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Functional Data Model for Genetically Related Individuals with Application
to Cow Growth

Edwin Lei, Fang Yo, Nancy Hickman, Karin MEYER

August 5, 2014

We propose a new version of functional data model for analyzing familial related individuals,
where the within-subject correlation depends smoothly on a covariate such as age and the between-
subject correlation follows family-wise genetic association. Our motivating example concerns
measurements of weight as a function of age in sibling cows from independent families. Observa-
tions are sparsely sampled from trajectories of a phenotype contaminated with measurement error,
where the phenotypic trajectory consists of a genetic component and an environmental component.
By combining information across individuals, the genetic and environmental covariance are esti-
mated via smoothing techniques. We study the genetic and environméetaseaising principal
component analysis, taking into account the genetic correlation to enhance the subject-level signal
extraction. We show via the real data and simulations that incorporating the correlation structure
improves predictions of individual phenotypic trajectories.
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1. INTRODUCTION

Functional data analysis (FDA) has attracted substantial research interest and has provided pow-
erful tools to study data arising from a collection of curves rather than from scalars or vectors.
Ramsay and Silvermaf2005 offer a comprehensive introduction to FDA. A key issue in model-
ing functional data is the representation of the underlying progesgich is often of a complex
nature and requires regularization. A common approach is to utilize functional principal compo-
nent (FPC) analysis (FPCA), exploiting a data-driven eigenbasis to repnésertis has been
studied extensively birice and Silvermafi1991); James et a(2000; Yao et al.(2005; Hall and
Hosseini-Nasal§2006; Hall et al. (20069, and references therein. The eigenbasis is the unique
canonical basis leading to a generalized Fourier series, i.e., the Karhusga-expansion. The
advantage of this expansion is that it gives the most rapidly convergent representa{iomtbe
L2 sensefsh and Gardner 1975

However, the aforementioned works on FPC approaches mostly deal with independent subjects.
Very little work has appeared involving the analysis of correlated subjects or of clusters. Due
to the dificulty in appropriate modelling of complex dependence structures, existing work on
feasible models for correlated functional data has usually been motivated in the context of specific
applications. For instancé&eng and Paul2011) adopted a separable covariance structure for
weakly correlated functional data, e.g., for growth profiles froffedent locations in agricultural
land, while Zhou et al.(2010 considered spatially correlated FPC analysis by coupling linear
mixed dfects (LME) models with penalized splines. In this paper, we propose a functional data
model for family-wise related individuals. Our proposal models the genetic and environmental
processes both at subject level, and allows for genetic dependencies introduced by varied familial
associations. This is distinct from hierarchical or multilevel FPGAo(ris et al. 2003 Di et al.
2011, where the assumptions on the within-family covariance do not allow for a variety of familial

relationships.
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1.1 Motivating Application

Our motivating example concerns the growth (in kilograms) as a function of age (in days) of
half-sibling cows in fifteen independent families. A key issue in the analysis is the incorporation
of genetic information that helps researchers understand how selective breeding can change the
physical traits passed down to future generations. This understanding has economic consequences,
as accurate estimation of the genetic component of an individual’s trait can lead to better breeding
decisions. Even small improvements in breeding practices can greatly increase food production.
However, the estimation of the genetic component is complicated by the fact that it is unobservable
and must be inferred from the observed physical trait. The physical trait depends not only on
the genotype but also on the environmentéet, which includes factors such as habitat or food
availability. Fortunately, genetic theory makes inference possible when data include information
from related individuals.

This data set was first analyzed using a multivariate approddeyrer (1985 and later, with a
random regression approach for individual growttMayer and Hill(1997. The random regres-
sion approach uses a basis expansion with an individualSiceats modeled as randorffects.
Statistical analysis is implemented with an LME model, Besmidenko(2004) and references
therein for a general treatment of the random regression model using LME. However, in random
regression, the choice of pre-specified basis functions is not straightforward. Although splines
(in particular B-splines) have been a popular option, simulation studi€sigwold et al.(2008
indicated that B-splines do not necessarily perform well in many realistic settings. This might
be caused by the “one-size-fits-all” character of B-splines, which may result in needing a fairly
large number of B-spline functions. A natural approach to constructing a parsimonious model is
to exploit the FPCA technique to find a data-adaptive eigenbasis, which often requires only a few

leading eigenfunctions to adequately reconstruct trajectories.
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1.2 Overview of the Paper

The main contribution of this paper is to develop a new FPCA framework thettely takes

into account genetic information and can be used in a variety of biological applications. The key is
to generalize the canonical eigenbasis model to genetically related subjects within independently
sampled families. As the individual phenotype is irregularly and sparsely observed with noise,
a common occurrence in many settings, it is desirable to borrow strength from the whole sam-
ple. Yao et al.(2005 proposed a version of FPC analysis, called Principal components Analysis
through Conditional Expectation (PACE), that is particularly useful for such sparse functional data.
Compared to spline-based FPC methods that implicitly treat truncated models as theltarget (

et al. 2000, PACE emphasizes genuine nonparametric modeling of the covariance and finds data-
driven eigenfunctions to be used as basis functions. Thus PACE allows for theoretical investigation
of the underlying process itself. Given these advantages of the PACE approach, we couple the
PACE principle with the genetic information to develop a novel FPCA framework, called Familial
principal components Analysis through Conditional Expectation (FACE). Our approach naturally
decomposes the total covariance into genetic and environmental components, both of which are
estimated by smoothing techniques. Data-adaptive eigen-components associated with both covari-
ance structures are obtained and used in the proposed FACE estimation of the genetically related
individuals.

The remainder of this article is organized as follows. In Secfiowe introduce biological
modeling of the genetic component of a physical trait, and motivate the proposed FPC model for
related individuals. Sectioddescribes the methodology for estimation of the model components,
including the genetic and environmental covariances and their respective eigen-components. The
known familial genetic relationship is utilized and leads to the proposed FACE estimation for
subject-level signal extraction. We analyze the growth of beef cattle in Settishile Sections

contains simulation examples. Concluding remarks &ered in Sectior.
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2. GENETIC RELATIONSHIP AND PROPOSED FUNCTIONAL
MODEL

2.1 Background on the Quantitative Genetic Model

To describe the standard quantitative genetic model for physical trail, demnote the phenotype
of individual j, Y; the phenotype observed with errgy, g; the genetic component, argl the
environmental factor. Suppose for now that these quantities are either all qe&kators, or
functions. The simplest genetic model is an additive structuregyjtly, ande; uncorrelated with

expected values equal to 0,
Yj:Xj+gj:u+gj+ej+gj. (1)

Individuals raised in dferent environments have uncorrelatgd, while related individuals from
the same family have correlated underlying genotypesgfise with the amount of correlation
depending on the individuals’ relationship. For instance, supposgjlsa p-vector withp x p
covariance matri. The px p cross-covariance matrix definedigg;g; ], j # j’, is equal tay;;. G,
whereejj € [0,1] is referred to as the relationship ¢heient that depends on the relationship
between individualg and j” and is twice of the entries in a so-called kinship mattixnch and
Walsh 1998. If the individuals are full siblings, i.e., they have the same mother and father, then
aji = 1/2. If the individuals are half-siblings, that is, if they have only one parent in common,
thena;; = 1/4. If the individuals are unrelated then; = 0, and if they are clones or the same
individual thenejj; = 1. The intuition behind the value efj;. is thatej;; equals the expected
proportion of genes that individuajsand j” share via inheritance.

This model for genetic correlation and the use of these values;ofre well-supported by
both theoretical calculations and empirical studies. Their use is standard in animal breeding and in
laboratory experiments in evolutionary biology. The model was first introduced, with valugs of

calculated, irFisher(1918. Also seeLynch and Walsi{1998 Chapter 7) for a modern treatment
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and Heckman(2003 for a statistician-friendly derivation d[g;g;] = G/2 for a mother-child
relationship. Analysis ofl is straightforward when the traits are scalar or vector-valued, the re-
lationships are all the same and the design is balanced — for instance, for datd independent
families, withk full siblings in each family. In this case, variaricevariance parameters are easily
estimated in closed form by analysis of variance and method of moments. For more general de-
signs and combinations of relationships, numerical estimation is possible via (restricted) maximum
likelihood (Lynch and Walsh 1998Chapter 27), and is implemented in software such as ASReml|
(httpy/www.vsni.co.uksoftwargasreml) and WOMBAT Kleyer 2007.

2.2 Functional Data Model for Genetically Related Individuals

Data such as weights of cows can be viewed as arising from smooth functions, even if the weights
are sampled at irregular and, possibly, sparse discrete times across subjects. We consider the
situation where there and independent families witly, members in familyi. Let «;;j; denote

the known relationship cdicient for individualsj and j” of family i and assume that the within-

family relationship cofficients are non-zero. While our methodology holds for gengrgl’s, in

the data we analyze in Sectidnall family members are half-siblings, i.ex,j; = 1/4 for j # j’

anda; jj = 1 otherwise.

The functional version ofl() for the phenotype of th¢h individual in theith family is

Xij (1) = p(t) + gij (1) + & (1), )

whereu is the population mean curvg; is what is called the random genetitext, ands; models
any other randomfeects (mainly environmental) giving rise to within individual covariances that
are not due tay;. As is common (see, e.d.ynch and Walsh 1993 we will refer toe; as the
environmental fect andg;; simply as the genetictiect. In this modelg;; ande; are (i) mean
zero with the variance dfi;(t) ande;(t) finite for all t, (ii) uncorrelated, (iii) covg;;(s), gij(t)) =

G(s t), and (iv) coe;(s), &;(t)) = E(s t). These four properties imply that the total covariance is
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cov(Xij(s), Xij (1)) = V(s t) = G(s 1) + E(s, ). The within-family genetic correlation between two

individuals depends o8 and the individuals’ relationship ctigient:

covgij(9), 9ij- (1) = aijj G(s,1). (3

The processes;(-) ande, j (-) are independent when () # (i’, ). Assume that the measurements
are taken on a closed and bounded intetvale.,t € . Note that modelZ) is not the classical
functional model that assumes that data come from independent realizati$)of w(t) +vij(t).
In (2), we have decomposed the random deviatigft) asg;;(t) + &;(t), where the geneticfiect
gij(t) induces a within-family correlation.

A stochastic process with finite covariance admits a Karhunerw.expansion and its covari-
ance function admits a spectral basis expansia®ye 1973 Adler and Taylor 200). The key
proposal is to exploit such expansions for both genetic and environmental processes, whilst main-
taining the dependence structure of related individuals. For the genetic pgpcess have for

ster,

gij(t) = Zfijl¢l(t)a G(st) = Z 41(9)¢i (1), 4)
=) =)

where thep,’s are orthonormal eigenfunctiong;, &2, . . . are the FPC scores, which are uncorre-
lated random variables with zero mean and varianges A, > .. ., satisfying},>; 4 < co. Based

on the underlying genetic model in equatid), (we can deduce that the correlation betweggn
andé&jr is 4 @ jp fori = i” andl = I’, and zero otherwise. This genetic association is the key

to consistent parameter estimation, as it enables us to borrow information across related individu-
als. This model and basis expansion in the context of selection and genetics was first described in
Kirkpatrick and Heckmai(1989. Similar expansions hold for the environmental prosgswith

orthonormal eigenfunctiong,} and nonincreasing eigenvalugs,}, i.e., fors;t € t,

&) = D Gimn®),  E(S1) =D prdhm(Wm(D), (5)
m=1 m=1
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wheredijn are uncorrelated FPC scoreseyfwith zero mean and finite variangsg,. It is obvi-
ous that the correlation betweén, and ¢ is always zero given independent environmental
processes, unless {,m) = (i, j/, m).

Therefore the proposed FPC model Ky(t) based on these Karhunendwe expansions is

given by

Xij(t) = p(t) + Z Eid(t) + Z Gimym(t), tet (6)
=1 m=1

The deviation of each curv§; from the overall treng: is a sum of curveg, andy,, with random
amplitudesti; anddijm, respectively. Although the underlying modé) {s infinite-dimensional,
the typically rapid decay of eigenvalues often allows us to use a small number of leading eigen-
functions to recovek;;. In practice, the infinite sums i) can be truncated and tiags andy,'s
estimated, yielding a data-adaptive low-dimensional modeXfor The practical choice of the
level of truncations is discussed in Secti@nThis eigenfunction approachftérs from a random
regression model with spline basis functions, as the eigenfunction basis is completely data-driven,
while the spline function basis is pre-specified without knowledge of the data. A principal com-
ponents approach to model) (appears irDi et al. (2011), but with a more restricted covariance
structure, which in our context would require thay;, = « for all i and for allj # j’.

We let the data observed for individupfrom family i consist ofn;; repeated measurements of
Xij taken at discrete time poin{$;x € 7 : kK = 1...,n;}. Denoting thekth observation o¥;; at

Tij by Yij, the data model is

Yij = Xij (Tij) + €ijc

= u(Tij) + Z Eind(Tig) + Z Gim¥m(Tijk) + ijks (7)
| m

where theg;j's are independent and identically distributed errors with zero mean, finite variance

0%, and are independent of both the and thegm.
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3. MODEL ESTIMATION AND FPC REPRESENTATION

The quantities in model7§ are composed of two types: the population components, such as the
mean, covariances and eigenvajo@sctions; and the subject-level signals, i.e., the random ampli-
tudes or FPC scores for the underlying genetic and environmental processes. The main challenge
in estimating these quantities is due to the irregularly and sparsely observed functional data. More
specifically, there may be only a few observations available for some or even all of the individu-
als. In this case, borrowing strength across the entire collection of data is important for obtaining
consistent estimation of the population quantities. As mentioned in the introduttonret al.

(2005 provided a thorough treatment for such sparse functional data in the case of the classical
functional model with independent realizations, and proposed, namely, the PACE method. We

shall generalize the key idea of PACE and take advantage of the genetic relatid)shimodel
(7).

3.1 Estimation of Model Components

The mean and covariance functions are assumed to be smooth, so we can estimate them by non-
parametric regression methods, which borrow information from neighboring data values. We use
local linear smoothersHan and Gijbels 1996for function and surface estimation. The key to
estimating parameters from sparse functional data is to pool together information from all individ-
uals, requiring the “pooled” data to befBaiently dense. For these local smoothing steps, for a
given level of smoothing we adopt the strategy of ignoring the dependency among the data from
the same individuglamily. However we do not ignore correlation when choosing the amount

of smoothing. Seéin and Carroll(2000 for a discussion of smoothing correlated data. Auto-
matic bandwidth choices for the amount of smoothing of functional data are availablRifsee

and Silvermar(1997) for leave-one-curve-out cross-validation dvdller and Prewit{1993 for

surface smoothing], even though subjective choices are often adequate in practice. Following

ACCEPTED MANUSCRIPT
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the spirit of Yao et al.(2005, the mean function: evaluated at is estimated by minimizing
PHEDIN o Yk — a0 — ax(Tijk — ))2Kp(Tij — t) with respect todo, 1)™ and setting.(t) equal

to the resultingrg. HereKy(-) = (1/b)K(-/b), where the kernel functioK is a positive density
symmetric about 0, anldlis the bandwidth. Due to the genetic correlation within family, we choose

b by minimizing the “leave-one-family-out” cross-validation (CV),
ni  Nij

CV(b) = Z Z Z{Yijk ~ [ O(Tig; D)), (8)

i=1 j=1 k=1
where~0)(-; b) is the estimate qf gotten by removing all of thih family’s data.

The estimation of the covariance functions combines smoothing and the method of moments
and relies upon the following key facts. Recalling that the total covarisfge) = G(s,t)+E(s, 1),

we have

cov(Yij, Yijk’|Tijk, Tik) = V(Tijk Tij) + O
0/[,-1,-/ COV(Yijk,Yij’k’|Tijk,Tij'k') = G(Tij, Tijw),  T#1, 9)
whered = 1 for k = K and 0 otherwise. We define the centered observafﬁgn: Yijk —

A(Tix), and the raw covariance observati@ge = Y5, Y5... Then a two-dimensional local linear

ijk Tijke
smoother is employed to estimate the overall covariance funetjevith \V attained by smoothing

the set of all raw observatio€ij. : 1 <k#k <mj,j=1,...,m, ] =1,...,n}. Note thatin this
step we have omitted the valu€g since we expect that these are inflated by the noise variance
o?. This fact provides motivation for our estimateat: 62 = |74 le{\7(t) — V(t, t)}dt, whereV

is obtained by smoothingdr(i, Cij«) over all individuals. The region of integration,, of length

It1], is taken as the middle half of the whole intervaio reduce boundaryfkects introduced by
smoothing. To better estimat&s, t) along the “height ridge” whes ~ t, we adjust the estimaté
using a local quadratic smoother, sé&® et al.(2003 for details. The bandwidths that control the

smoothness d¥ andV, respectively, are also chosen by the leave-one-family-out CV in the spirit

of (8).
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To estimate the genetic covariance funct@®nthe key relationship in9) suggests borrowing
data across the entire family by constructing raw cross-covariances obtained from individuals of the
same family. Define such raw cross-covariance observations adjusted for relationshgiecas
aiji by Gijjuwe = @5, Y5 Y5, Therefore we estimaté using a two-dimensional local linear
smoother of the pooled inpWTijx, Tij k. Gijjke) - KK =1....mj, 1< j# ) <n,i=1...,n},
yielding the estimat&. As a consequence, the environmental covaridhieeasily obtained by
E=V-G.

We suggest an optional step for updating the estimat€s afidE. Note that the genetic co-
varianceG appears in the within-individual covariance and also appears in the covariance between
related individuals, coupled with the relationship fiméent, as given inJ). In our initial estimate
of G, we have only used the latter type of information, the information among related individuals,
that is, we have only smoothed the adjusted cross-covari@iges = a;; Y Y, i # 1/ In
our update, we add the information @containedwithin an individual. Specifically we use our
initial estimate ofE and note that fok # k', E[Cije — E(Tij, Tijw)] & G(Tijk, Tije)- Thus we can
constructG*, a new estimate d®, by smoothing the combined “data{Cij — E(Tijk, Tij), k# K’}
and{Gijj«. j # J’}. The estimate of the environmental covariance is also updatéd ByV — G*
accordingly. In practice, when the number of observations per individual is smatranben
we have a large number of individuals per family, this updating step can often be omitted as the
changes in estimates are negligible.

Estimates of the eigenfunctions and eigenvalue§ @ind E are obtained as solutions to the
eigen-equations

f G (s HH(9 ds= 1),
. (10)

f E* (8. Odm(9) dS = Pridin(®).

subject to the orthonormal constrainfsh(t)é (t)dt = 6y and [ gm(t)¥m (t)dt = Smnr. This can

be implemented by discretizing the smooth covariai&eand E* and carrying out matrix eigen-
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decomposition, as described Rice and Silvermarf1991). However, the smoothed covariance
functionsG* and E* are not necessarily non-negative definite. A simple modification is to set

negative estimated eigenvalues to zero, and reconsiraodE based on4) and 6), i.e.,
G(st) = > Ad(9h(),
1:2>0

E(S, t) = Z ﬁml/’}m(s)lZ’m(t),

m.pm>0

(11)

which has been shown to improve the covariance estimation in terms of mean squaredatror (

et al. 2008 Theorem 1).

3.2 FPC Representation for Genetically Related Individuals

We proceed to reconstruct the individual trajectdty in (6), which requires the estimation of

the genetic and environmental FPC scores givergpy= fT{Xi,-(t) —,u(t)}¢|(t)dt and {ijm =
Jo{X%i ) = u()} wm(®)dt, respectively. It is well-known that the classical integral approximation
fails for sparsely observed functional data. The PACE methodduy et al.(2005 overcomes

this problem by employing the idea of the best linear unbiased prediction (BLUP) in the context
of FPCA. Here we generalize the PACE method for estimating the FPC sgpr@sd i, to the

case where individuals are genetically related within family. We call this generalization Familial
principal component Analysis through Conditional Expectation (FACE).

In the sequel, all expectations are understood to be taken conditional on th&{imés cal-
culatey, the BLUP of&y, let Yij = (Yijz,..., Yin,)™, Yi = (Y,....Yp)" andN = 37 ny.
Recall the covariance structures i8).( Due to the genetic correlation within all individuals
in family i, we infer thelth FPC scoret; of the genetic procesg; from the observed data
for all subjects in theth family. Write then; x njj auto-covariance matrix of;; asjj =
cov(Yij, Yij) = [V(Tik, Tig) + 5k|<0'2]15k,kfsnij, and then;; x njj, cross-covariance matrix between
Yij andYiy by Zi 5 = cov(Yij, i) = [@ijiG(Tij. Tijn)]icken 1<k <n,, - WHETE 1< j 2 |7 <.

Then we have thé\; x N; covariance matrix off;, Zy, = cov(Y;, Yi) = (Zi jj)i<jjn- L€t Sy =

ACCEPTED MANUSCRIPT
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(01(Tija), - - .. #1(Tijn;)) ", @and noting thaty; j; = 1 one has coj, Y;) = A(aij1éys - - - » @i jnPin)-
Finally, denotew;; = (u(Tija), - - -, p(Tijny )™ 5 = (3, - - - )" By the BLUP principle, we
obtain the FACE formulae faf;j

&y = covi&y, Yieov(Y, Yi) T (Yi — ;)

= W@ 1By - - @n @i i) jen) (Y — ), (12)

which is equal tdE[&]Y;] when all quantities are Gaussian. Substituting the estimates of model

components, using the generic notation “*”, the FACE estimates are
~ - AT ~T = _ ~
Ein = (@i j1Bigs - - @ o Ping N (Ei i 1< i<} (Y3 = 1) (13)

Since the environmental processes, gfis, are independent across individuals, the estimation for
the FPC score&in is as in PACE, i.e., only use the observed data for that subject. Denfgfing
Um(Tija), - - - ¥m(Tijn; ) "> simple calculation by the BLUP principle yields the FACE formufae

and its plug-in estimatéjm,

Zijm = pm‘ﬁi—gmzijlj (Yij _ﬂij)a

~ A~ 5T SO ~
Gijm = Pm‘ﬁijmzi,jlj(Yij - Hij)- (14)

The reconstruction of the individual trajectories is straightforward once we obtain the estimates
of the FPC scores. It is customary to assume thatdhis are well approximated by a low-
dimensional expansion. Suppose we includekhandK, leading eigenfunctions af; ande; in

(6), respectively, so that

. Kg Ke

Xi () =4 + > &y + > Limbm(t). (15)
=1 m=1

The values oKy andK, can be chosen by objective criteria, such as leave-one-family-out cross-

validation, or the AIC based on pseudo-likelihood under Gassian assumptions in a spirit similar to
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that of Yao et al.(2005. In practice, using the proportion of functional variation explained (FVE)

with a suitable threshold is often satisfactory.

4. APPLICATION TO WEIGHTS OF BEEF CATTLE

The dataset we analyze here is a subset of a larger dataset udegdnet al. (1993 andMeyer
(1999. Our data set contains weights in kilograms of 55 beef cattle from a total of 15 independent
families. The cows within a family were half-siblings, having the same sire Ifii@rdnt mothers.

Thus the genetic correlation parametef;; = 1/4 is knowna priori, based on the half-sibling
relationships. The phenotypic trajectories are notably irregularly and sparsely observed. The num-
bern; of half-siblings per family ranges from one to eight; see Figli@® for the distribution of

n;'s. Weighings occurred at ages ranging from 548 to 2553 daysrie[548, 2553]. The num-
bern;; of weighings per individual varied from 1 to 62, and a histogram ofrihie is shown in
Figurel(b). Data were fiected by some additional environmental factors, but for simplicity, we
have not included them in our model. Including such fixé@das is, in general, straightforward,

and would allow the user to model variability that is not completely due to individtedts.

The estimated mean function is shown in Figirand shows, approximately, a yearly cyclical
pattern that depicts the seasonal weight changes of beef cattle. The non-negative definite covari-
ance estimated. () for the genetic and environmental processes are shown in Figayand3(b),
with caution when interpreting some large values in boundaries. We see that the genetic covari-
ance is not as strong as the environmental covariance. Indeed, the environmental process explains
about five and a half times the variability as the genetic process, where the surG{&af E) is
presented in Figurg(c) for visualizing the genetic contribution. However, the two covariances do
exhibit similar patterns, with relatively high variation at late times. Another observation is that the
environmental covariance seems to increase over time, which is not surprising as environmental

influences may accumulate as the cows age. We cgse 3 genetic principal components and
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Ke = 4 environmental principal components as they explained 98% (62.5%, 29.9% and 5.6%, re-
spectively) and 98.3% (81.6%, 8.1%, 5.2% and 3.4%, respectively) of the genetic and environmen-
tal variation. The estimated genetic and environmental eigenfunctions are given in FEig) el

4(b), respectively. From the first two eigenfunctions in each panel, one can see that the dominant
variation in the genetic process concentrates around 2000 days and includes a contrast between
weights at 1200 days and at 2300 days. The environmefiiggteshows a more constant influence

over time with an early slow increase followed by a sharp drop after 2000 days (or vice versa). The
updating step of the genetic and environmental covariances did not alter the estimates obviously
and was not needed for this analysis.

We are primarily interested in predicting the growth of beef cattle from sparsely observed
measurements. It is thus informative to assess the proposed method by comparing it with the
PACE method that treats all individuals independently, i.e., that doesn't take familial genetic
correlation into account. We calculate the leave-one-family-out cross-validation error given by
Yk Yig — X5'(Tij))%, where X;i is the predicted phenotype of théh cow in theith family.
Specifically, the model components are estimated based on data excluding ifamityg the

method described in Sectidhl. Then the FPC scoreg;;l and/-l are obtained by substituting

|Jm

[

these leave-one-family-out estimatgs, AI , pm,¢| N7/ >n : “ , into (13) and (L4), leading to)(I i

We usng‘i andK;' leading eigenfunctions, chosen to explain 98% of, respectively, the genetic
and the environmental functional variation in the data. The reconstruction using the PACE method
is obtained in a similar manner. S¥eo et al.(2005 for details. Not surprisingly, the proposed
FACE method considerably improves upon the PACE method by around 18%. Shown in%igure
are the cross-validated trajectory estimates ftspyings of two of the fifteen families using FACE

and PACE methods. We observe that FAGEes improved predictions for these eight cows.
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5. SIMULATED EXAMPLES

To further illustrate the performance of the proposed method, we carry out two simulation studies.
For Simulation I, we closely mimic the cow data, using the same design, e.g., the same family sizes
and times of weighings. The underlying model7¥\{ith Ky terms for the genetic component and
Ke terms for the environmental component. The environmental covariance is derived from the first
four estimated eigenfunctions, i.&g = 4. In view of the importance of the genetic component,
we examine three values Bf: Ky = 1, 2, 3, and we use the corresponding genetic eigenfunctions
estimated from the data. We use the half-sibling relationshifficanta; j; = 1/4 for alli, j and
I” # J. The genetic and environmental FPC scaigsindijn and the measurement erregg are
independently generated from normal distributions, respectively, using the estimated eigenvalues
and error variance from the data. To focus our attention on the covariances and FPCs, we set the
mean functioru to 0 in the data generation but still treat it as unknown in our analysis. For each
underlying model, we generate 100 Monte Carlo samples, and produce two versﬁm,stbé
FACE estimate that respects the familial genetic relationship, and the PACE estimate that ignores
familial dependence. To sela€t andK,, we again use a 98% threshold for the fraction of variance
explained. Within each sample and for each estimation method, we calculate the integrated squared
error (ISE) for thejth individual in theith family, ISE; = L{)(ij(t)—xj(t)}zdt, and the overall ISE is
defined as ISE }; ; ISE;. Improvements of the proposed FACE method upon the PACE method
are summarized in Table which indicates a substantial improvement of 21% to 25%.

In Simulation II, we again follow model7}, but with u(t) = t + sin(2rt), ¢1(t) = 441(t) =
— cos(2rt/10)/ V5 andg,(t) = &(t) = sin(2rt/10)/ V5 and corresponding eigenvalugs = 10,
A> = 5 andp; = 100,p, = 10. The genetic and environmental FPC scores are generated from
normal distributions, and the measurement egrgris from N(0, 0.01). We still generate data for
15 families, but the number of siblings within family is chosen uniformly fri@n .., 6} and the

number of observations per subject is chosen uniformly f{fdm.., 20}. The observation times
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are uniformly distributed on [@0]. With 100 Monte Carlo samples, the ISE based on the FACE
method incorporating genetic correlation outperformed the PACE method by 30% for the case of
half-sibling families witha; ;;; = 1/4 for j # j’, and by 25% for the case of full-sibling families

with a; j;, = 1/2for j # j’, see Tabld.

6. CONCLUSION

In this article, we propose a version of functional data analysis for trajectories of genetically related
individuals from independent families. We are able to estimate various levels of variation: the ge-
netic covariance, the environmental covariance induced by external factors, and the measurement
error variance. A new method, named FACE, is proposed to take into account the familial corre-
lation for estimating the genetic randorfiects. By making use of the auto-covariance function

of each individual, we also develop a simple step to update estimates of the genetic and environ-
mental covariance functions. We apply our method to study the growth over time of families of
half-sibling cows. We show via data analysis and simulation studies that, for predicting underlying
trajectories, our proposal improves considerably upon the existing PACE method designed for a
sample of independent subjects. While our method does well on its own, it can also be part of a
hybrid approach. For instance, our proposal can be used for dimension reduction, specifically to
determine a handful of eigenfunctions that can then be used as basis functions in further analy-
sis. Given the applicability of FACE for known genetic relationship, it would requirefarent
modeling strategy to diagnose or estimate such relationship if unknown to researchers. In terms of
computation, FACE typically requires about 50% more computing time than PACE, and the addi-
tional computation comes from estimating the genetic covari&@{eg) with a two-dimensional

scatterplot smoother.
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Table 1: ISE improvement (%), estimates of the first quartile, median, third quartile, and fraction
of genetic variability to total variability of the proposed FACE method compared to PACE, where
Simulation | uses data-based models witliedent values ofiy, K¢) and Simulation Il examines
half-sibling @@ = 0.25) and full-sibling & = 0.5) family relationships.

(Kg, Ke) | Mean (SE) 1stQuart. Median 3rd Quart-raction
(1,4) | 21.4(1.5) 15.1 23.5 28.7 30.7%
Simulationl | (2,4) | 25.1(1.6) 12.9 28.9 36.3 33.2%
(3,4) | 21.9(1.6) 10.9 24.7 326 33.3%
a Mean (SE) 1stQuart. Median 3rd Quart. Fraction
Simulationll 0.25 30.4 (3.1) 134 39.0 52.8 22.6%
0.50 25.4 (3.0) 11.7 30.4 45.4 16.7%
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Figure 1: Beef cattle data: frequency distributions.
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Figure 2: Estimated mean function (dark) with observed trajectories (light) for the beef cattle data.
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Figure 3: Non-negative definite estimates of the genetic and environmental covariance functions,
as well as the fraction surfa€®/(G + E), for the beef cattle data.
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(a) Genetic (b) Environmental

Figure 4. Shown are the first (solid), second (dashed), third (dash-dot), and fourth (dotted) eigen-
functions. Left: first three eigenfunctions of the genetic process, accounting for 98% of the genetic
variance. Right: first four eigenfunctions of the environmental process, explaining 98.3% of the

environmental variance.
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Figure 5: Estimated trajectories using leave-one-family-out cross-validation (CV) obtained using
FACE method (solid) and PACE method (dashed). The data are from two families of cows; the first
row presents results for two half-siblings from one family and the bottom three rows present results
from six half-siblings from another family. The legend shows the relative CV error of each cow,
Zﬂil{Yijk - Z‘ji(Tijk)}Z/ijk, obtained from the two methods, Whé(\g is as described in Section 4.
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