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We propose a new version of functional data model for analyzing familial related individuals,

where the within-subject correlation depends smoothly on a covariate such as age and the between-

subject correlation follows family-wise genetic association. Our motivating example concerns

measurements of weight as a function of age in sibling cows from independent families. Observa-

tions are sparsely sampled from trajectories of a phenotype contaminated with measurement error,

where the phenotypic trajectory consists of a genetic component and an environmental component.

By combining information across individuals, the genetic and environmental covariance are esti-

mated via smoothing techniques. We study the genetic and environmental effects using principal

component analysis, taking into account the genetic correlation to enhance the subject-level signal

extraction. We show via the real data and simulations that incorporating the correlation structure

improves predictions of individual phenotypic trajectories.
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data.
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1. INTRODUCTION

Functional data analysis (FDA) has attracted substantial research interest and has provided pow-

erful tools to study data arising from a collection of curves rather than from scalars or vectors.

Ramsay and Silverman(2005) offer a comprehensive introduction to FDA. A key issue in model-

ing functional data is the representation of the underlying processX, which is often of a complex

nature and requires regularization. A common approach is to utilize functional principal compo-

nent (FPC) analysis (FPCA), exploiting a data-driven eigenbasis to representX. This has been

studied extensively byRice and Silverman(1991); James et al.(2000); Yao et al.(2005); Hall and

Hosseini-Nasab(2006); Hall et al. (2006), and references therein. The eigenbasis is the unique

canonical basis leading to a generalized Fourier series, i.e., the Karhunen-Loève expansion. The

advantage of this expansion is that it gives the most rapidly convergent representation ofX in the

L2 sense (Ash and Gardner 1975).

However, the aforementioned works on FPC approaches mostly deal with independent subjects.

Very little work has appeared involving the analysis of correlated subjects or of clusters. Due

to the difficulty in appropriate modelling of complex dependence structures, existing work on

feasible models for correlated functional data has usually been motivated in the context of specific

applications. For instance,Peng and Paul(2011) adopted a separable covariance structure for

weakly correlated functional data, e.g., for growth profiles from different locations in agricultural

land, whileZhou et al.(2010) considered spatially correlated FPC analysis by coupling linear

mixed effects (LME) models with penalized splines. In this paper, we propose a functional data

model for family-wise related individuals. Our proposal models the genetic and environmental

processes both at subject level, and allows for genetic dependencies introduced by varied familial

associations. This is distinct from hierarchical or multilevel FPCA (Morris et al. 2003; Di et al.

2011), where the assumptions on the within-family covariance do not allow for a variety of familial

relationships.
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1.1 Motivating Application

Our motivating example concerns the growth (in kilograms) as a function of age (in days) of

half-sibling cows in fifteen independent families. A key issue in the analysis is the incorporation

of genetic information that helps researchers understand how selective breeding can change the

physical traits passed down to future generations. This understanding has economic consequences,

as accurate estimation of the genetic component of an individual’s trait can lead to better breeding

decisions. Even small improvements in breeding practices can greatly increase food production.

However, the estimation of the genetic component is complicated by the fact that it is unobservable

and must be inferred from the observed physical trait. The physical trait depends not only on

the genotype but also on the environmental effect, which includes factors such as habitat or food

availability. Fortunately, genetic theory makes inference possible when data include information

from related individuals.

This data set was first analyzed using a multivariate approach inMeyer(1985) and later, with a

random regression approach for individual growth inMeyer and Hill(1997). The random regres-

sion approach uses a basis expansion with an individual’s coefficients modeled as random effects.

Statistical analysis is implemented with an LME model, seeDemidenko(2004) and references

therein for a general treatment of the random regression model using LME. However, in random

regression, the choice of pre-specified basis functions is not straightforward. Although splines

(in particular B-splines) have been a popular option, simulation studies inGriswold et al.(2008)

indicated that B-splines do not necessarily perform well in many realistic settings. This might

be caused by the “one-size-fits-all” character of B-splines, which may result in needing a fairly

large number of B-spline functions. A natural approach to constructing a parsimonious model is

to exploit the FPCA technique to find a data-adaptive eigenbasis, which often requires only a few

leading eigenfunctions to adequately reconstruct trajectories.
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1.2 Overview of the Paper

The main contribution of this paper is to develop a new FPCA framework that effectively takes

into account genetic information and can be used in a variety of biological applications. The key is

to generalize the canonical eigenbasis model to genetically related subjects within independently

sampled families. As the individual phenotype is irregularly and sparsely observed with noise,

a common occurrence in many settings, it is desirable to borrow strength from the whole sam-

ple. Yao et al.(2005) proposed a version of FPC analysis, called Principal components Analysis

through Conditional Expectation (PACE), that is particularly useful for such sparse functional data.

Compared to spline-based FPC methods that implicitly treat truncated models as the target (James

et al. 2000), PACE emphasizes genuine nonparametric modeling of the covariance and finds data-

driven eigenfunctions to be used as basis functions. Thus PACE allows for theoretical investigation

of the underlying process itself. Given these advantages of the PACE approach, we couple the

PACE principle with the genetic information to develop a novel FPCA framework, called Familial

principal components Analysis through Conditional Expectation (FACE). Our approach naturally

decomposes the total covariance into genetic and environmental components, both of which are

estimated by smoothing techniques. Data-adaptive eigen-components associated with both covari-

ance structures are obtained and used in the proposed FACE estimation of the genetically related

individuals.

The remainder of this article is organized as follows. In Section2, we introduce biological

modeling of the genetic component of a physical trait, and motivate the proposed FPC model for

related individuals. Section3 describes the methodology for estimation of the model components,

including the genetic and environmental covariances and their respective eigen-components. The

known familial genetic relationship is utilized and leads to the proposed FACE estimation for

subject-level signal extraction. We analyze the growth of beef cattle in Section4, while Section5

contains simulation examples. Concluding remarks are offered in Section6.
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2. GENETIC RELATIONSHIP AND PROPOSED FUNCTIONAL

MODEL

2.1 Background on the Quantitative Genetic Model

To describe the standard quantitative genetic model for physical traits, letXj denote the phenotype

of individual j, Yj the phenotype observed with errorε j, gj the genetic component, andej the

environmental factor. Suppose for now that these quantities are either all scalar,p-vectors, or

functions. The simplest genetic model is an additive structure withgj, ej, andε j uncorrelated with

expected values equal to 0,

Yj = Xj + ε j = μ + gj + ej + ε j . (1)

Individuals raised in different environments have uncorrelatedej ’s, while related individuals from

the same family have correlated underlying genotypes, thegj ’s, with the amount of correlation

depending on the individuals’ relationship. For instance, suppose thatgj is a p-vector withp× p

covariance matrixG. Thep×p cross-covariance matrix defined asE[gjg>j′ ], j , j′, is equal toα j j ′G,

whereα j j ′ ∈ [0,1] is referred to as the relationship coefficient that depends on the relationship

between individualsj and j′ and is twice of the entries in a so-called kinship matrix (Lynch and

Walsh 1998). If the individuals are full siblings, i.e., they have the same mother and father, then

α j j ′ = 1/2. If the individuals are half-siblings, that is, if they have only one parent in common,

thenα j j ′ = 1/4. If the individuals are unrelated thenα j j ′ = 0, and if they are clones or the same

individual thenα j j ′ = 1. The intuition behind the value ofα j j ′ is thatα j j ′ equals the expected

proportion of genes that individualsj and j′ share via inheritance.

This model for genetic correlation and the use of these values ofα j j ′ are well-supported by

both theoretical calculations and empirical studies. Their use is standard in animal breeding and in

laboratory experiments in evolutionary biology. The model was first introduced, with values ofα j j ′

calculated, inFisher(1918). Also seeLynch and Walsh(1998, Chapter 7) for a modern treatment
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andHeckman(2003) for a statistician-friendly derivation ofE[gjg>j′ ] = G/2 for a mother-child

relationship. Analysis of (1) is straightforward when the traits are scalar or vector-valued, the re-

lationships are all the same and the design is balanced – for instance, for data fromN independent

families, withk full siblings in each family. In this case, variance/covariance parameters are easily

estimated in closed form by analysis of variance and method of moments. For more general de-

signs and combinations of relationships, numerical estimation is possible via (restricted) maximum

likelihood (Lynch and Walsh 1998, Chapter 27), and is implemented in software such as ASReml

(http://www.vsni.co.uk/software/asreml) and WOMBAT (Meyer 2007).

2.2 Functional Data Model for Genetically Related Individuals

Data such as weights of cows can be viewed as arising from smooth functions, even if the weights

are sampled at irregular and, possibly, sparse discrete times across subjects. We consider the

situation where there areN independent families withni members in familyi. Let αi, j j ′ denote

the known relationship coefficient for individualsj and j′ of family i and assume that the within-

family relationship coefficients are non-zero. While our methodology holds for generalαi, j, j′ ’s, in

the data we analyze in Section4, all family members are half-siblings, i.e.,αi, j j ′ = 1/4 for j , j′

andαi, j j = 1 otherwise.

The functional version of (1) for the phenotype of thejth individual in theith family is

Xi j (t) = μ(t) + gi j (t) + ei j (t), (2)

whereμ is the population mean curve,gi j is what is called the random genetic effect, andei j models

any other random effects (mainly environmental) giving rise to within individual covariances that

are not due togi j . As is common (see, e.g.,Lynch and Walsh 1998), we will refer toei j as the

environmental effect andgi j simply as the genetic effect. In this model,gi j andei j are (i) mean

zero with the variance ofgi j (t) andei j (t) finite for all t, (ii) uncorrelated, (iii) cov
(
gi j (s),gi j (t)

)
=

G(s, t), and (iv) cov
(
ei j (s),ei j (t)

)
= E(s, t). These four properties imply that the total covariance is
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cov
(
Xi j (s),Xi j (t)

)
= V(s, t) = G(s, t) + E(s, t). The within-family genetic correlation between two

individuals depends onG and the individuals’ relationship coefficient:

cov
(
gi j (s),gi j ′(t)

)
= αi, j j ′G(s, t). (3)

The processesei j (∙) andei′ j′(∙) are independent when (i, j) , (i′, j′). Assume that the measurements

are taken on a closed and bounded intervalτ, i.e., t ∈ τ. Note that model (2) is not the classical

functional model that assumes that data come from independent realizations ofXi j (t) = μ(t)+vi j (t).

In (2), we have decomposed the random deviationvi j (t) asgi j (t) + ei j (t), where the genetic effect

gi j (t) induces a within-family correlation.

A stochastic process with finite covariance admits a Karhunen-Loève expansion and its covari-

ance function admits a spectral basis expansion (Loève 1978; Adler and Taylor 2007). The key

proposal is to exploit such expansions for both genetic and environmental processes, whilst main-

taining the dependence structure of related individuals. For the genetic processgi j , we have for

s, t ∈ τ,

gi j (t) =
∞∑

l=1

ξi jlφl(t), G(s, t) =
∞∑

l=1

λlφl(s)φl(t), (4)

where theφl ’s are orthonormal eigenfunctions,ξi j1, ξi j2, . . . are the FPC scores, which are uncorre-

lated random variables with zero mean and variancesλ1 > λ2 > . . ., satisfying
∑∞

l=1 λl < ∞. Based

on the underlying genetic model in equation (3), we can deduce that the correlation betweenξi jl

andξi′ j′l′ is λl αi, j j ′ for i = i′ and l = l′, and zero otherwise. This genetic association is the key

to consistent parameter estimation, as it enables us to borrow information across related individu-

als. This model and basis expansion in the context of selection and genetics was first described in

Kirkpatrick and Heckman(1989). Similar expansions hold for the environmental processei j with

orthonormal eigenfunctions{ψm} and nonincreasing eigenvalues{ρm}, i.e., fors, t ∈ τ,

ei j (t) =
∞∑

m=1

ζi jmψm(t), E(s, t) =
∞∑

m=1

ρmψm(s)ψm(t), (5)
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whereζi jm are uncorrelated FPC scores ofei j with zero mean and finite varianceρm. It is obvi-

ous that the correlation betweenζi jm andζi′ j′m′ is always zero given independent environmental

processes, unless (i, j,m) = (i′, j′,m′).

Therefore the proposed FPC model forXi j (t) based on these Karhunen-Loève expansions is

given by

Xi j (t) = μ(t) +
∞∑

l=1

ξi jlφl(t) +
∞∑

m=1

ζi jmψm(t), t ∈ τ. (6)

The deviation of each curveXi j from the overall trendμ is a sum of curvesφl andψm with random

amplitudesξi jl andζi jm, respectively. Although the underlying model (6) is infinite-dimensional,

the typically rapid decay of eigenvalues often allows us to use a small number of leading eigen-

functions to recoverXi j . In practice, the infinite sums in (6) can be truncated and theφl ’s andψm’s

estimated, yielding a data-adaptive low-dimensional model forXi j . The practical choice of the

level of truncations is discussed in Section3. This eigenfunction approach differs from a random

regression model with spline basis functions, as the eigenfunction basis is completely data-driven,

while the spline function basis is pre-specified without knowledge of the data. A principal com-

ponents approach to model (2) appears inDi et al. (2011), but with a more restricted covariance

structure, which in our context would require thatαi, j j ′ ≡ α for all i and for all j , j′.

We let the data observed for individualj from family i consist ofni j repeated measurements of

Xi j taken at discrete time points{Ti jk ∈ τ : k = 1 . . . , ni j }. Denoting thekth observation ofXi j at

Ti jk by Yi jk , the data model is

Yi jk = Xi j (Ti jk) + εi jk

= μ(Ti jk) +
∑

l

ξi jlφl(Ti jk) +
∑

m

ζi jmψm(Ti jk) + εi jk , (7)

where theεi jk ’s are independent and identically distributed errors with zero mean, finite variance

σ2, and are independent of both theξi jl and theζi jm.
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3. MODEL ESTIMATION AND FPC REPRESENTATION

The quantities in model (7) are composed of two types: the population components, such as the

mean, covariances and eigenvalues/functions; and the subject-level signals, i.e., the random ampli-

tudes or FPC scores for the underlying genetic and environmental processes. The main challenge

in estimating these quantities is due to the irregularly and sparsely observed functional data. More

specifically, there may be only a few observations available for some or even all of the individu-

als. In this case, borrowing strength across the entire collection of data is important for obtaining

consistent estimation of the population quantities. As mentioned in the introduction,Yao et al.

(2005) provided a thorough treatment for such sparse functional data in the case of the classical

functional model with independent realizations, and proposed, namely, the PACE method. We

shall generalize the key idea of PACE and take advantage of the genetic relationship (3) in model

(7).

3.1 Estimation of Model Components

The mean and covariance functions are assumed to be smooth, so we can estimate them by non-

parametric regression methods, which borrow information from neighboring data values. We use

local linear smoothers (Fan and Gijbels 1996) for function and surface estimation. The key to

estimating parameters from sparse functional data is to pool together information from all individ-

uals, requiring the “pooled” data to be sufficiently dense. For these local smoothing steps, for a

given level of smoothing we adopt the strategy of ignoring the dependency among the data from

the same individual/family. However we do not ignore correlation when choosing the amount

of smoothing. SeeLin and Carroll(2000) for a discussion of smoothing correlated data. Auto-

matic bandwidth choices for the amount of smoothing of functional data are available [seeRice

and Silverman(1991) for leave-one-curve-out cross-validation andMüller and Prewitt(1993) for

surface smoothing], even though subjective choices are often adequate in practice. Following
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the spirit of Yao et al.(2005), the mean functionμ evaluated att is estimated by minimizing
∑n

i=1

∑ni
j=1

∑ni j

k=1{Yi jk − α0 − α1(Ti jk − t)}2Kb(Ti jk − t) with respect to (α0, α1)> and setting ˆμ(t) equal

to the resultingα0. HereKb(∙) = (1/b)K(∙/b), where the kernel functionK is a positive density

symmetric about 0, andb is the bandwidth. Due to the genetic correlation within family, we choose

b by minimizing the “leave-one-family-out” cross-validation (CV),

CV(b) =
n∑

i=1

ni∑

j=1

ni j∑

k=1

{
Yi jk − μ̂

−(i)(Ti jk ; b)
}2
, (8)

whereμ̂−(i)(∙; b) is the estimate ofμ gotten by removing all of theith family’s data.

The estimation of the covariance functions combines smoothing and the method of moments

and relies upon the following key facts. Recalling that the total covarianceV(s, t) = G(s, t)+E(s, t),

we have

cov
(
Yi jk ,Yi jk′

∣∣∣Ti jk ,Ti jk′
)
= V(Ti jk ,Ti jk′) + δkk′σ

2

α−1
i, j j ′ cov

(
Yi jk ,Yi j ′k′

∣∣∣Ti jk ,Ti j ′k′
)
= G(Ti jk ,Ti j ′k′), j , j′, (9)

whereδkk′ = 1 for k = k′ and 0 otherwise. We define the centered observationYc
i jk = Yi jk −

μ̂(Ti jk), and the raw covariance observationsCi jkk′ = Yc
i jkYc

i jk′ . Then a two-dimensional local linear

smoother is employed to estimate the overall covariance functionV, with V̂ attained by smoothing

the set of all raw observations{Ci jkk′ : 1 ≤ k , k′ ≤ ni j , j = 1, . . . , ni , j = 1, . . . , n}. Note that in this

step we have omitted the valuesCi jkk since we expect that these are inflated by the noise variance

σ2. This fact provides motivation for our estimate ofσ2: σ̂2 = |τ1|−1
∫
τ1
{Ṽ(t) − V̂(t, t)}dt, whereṼ

is obtained by smoothing (Ti jk ,Ci jkk) over all individuals. The region of integration,τ1, of length

|τ1|, is taken as the middle half of the whole intervalτ to reduce boundary effects introduced by

smoothing. To better estimateV(s, t) along the “height ridge” whens≈ t, we adjust the estimatẽV

using a local quadratic smoother, seeYao et al.(2003) for details. The bandwidths that control the

smoothness of̂V andṼ, respectively, are also chosen by the leave-one-family-out CV in the spirit

of (8).
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To estimate the genetic covariance functionG, the key relationship in (9) suggests borrowing

data across the entire family by constructing raw cross-covariances obtained from individuals of the

same family. Define such raw cross-covariance observations adjusted for relationship coefficients

αi, j j ′ by Gi j j ′kk′ = α−1
i, j j ′Y

c
i jkYc

i j ′k′ . Therefore we estimateG using a two-dimensional local linear

smoother of the pooled input{(Ti jk ,Ti j ′k′ ,Gi j j ′kk′) : k, k′ = 1, . . . , ni j ,1 ≤ j , j′ ≤ ni , i = 1, . . . , n},

yielding the estimatêG. As a consequence, the environmental covarianceE is easily obtained by

Ê = V̂ − Ĝ.

We suggest an optional step for updating the estimates ofG andE. Note that the genetic co-

varianceG appears in the within-individual covariance and also appears in the covariance between

related individuals, coupled with the relationship coefficient, as given in (3). In our initial estimate

of G, we have only used the latter type of information, the information among related individuals,

that is, we have only smoothed the adjusted cross-covariancesGi j j ′kk′ = α−1
i, j j ′Y

c
i jkYc

i j ′k′ , j , j′. In

our update, we add the information onG containedwithin an individual. Specifically we use our

initial estimate ofE and note that fork , k′, E
[
Ci jkk′ − Ê(Ti jk ,Ti jk′)

]
≈ G(Ti jk ,Ti jk′). Thus we can

constructĜ∗, a new estimate ofG, by smoothing the combined “data”:{Ci jkk′ − Ê(Ti jk ,Ti jk′), k , k′}

and{Gi j j ′kk′ , j , j′}. The estimate of the environmental covariance is also updated byÊ∗ = V̂ − Ĝ∗

accordingly. In practice, when the number of observations per individual is small and/or when

we have a large number of individuals per family, this updating step can often be omitted as the

changes in estimates are negligible.

Estimates of the eigenfunctions and eigenvalues ofG andE are obtained as solutions to the

eigen-equations
∫

τ

Ĝ∗(s, t)φ̂l(s) ds= λ̂lφ̂l(t),
∫

τ

Ê∗(s, t)ψ̂m(s) ds= ρ̂mψ̂m(t),
(10)

subject to the orthonormal constraints
∫
τ
φ̂l(t)φ̂l′(t)dt = δll ′ and

∫
τ
ψ̂m(t)ψ̂m′(t)dt = δmm′ . This can

be implemented by discretizing the smooth covariancesĜ∗ andÊ∗ and carrying out matrix eigen-

11
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decomposition, as described inRice and Silverman(1991). However, the smoothed covariance

functionsĜ∗ and Ê∗ are not necessarily non-negative definite. A simple modification is to set

negative estimated eigenvalues to zero, and reconstructG andE based on (4) and (5), i.e.,

G̃(s, t) =
∑

l:λ̂l>0

λ̂lφ̂l(s)φ̂l(t),

Ẽ(s, t) =
∑

m:ρ̂m>0

ρ̂mψ̂m(s)ψ̂m(t),
(11)

which has been shown to improve the covariance estimation in terms of mean squared error (Hall

et al. 2008, Theorem 1).

3.2 FPC Representation for Genetically Related Individuals

We proceed to reconstruct the individual trajectoryXi j in (6), which requires the estimation of

the genetic and environmental FPC scores given byξi jl =
∫
τ

{
Xi j (t) − μ(t)

}
φl(t)dt and ζi jm =

∫
τ

{
Xi j (t) − μ(t)

}
ψm(t)dt, respectively. It is well-known that the classical integral approximation

fails for sparsely observed functional data. The PACE method byYao et al.(2005) overcomes

this problem by employing the idea of the best linear unbiased prediction (BLUP) in the context

of FPCA. Here we generalize the PACE method for estimating the FPC scoresξi jl andζi jm to the

case where individuals are genetically related within family. We call this generalization Familial

principal component Analysis through Conditional Expectation (FACE).

In the sequel, all expectations are understood to be taken conditional on the timesTi jk . To cal-

culateξ̃i jl , the BLUP ofξi jl , let Yi j = (Yi j1, . . . ,Yi jni j )
>, Yi = (Y>i1, . . . ,Y

>
ini

)> and Ni =
∑ni

j=1 ni j .

Recall the covariance structures in (9). Due to the genetic correlation within all individuals

in family i, we infer thelth FPC scoreξi jl of the genetic processgi j from the observed data

for all subjects in theith family. Write theni j × ni j auto-covariance matrix ofYi j as Σi, j j =

cov(Yi j ,Yi j ) = [V(Ti jk ,Ti jk′) + δkk′σ
2]1≤k,k′≤ni j , and theni j × ni j ′ cross-covariance matrix between

Yi j andYi j ′ by Σi, j j ′ = cov(Yi j ,Yi j ′) =
[
αi, j j ′G(Ti jk ,Ti j ′k′)

]
1≤k≤ni j ,1≤k′≤ni j ′

, where 1≤ j , j′ ≤ ni.

Then we have theNi × Ni covariance matrix ofYi, ΣYi = cov(Yi ,Yi) = (Σi, j j ′)1≤ j, j≤ni . Let φi jl =

12
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 1
9:

34
 1

7 
N

ov
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

(φl(Ti j1), . . . , φl(Ti jni j ))
>, and noting thatαi, j j = 1 one has cov(ξi jl ,Yi) = λl(αi, j1φ

>
i1l , . . . , αi, jniφ

>
ini l).

Finally, denoteμi j = (μ(Ti j1), . . . , μ(Ti jni j ))
>, μi = (μ>i1, . . . ,μ

>
ini

)>. By the BLUP principle, we

obtain the FACE formulae forξi jl ,

ξ̃i jl = cov(ξi jl ,Yi)cov(Yi ,Yi)
−1(Yi − μi)

= λl(αi, j1φ
>
i1l , . . . , αi, jniφ

>
ini l){(Σi, j j ′)1≤ j, j≤ni }

−1(Yi − μi), (12)

which is equal toE[ξill |Yi] when all quantities are Gaussian. Substituting the estimates of model

components, using the generic notation “ˆ”, the FACE estimates are

ξ̂i jl = λ̂l(αi, j1φ̂
>
i1l , . . . , αi, jni φ̂

>
ini l){(̂Σi, j j ′)1≤ j, j≤ni }

−1(Yi − μ̂i). (13)

Since the environmental processes, theei j ’s, are independent across individuals, the estimation for

the FPC scoresζiim is as in PACE, i.e., only use the observed data for that subject. Denotingψi jm =

(ψm(Ti j1), . . . , ψm(Ti jni j ))
>, simple calculation by the BLUP principle yields the FACE formulaeζ̃iim

and its plug-in estimatêζi jm,

ζ̃i jm = ρmψ
>
i jmΣ

−1
i, j j (Yi j − μi j ),

ζ̂i jm = ρ̂mψ̂
>
i jmΣ̂

−1
i, j j (Yi j − μ̂i j ). (14)

The reconstruction of the individual trajectories is straightforward once we obtain the estimates

of the FPC scores. It is customary to assume that theXi j ’s are well approximated by a low-

dimensional expansion. Suppose we include theKg andKe leading eigenfunctions ofgi j andei j in

(6), respectively, so that

X̂i j (t) = μ̂(t) +
Kg∑

l=1

ξ̂i jl φ̂l(t) +
Ke∑

m=1

ζ̂i jmψ̂m(t). (15)

The values ofKg andKe can be chosen by objective criteria, such as leave-one-family-out cross-

validation, or the AIC based on pseudo-likelihood under Gassian assumptions in a spirit similar to

13
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that ofYao et al.(2005). In practice, using the proportion of functional variation explained (FVE)

with a suitable threshold is often satisfactory.

4. APPLICATION TO WEIGHTS OF BEEF CATTLE

The dataset we analyze here is a subset of a larger dataset used inMeyer et al.(1993) andMeyer

(1999). Our data set contains weights in kilograms of 55 beef cattle from a total of 15 independent

families. The cows within a family were half-siblings, having the same sire but different mothers.

Thus the genetic correlation parameterαi, j j ′ ≡ 1/4 is knowna priori, based on the half-sibling

relationships. The phenotypic trajectories are notably irregularly and sparsely observed. The num-

berni of half-siblings per family ranges from one to eight; see Figure1(a) for the distribution of

ni ’s. Weighings occurred at ages ranging from 548 to 2553 days, i.e.,τ = [548,2553]. The num-

ber ni j of weighings per individual varied from 1 to 62, and a histogram of theni j ’s is shown in

Figure1(b). Data were affected by some additional environmental factors, but for simplicity, we

have not included them in our model. Including such fixed effects is, in general, straightforward,

and would allow the user to model variability that is not completely due to individual effects.

The estimated mean function is shown in Figure2, and shows, approximately, a yearly cyclical

pattern that depicts the seasonal weight changes of beef cattle. The non-negative definite covari-

ance estimates (11) for the genetic and environmental processes are shown in Figure3(a)and3(b),

with caution when interpreting some large values in boundaries. We see that the genetic covari-

ance is not as strong as the environmental covariance. Indeed, the environmental process explains

about five and a half times the variability as the genetic process, where the surface ofG/(G+ E) is

presented in Figure3(c) for visualizing the genetic contribution. However, the two covariances do

exhibit similar patterns, with relatively high variation at late times. Another observation is that the

environmental covariance seems to increase over time, which is not surprising as environmental

influences may accumulate as the cows age. We choseKg = 3 genetic principal components and

14
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Ke = 4 environmental principal components as they explained 98% (62.5%, 29.9% and 5.6%, re-

spectively) and 98.3% (81.6%, 8.1%, 5.2% and 3.4%, respectively) of the genetic and environmen-

tal variation. The estimated genetic and environmental eigenfunctions are given in Figures4(a)and

4(b), respectively. From the first two eigenfunctions in each panel, one can see that the dominant

variation in the genetic process concentrates around 2000 days and includes a contrast between

weights at 1200 days and at 2300 days. The environmental effect shows a more constant influence

over time with an early slow increase followed by a sharp drop after 2000 days (or vice versa). The

updating step of the genetic and environmental covariances did not alter the estimates obviously

and was not needed for this analysis.

We are primarily interested in predicting the growth of beef cattle from sparsely observed

measurements. It is thus informative to assess the proposed method by comparing it with the

PACE method that treats all individuals independently, i.e., that doesn’t take familial genetic

correlation into account. We calculate the leave-one-family-out cross-validation error given by
∑

i, j,k{Yi jk − X̂−i
i j (Ti jk)}2, where X̂−i

i j is the predicted phenotype of thejth cow in theith family.

Specifically, the model components are estimated based on data excluding familyi using the

method described in Section3.1. Then the FPC scoreŝξ−i
i jl and ζ̂−i

i jm are obtained by substituting

these leave-one-family-out estimates, ˆμ−i , λ̂−i
l , ρ̂

−i
m , φ̂

−i
l , ψ̂

−i
m ,Σ

−i
i, j j ′ , into (13) and (14), leading toX̂−i

i j .

We useK−i
g andK−i

e leading eigenfunctions, chosen to explain 98% of, respectively, the genetic

and the environmental functional variation in the data. The reconstruction using the PACE method

is obtained in a similar manner. SeeYao et al.(2005) for details. Not surprisingly, the proposed

FACE method considerably improves upon the PACE method by around 18%. Shown in Figure5

are the cross-validated trajectory estimates for offsprings of two of the fifteen families using FACE

and PACE methods. We observe that FACE offers improved predictions for these eight cows.

15
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5. SIMULATED EXAMPLES

To further illustrate the performance of the proposed method, we carry out two simulation studies.

For Simulation I, we closely mimic the cow data, using the same design, e.g., the same family sizes

and times of weighings. The underlying model is (7) with Kg terms for the genetic component and

Ke terms for the environmental component. The environmental covariance is derived from the first

four estimated eigenfunctions, i.e.,Ke = 4. In view of the importance of the genetic component,

we examine three values ofKg: Kg = 1,2,3, and we use the corresponding genetic eigenfunctions

estimated from the data. We use the half-sibling relationship coefficientαi, j j ′ = 1/4 for all i, j and

j′ , j. The genetic and environmental FPC scoresξi jl andζi jm and the measurement errorsεi jk are

independently generated from normal distributions, respectively, using the estimated eigenvalues

and error variance from the data. To focus our attention on the covariances and FPCs, we set the

mean functionμ to 0 in the data generation but still treat it as unknown in our analysis. For each

underlying model, we generate 100 Monte Carlo samples, and produce two versions ofX̂i j , the

FACE estimate that respects the familial genetic relationship, and the PACE estimate that ignores

familial dependence. To selectKg andKe, we again use a 98% threshold for the fraction of variance

explained. Within each sample and for each estimation method, we calculate the integrated squared

error (ISE) for thejth individual in theith family, ISEi j =
∫
τ

{
Xi j (t)−X̂i j (t)

}2dt, and the overall ISE is

defined as ISE=
∑

i, j ISEi j . Improvements of the proposed FACE method upon the PACE method

are summarized in Table1, which indicates a substantial improvement of 21% to 25%.

In Simulation II, we again follow model (7), but with μ(t) = t + sin(2πt), φ1(t) = ζ1(t) =

− cos(2πt/10)/
√

5 andφ2(t) = ζ2(t) = sin(2πt/10)/
√

5 and corresponding eigenvaluesλ1 = 10,

λ2 = 5 andρ1 = 100,ρ2 = 10. The genetic and environmental FPC scores are generated from

normal distributions, and the measurement errorεi jk is from N(0,0.01). We still generate data for

15 families, but the number of siblings within family is chosen uniformly from{2, . . . , 6} and the

number of observations per subject is chosen uniformly from{5, . . . , 20}. The observation times
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are uniformly distributed on [0,10]. With 100 Monte Carlo samples, the ISE based on the FACE

method incorporating genetic correlation outperformed the PACE method by 30% for the case of

half-sibling families withαi, j j ′ = 1/4 for j , j′, and by 25% for the case of full-sibling families

with αi, j j ′ = 1/2 for j , j′, see Table1.

6. CONCLUSION

In this article, we propose a version of functional data analysis for trajectories of genetically related

individuals from independent families. We are able to estimate various levels of variation: the ge-

netic covariance, the environmental covariance induced by external factors, and the measurement

error variance. A new method, named FACE, is proposed to take into account the familial corre-

lation for estimating the genetic random effects. By making use of the auto-covariance function

of each individual, we also develop a simple step to update estimates of the genetic and environ-

mental covariance functions. We apply our method to study the growth over time of families of

half-sibling cows. We show via data analysis and simulation studies that, for predicting underlying

trajectories, our proposal improves considerably upon the existing PACE method designed for a

sample of independent subjects. While our method does well on its own, it can also be part of a

hybrid approach. For instance, our proposal can be used for dimension reduction, specifically to

determine a handful of eigenfunctions that can then be used as basis functions in further analy-

sis. Given the applicability of FACE for known genetic relationship, it would require a different

modeling strategy to diagnose or estimate such relationship if unknown to researchers. In terms of

computation, FACE typically requires about 50% more computing time than PACE, and the addi-

tional computation comes from estimating the genetic covarianceG(s, t) with a two-dimensional

scatterplot smoother.
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Table 1: ISE improvement (%), estimates of the first quartile, median, third quartile, and fraction
of genetic variability to total variability of the proposed FACE method compared to PACE, where
Simulation I uses data-based models with different values of (Kg,Ke) and Simulation II examines
half-sibling (α = 0.25) and full-sibling (α = 0.5) family relationships.

(Kg,Ke) Mean (SE) 1st Quart. Median 3rd Quart.Fraction
(1, 4) 21.4 (1.5) 15.1 23.5 28.7 30.7%

SimulationI (2, 4) 25.1 (1.6) 12.9 28.9 36.3 33.2%
(3, 4) 21.9 (1.6) 10.9 24.7 32.6 33.3%
α Mean (SE) 1st Quart. Median 3rd Quart. Fraction

SimulationII 0.25 30.4 (3.1) 13.4 39.0 52.8 22.6%
0.50 25.4 (3.0) 11.7 30.4 45.4 16.7%
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Figure 1: Beef cattle data: frequency distributions.
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Figure 2: Estimated mean function (dark) with observed trajectories (light) for the beef cattle data.
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Figure 3: Non-negative definite estimates of the genetic and environmental covariance functions,
as well as the fraction surfaceG/(G + E), for the beef cattle data.
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Figure 4: Shown are the first (solid), second (dashed), third (dash-dot), and fourth (dotted) eigen-
functions. Left: first three eigenfunctions of the genetic process, accounting for 98% of the genetic
variance. Right: first four eigenfunctions of the environmental process, explaining 98.3% of the
environmental variance.
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Figure 5: Estimated trajectories using leave-one-family-out cross-validation (CV) obtained using
FACE method (solid) and PACE method (dashed). The data are from two families of cows; the first
row presents results for two half-siblings from one family and the bottom three rows present results
from six half-siblings from another family. The legend shows the relative CV error of each cow,∑ni j

k=1{Yi jk − X̂−i
i j (Ti jk)}2/Y2

i jk , obtained from the two methods, whereX̂−i
i j is as described in Section 4.
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