Delaigle & Hall
(2012) and Delaigle & Hall (2013), to classifiers of a more general nonparametric form.
The conditions for perfect classification in Theorem 2 are sufficient but not necessary.
The general case that we study here has the interesting feature that when Π1 and Π0 are
non-Gaussian, perfect classification may occur even if the mean and covariance functions 250

under the two groups are the same. This may happen for instance when the distribu-
tions of the infinitely many independent projection scores have different shapes, which
provides information for discrimination. For example, the projection scores ξj may be
independent random variables with the same mean and variance for both populations,
but may follow normal distributions under Π1 and Laplace distributions under Π0; see 255

the Supplementary Material. In such cases, attempts at classification under Gaussian
assumptions are doomed, as mean and covariance functions are the same between the
groups, while the proposed nonparametric Bayes classifiers can reflect these differences.

5. Numerical Properties

5·1. Practical Considerations 260

We propose three practical implementations for estimating the projection score den-
sities fjk(·) that will be compared in our data illustrations, along with other previously
proposed functional classification methods. All of these involve the choice of tuning pa-
rameters, namely bandwidths and the number of components included. We describe
below how these are specified. Our first implementation is the nonparametric density 265

classifier as in (6), where one estimates the density of each projection by applying kernel
density estimators to the observed sample scores as in (5). The second implementation
is the nonparametric regression approach detailed in the Supplementary Material, where
we apply kernel smoothing (Nadaraya, 1964; Watson, 1964) to the scatter plots of the
pooled estimated scores and group labels. For the kernel estimates we use a Gaussian ker- 270
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nel where the bandwidth multiplier h is chosen by ten-fold cross-validation, minimizing
the misclassification rate.

The third implementation is referred to as the Gaussian method. Each of the projec-
tions is assumed to be normally distributed with mean and variance estimated by the
sample mean µ̂jk =

∑nk

i=1 ξ̂ijk/nk and sample variance λ̂jk =
∑nk

i=1(ξ̂ijk − µ̂jk)
2/(nk − 1)275

of ξ̂ijk (i = 1, . . . , n). We then use the density of N(µ̂jk, λ̂jk) as f̂jk(·). This Gaussian
implementation differs from the quadratic discriminant implementation discussed for
example in Delaigle & Hall (2013), as in our approach we always force the projection
directions for the two populations to be the same. This has the practical advantage of pro-
viding more stable estimates for the eigenfunctions and is a prerequisite for constructing280

nonparametric Bayes classifiers for functional predictors. For all classifiers included in our
comparisons, the number of projections J used is selected by ten-fold cross-validation,
jointly with the selection of h for the nonparametric methods.

5·2. Simulation Results

We illustrate the proposed Bayes classifiers in three simulation settings for varying285

distributions and dependency assumptions for the projection scores. For the first two

scenarios, the samples are generated by X
(k)
i (t) = µk(t) +

∑50
j=1Aijkφj(t) (i = 1, . . . , nk;

k = 0, 1), where nk is the number of samples in Πk. The Aijk are independent random
variables with mean 0 and variance λjk, which are generated under two distribution
scenarios: Scenario A, the Aijk are normally distributed; Scenario B, the Aijk are centred290

exponentially distributed. For Scenario C, we generate samples with uncorrelated but

dependent scores byX
(k)
i (t) = µk(t) +

∑50
j=1(Aijk/Bik)φj(t), where the Aijk are the same

as in Scenario B, and the Bik are independent and follow the same distribution as χ2
30/30,

or Gamma(30, 30).
In each setting, we generate n training samples, each having 1/2 chance to be from295

Π0 or Π1, and let φj be the jth function in the Fourier basis, where φ1(t) = 1, φ2(t) =√
2 cos(2πt), φ3(t) =

√
2 sin(2πt), etc., t ∈ [0, 1]. We set µ0(t) = 0, and µ1(t) = 0 or t for

the same or the different mean scenarios, respectively. The variances of Aijk under Π0

are λj0 = e−j/3, and those under Π1 are λj1 = e−j/3 or e−j/2 (j = 1, . . . , 50) for the same
or the different variance scenarios, respectively. The random functions are sampled at300

51 equally spaced time points from 0 to 1, with additional small measurement errors in
the form of independent Gaussian noise with mean 0 and variance 0.01 added to each
observation for all scenarios. We use modest sample sizes of n = 50 and n = 100 for
training the classifiers, and 500 samples for evaluating the predictive performance.

Each simulation experiment is repeated 500 times with the goal to compare the predic-305

tive performance of the following functional classification methods: the centroid method
(Delaigle & Hall, 2012); the proposed nonparametric Bayes classifier in three versions:
basing estimation on Gaussian densities, nonparametric densities, or nonparametric re-
gression, as discussed in Section 5·1; logistic regression; the functional quadratic discrimi-
nant as in Galeano et al. (2015); and the Gaussian process logistic regression (Rasmussen310

&Williams, 2006) with squared exponential function and automatic relevance determina-
tion. The functional quadratic discriminant was never the winner for any scenario in our
simulation study so we omitted it from the tables. We show the results corresponding to
pre-smoothing the predictors by local linear smoothers with cross-validation bandwidth
choice in Table 1. Since all classifiers improve performance when pre-smoothing the pre-315
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dictor functions, the results obtained without pre-smoothing are only presented in the
Supplementary Material.

Table 1. Misclassification rates (%), with standard errors in brackets for pre-smoothed
predictors for the simulation scenarios

n µ λ Centroid Gaussian NPD NPR Logistic GP Logistic
Scenario A (Gaussian case)

50 same diff 48.9 (0.14) 22.7 (0.17) 23.1 (0.20) 25.7 (0.21) 48.9 (0.13) 30.3 (0.30)
diff same 36.5 (0.24) 38.3 (0.22) 40.7 (0.22) 39.3 (0.23) 32.2 (0.26) 42.5 (0.26)
diff diff 33.4 (0.25) 18.0 (0.16) 18.4 (0.18) 20.3 (0.20) 28.1 (0.26) 24.9 (0.27)

100 same diff 48.9 (0.14) 17.1 (0.11) 18.1 (0.12) 19.4 (0.13) 49.1 (0.14) 20.3 (0.15)
diff same 29.8 (0.23) 31.6 (0.23) 33.6 (0.25) 31.9 (0.25) 25.4 (0.15) 34.7 (0.35)
diff diff 27.0 (0.24) 13.0 (0.11) 14.0 (0.12) 14.8 (0.13) 21.1 (0.14) 15.3 (0.15)

Scenario B (exponential case)
50 same diff 48.5 (0.15) 28.3 (0.18) 29.1 (0.21) 31.4 (0.24) 48.6 (0.14) 33.0 (0.29)

diff same 35.0 (0.24) 38.4 (0.22) 38.0 (0.22) 36.5 (0.23) 30.9 (0.23) 36.6 (0.25)
diff diff 30.3 (0.24) 20.2 (0.18) 20.9 (0.22) 21.4 (0.22) 27.0 (0.23) 23.3 (0.25)

100 same diff 48.5 (0.15) 25.1 (0.13) 24.0 (0.14) 25.0 (0.14) 48.4 (0.15) 24.3 (0.18)
diff same 29.2 (0.23) 33.3 (0.23) 32.3 (0.20) 31.1 (0.21) 25.4 (0.17) 30.0 (0.25)
diff diff 26.1 (0.22) 16.5 (0.14) 14.6 (0.13) 14.7 (0.13) 21.6 (0.16) 14.6 (0.16)

Scenario C (dependent case)
50 same diff 48.5 (0.15) 32.2 (0.20) 34.1 (0.23) 36.0 (0.24) 48.4 (0.15) 38.1 (0.28)

diff same 36.1 (0.25) 39.8 (0.24) 40.1 (0.22) 38.6 (0.23) 31.4 (0.24) 38.3 (0.24)
diff diff 31.6 (0.24) 24.6 (0.20) 25.6 (0.22) 26.3 (0.22) 27.5 (0.23) 26.7 (0.25)

100 same diff 48.6 (0.15) 29.5 (0.13) 29.7 (0.14) 30.8 (0.14) 48.7 (0.15) 31.2 (0.20)
diff same 31.0 (0.22) 35.1 (0.23) 34.6 (0.19) 32.8 (0.21) 25.8 (0.18) 31.6 (0.26)
diff diff 27.6 (0.23) 21.8 (0.16) 20.3 (0.14) 20.4 (0.16) 21.9 (0.16) 17.8 (0.24)

Centroid, the method of Delaigle & Hall (2012); Gaussian, NPD, and NPR correspond to the Gaus-
sian, nonparametric density, and nonparametric regression implementations of the proposed Bayes
classifiers, respectively; Logistic, functional logistic regression; GP logistic, Gaussian process logistic
regression.

For Scenario A, the proposed nonparametric Bayes classifiers have superior perfor-
mance for those scenarios where covariance differences in the populations are present,
while the logistic methods work best for those cases where the differences are exclusively 320

in the mean. This is because the proposed nonparametric Bayes classifiers take into ac-
count both mean and covariance differences between the populations. For Scenario B,
the proposed Bayes classifiers continue to outperform all other methods when covariance
differences occur, especially when the sample size is small. When there are differences be-
tween the covariances, the Gaussian implementation performs the best when the sample 325

size is small, while the nonparametric density implementation and the Gaussian process
logistic regression perform the best when the sample size is large. This is likely due to the
nonparametric classifiers having larger variance than the parametric classifiers so that
they require more training data to perform well.

Scenario C is more challenging compared to the other scenarios due to the dependency 330

in the projection scores, which violates Condition 2. Nevertheless the proposed classifiers
outperform the other classifiers in the presence of covariance differences, especially if the
sample size is small. Gaussian process logistic regression performs best when differences
exist in both the mean functions and the covariance functions and the sample size is
large, due to its capacity to tackle dependent predictors. 335
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5·3. Data Illustrations

We present four data examples to illustrate the performance of the proposed Bayes
classifiers for functional data. We pre-smoothed the yeast data by a local linear smoother
with cross-validation bandwidth choice since the original observations are quite noisy
as seen in Fig. 1, while for the wine and the attention deficit hyperactivity disorder340

datasets we used the curves as provided in the data, which were already preprocessed
and smooth. Following the procedure described in Benko et al. (2009), we tested whether
the eigenspaces generated by the first J = 20 eigenfunctions are common, as almost
always the number of included components selected by cross-validation is less than 20;
see Section 6 for further discussion. All p-values obtained from 2000 bootstrap samples345

are larger than 0.1, so the common eigenspace assumption appears to be reasonable.
We used repeated ten-fold cross-validation misclassification error rates to evaluate the

performance of the classifiers. In order to obtain the correct cross-validation misclassifica-
tion error rate, the selection of the number of components and bandwidth was carried out
using only the training data in each cross-validation partition. We repeated the process350

500 times and report the mean misclassification rates and the standard errors in Table 2.
The proposed Bayes classifiers had the best performance for three of the four data sets,
while functional quadratic discriminant also performed very well overall, indicating that
covariance operator differences contain crucial information for the classification task.

Table 2. 500-repeat ten-fold cross-validation misclassification rates (%) with standard
errors in brackets for real data

Data Centroid Gaussian NPD NPR Logistic Quadratic

ADHD 41.7 (0.2) 34.1 (0.13) 36.7 (0.2) 36.8 (0.21) 47.4 (0.21) 34.6 (0.19)
Wheat 0.03 (0.01) 0.126 (0.016) 0.006 (0.003) 0.088 (0.014) 0 (0) 0.098 (0.014)
Yeast 20 (0.084) 12.5 (0.085) 15.1 (0.11) 14.4 (0.11) 20.8 (0.12) 14.5 (0.089)
Wine 6.84 (0.064) 5.08 (0.067) 5.09 (0.063) 4.67 (0.057) 7.56 (0.083) 5.93 (0.075)

ADHD, attention deficit hyperactivity disorder.

Our first data example concerns classifying attention deficit hyperactivity disorder355

patients from brain imaging data. The data were obtained in the Attention Deficit Hy-
peractivity Disorder-200 Sample. Attention deficit hyperactivity disorder is the most
commonly diagnosed behavioural disorder in childhood and it is of interest to what ex-
tent it can be diagnosed from brain signals alone, where we use filtered preprocessed
resting state functional magnetic resonance imaging data as predictors. The data were360

collected and preprocessed by the New York University Child Study Center (Tzourio-
Mazoyer et al., 2002), with signals from 116 brain regions of interest. We consider only
subjects for which the attention deficit hyperactivity disorder index is below the first
quartile, which constitute group Π0 with n0 = 36, or above the third quartile, defining
group Π1 with n1 = 34, aiming to predict group membership. The functional predictors365

are taken to be the average of the mean blood-oxygen-level dependent signals of the
91st to 108th regions, corresponding to the cerebellum that is known to have significant
impact on the attention deficit hyperactivity disorder index (Berquin et al., 1998). These
average signals are shown in the right panel of Fig. 1 for 172 time points.

The second data example concerns the classification of spectrometric data of wheat370

samples. This classification problem was originally described in Kalivas (1997). The goal
is to use the near infrared spectra measured from 1100 to 2500 nm in 2 nm intervals to
predict groups defined by moisture content, Π0 with n0 = 41 if the moisture content is
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Fig. 1. Gene expression trajectories for the yeast
data, left panel; the attention deficit hyperactivity
disorder data, right panel, where for both panels Π0,

dashed line; Π1 solid line.

less than 15, and Π1 with n1 = 59 otherwise. Following Delaigle & Hall (2012), we use
B-splines to smooth the curves, and then consider the first derivatives of the functional 375

observations. It turns out that for this example, functional logistic regression is the best
classifier, while the nonparametric density estimation version of the Bayes classifier has
the best performance among the other methods.

Our third data example focuses on yeast gene expression time courses during the cell
cycle as predictors (Spellman et al., 1998). The predictors are gene expression level time 380

courses for n = 89 genes, observed at 18 equally spaced time points from 0 minute to
119 minutes. The expression trajectories for genes related to G1 phase regulation of the
cell cycle were regarded as group Π1 with n1 = 44 and all non-G1 related trajectories
as group Π0 with n0 = 45. The Gaussian implementation of the proposed Bayes classi-
fiers outperformed the other methods by a margin of at least 2%, while the functional 385

quadratic discriminant was also competitive for this classification problem.
In our fourth example we analyse wine spectra data. These data were made available

by Professor Marc Meurens, Université Catholique de Louvain and contain a training
set of 93 samples and a testing set of 30 samples, which we combined into a dataset of
size n = 123. For each sample the mean infrared spectrum on 256 points and the alcohol 390

content are observed. Samples with alcohol contents greater than 12 were regarded as
Π1 with n1 = 78, and the remaining samples as Π0 with n0 = 45.

The kernel density estimates of the first four projection scores for the wine example are
displayed in Fig. 2, with Π0 in dashed lines and Π1 in solid lines. Clearly the densities are
not normal, and some of them appear to be bimodal. The differences between each pair of 395

densities are not limited to location and scale, but also manifest themselves in the shapes
of the densities; in the second and the fourth plots the density estimate from one group is
close to bimodal and the other density is not. The nonparametric implementations of the
proposed Bayes estimators based on nonparametric regression or nonparametric density
estimation are capable of reflecting such shape differences and therefore outperform the 400

classifiers based on Gaussian assumptions.
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Fig. 2. Kernel density estimates for the first four pro-
jection scores for the wine spectra. Π0, dashed line;

Π1 solid line.

In all examples, the quadratic discriminant outperforms the centroid method, suggest-
ing that in these examples there is information contained in the differences between the
covariance operators of the two groups to be classified. In the presence of such more sub-
tle differences and additional shape differences in the distributions of projection scores405

the proposed nonparametric Bayes methods are expected to work particularly well.

6. Discussion

As the two groups to be classified often share common characteristics, the working
assumption that the covariance functions of the predictor functions share some common
structure is not unreasonable. We assume that the commonality between the covariances410

lie in the principal modes of variation, and the projection scores reflect latent factors that
differ between groups. The common eigenfunction assumption is more general than the
common or proportional covariance assumption and leads to sensible directions of projec-
tion for constructing the proposed Bayes classifiers, permitting meaningful between-group
comparisons of variation (Benko et al., 2009; Coffey et al., 2011).415

To justify the common eigenfunction assumption in practice, we tested whether the
sets of eigenfunctions are common to two groups in real data applications. Since our
method allows the eigenfunctions to have different orders, we implemented the test by
following Benko et al. (2009), i.e., testing whether the eigenspaces generated by the first
J = 20 components are the same; the null hypothesis was not rejected for any of the420

dataset. The common eigenspace assumption is weaker than the common eigenfunction
assumption because the former allows one set of eigenfunctions to be a rotation of the
other.

Processes with independent projections are generated by a fixed set of orthonormal
directions of variation and a set of independent random variables representing the inde-425

pendent variation in each of the directions. The independent projection assumption seems
restrictive but is satisfied by a reasonably large class of processes which includes Gaussian
processes. This class of process is closed with respect to componentwise transformation.
Processes generated by a non-linear transformation of a finite set of independent random
variables are excluded from this class, however, because the functional principal com-430

ponents in the infinite dimensional space are then bound to lie on a certain manifold



Functional Bayes Classifiers 13

with dependent projections. Independent component analysis (Hyvärinen & Oja, 2000)
also assumes independence among components. For processes with dependent projection
scores, Bayes classifiers can be constructed through estimating (2), but the joint densities
may be practically estimated only for a small number of projections, due to the curse 435

of dimensionality. Even in cases with dependent projection scores one may be able to
approximate the multivariate joint density through product densities, as corroborated
by our simulation results.

The proposed Bayes classifiers can be naturally extended to K-class classification by
projecting observations onto a set of eigenfunctions common to all groups, estimating pro- 440

jection densities fjk (j = 1, . . . , J ; k = 1, . . . ,K) from the projections ξjk for group k, and
then classifying into the group with highest posterior probability pr(Y = k | ξ1, . . . , ξJ ).
This is equivalent to classifying into group k∗ if the product density quotient of group
k∗ over k is greater than 1 for all k 6= k∗.
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Appendix

Assumptions and Additional Results

For simplicity of presentation we adopt throughout all proofs the simplifying assumptions
mentioned in the first paragraph of Section 4. We remark that µ̂k, Ĝk, φ̂j , and λ̂jk constructed 455

from the sample mean, covariance, eigenfunctions and eigenvalues of the completely observed
functions are consistent estimates for their corresponding targets, as per Hall & Hosseini-Nasab
(2006). Theorem A1 below states that Q̂J(x) as in (6) is asymptotically equivalent to QJ(x)
as in (3), for all J . We define the kernel density estimator using the true projection scores

ξijk =
∫

T
X

(k)
i (t)φj(t) dt as 460

f̄jk(u) =
1

nkhjk

nk
∑

i=1

K

(

u− ξijk
hjk

)

.

Let gjk be the density functions of the standardized functional principal components ξj/λ
1/2
j0

when k = 0 and that of (ξj − µj)/λ
1/2
j1 when k = 1, ĝjk be the kernel density estimates of gjk

using the estimated functional principal components, and ḡjk be the kernel density estimates

using the true functional principal components, analogous to f̂jk and f̄jk. Delaigle & Hall (2010)
provide the uniform convergence rate of ĝjk to ḡjk on a compact domain, with detailed proof 465

available in Delaigle & Hall (2011); our derivations utilize this result.
We make the following assumptions for k = 0, 1; here Conditions A1–A4 parallel assumptions

(3.6)–(3.9) in Delaigle & Hall (2010), namely:

Condition A1. for all large C > 0 and some δ > 0, supt∈T EΠk
{|X(t)|C} <∞ and

sups,t∈T :s6=tEΠk
[{|s− t|−δ|X(s)−X(t)|}C ] <∞; 470
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Condition A2. for each integer r ≥ 1, λ−r
jk EΠk

[
∫

T
{X(t)− EΠk

X(t)}φj(t) dt]2r is bounded uni-
formly in j;

Condition A3. the eigenvalues {λj}∞j=1 are all different, and so are the eigenvalues in each of
the sequences {λjk}∞j=1, for k = 0, 1;

Condition A4. the densities gjk are bounded and have a bounded derivative; the kernel K475

is a symmetric, compactly supported density function with two bounded derivatives; for some
δ > 0, h = h(n) = O(n−δ) and n1−δh3 is bounded away from zero as n→ ∞;

Condition A5. the densities gjk are bounded away from zero on any compact interval within
their respective support, i.e. for all compact intervals I ⊂ supp(gjk), infxj∈I gjk(xj) > 0 for k =
0, 1 and j ≥ 1.480

Condition A1 requires Hölder continuity for processes X , and is a slightly modified version of
a condition in Hall & Hosseini-Nasab (2006) and Hall & Hosseini-Nasab (2009). Condition A2 is
satisfied if the standardized functional principal components have moments of all orders that are
uniformly bounded. In particular, Gaussian processes satisfy Condition A2 since the standardized
functional principal components identically follow the standard normal distribution. Condition A3485

is standard (Bosq, 2000); here the λj are the eigenvalues of the pooled covariance operator.
Conditions A4 and A5 are needed for constructing consistent estimators for the density quotients.
For the case of completely observed predictors, the following results state the equivalence of
the estimated classifiers I{Q̂J(X) ≥ 0} and I{Q̂R

J (X) ≥ 0} based on the completely observed
predictor functions, see the Supplementary Material, and the Bayes classifier using J components490

I{QJ(X) ≥ 0}.
Theorem A1. Under Conditions 1–2 and A1–A5, for any ǫ > 0 there exist a set S with

pr(S) > 1− ǫ and a sequence J = J(n, ǫ) → ∞ such that pr(S ∩ [I{Q̂J(X) ≥ 0} 6= I{QJ(X) ≥
0}]) → 0 as n→ ∞.

Theorem A2. Under Conditions 1–2 and A1–A5, for any ǫ > 0 there exist a set S with495

pr(S) > 1− ǫ and a sequence J = J(n, ǫ) → ∞ such that pr(S ∩ [I{Q̂R
J (X) ≥ 0} 6= I{QJ(X) ≥

0}]) → 0 as n→ ∞.

To obtain theoretical results under pre-smoothing, we require Conditions A6–A9, which parallel
assumptions (B2)–(B4) in the Supplementary Material of Kong et al. (2016):

Condition A6. for k = 0, 1, X(k) is twice continuously differentiable on T with probability 1,500

and
∫

T
E{d2X(k)(t)/dt2} dt <∞;

Condition A7. for i = 1, . . . , n and k = 0, 1, {tikl : l = 1, . . . ,mik} are considered determin-
istic and ordered increasingly. There exist design densities uik(t) which are uniformly smooth
over i satisfying

∫

T
uik(t) dt = 1 and 0 < c1 < infi{inft∈T uik(t)} < supi{supt∈T uik(t)} < c2 <

∞ that generate tikl according to tikl = U−1
ik {l/(mik + 1)}, where U−1

ik is the inverse of Gik(t) =505

∫ t

−∞
uik(s) ds;

Condition A8. for each k = 0, 1, there exist a common sequence of bandwidth w such that

0 < c1 < infi wik/w < supi wik/w < c2 <∞, where wik is the bandwidth for smoothing X̃
(k)
i . The

kernel function K0 for local linear smoothing is twice continuously differentiable and compactly
supported;510

Condition A9. let δik = sup{tik,l+1 − tikl : l = 0, . . . ,mik} and m = m(n) =
infi=1,...,n; k=0,1mik. Then supi,k δik = O(m−1), w is of order m−1/5, and mh5 → ∞, where h is
the common bandwidth multiplier in the kernel density estimator.

To obtain asymptotic perfect classification properties, we impose the following conditions on
the standardized functional principal components:515
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Condition A10. the densities gj0(·) and gj1(·) are uniformly bounded for all j ≥ 1;

Condition A11. the first four moments of ξj/λ
1/2
j0 under Π0 and those of (ξj − µj)/λ

1/2
j1 under

Π1 are uniformly bounded for all j ≥ 1.
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