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In this article we consider data-sharpening methods for nonparametric regression. In partic-
ular modifications are made to existing methods in the following two directions. First, we
introduce a new tuning parameter to control the extent to which the data are to be sharp-
ened, so that the amount of sharpening is adaptive and can be tuned to best suit the data at
hand. We call this new parameter the sharpening parameter. Second, we develop automatic
methods for jointly choosing the value of this sharpening parameter as well as the values
of other required smoothing parameters. These automatic parameter selection methods are
shown to be asymptotically optimal in a well defined sense. Numerical experiments were also
conducted to evaluate their finite-sample performances. To the best of our knowledge, there
is no bandwidth selection method developed in the literature for sharpened nonparametric
regression.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Data sharpening are data pre-processing procedures that can be applied to enhance the performances of certain standard and
relatively simple estimationmethods. They aim to produce pre-processed data in such a way that when these pre-processed data
are fed to a simple estimation method, the final estimation results are improved relative to the case when the original raw data
were used. One of the earlier applications of data sharpening was for probability density estimation (e.g., see Samiuddin and el
Sayyad, 1990; Choi andHall, 1999;Hall andMinnotte, 2002). Since then other data-sharpeningmethods have also been developed
for nonparametric regression (Choi et al., 2000), hazard rate estimation (Claeskens andHall, 2002) and spectral density estimation
(Yao and Lee, 2007). In addition, data sharpening has also been applied to nonparametric estimation subject to constraints (e.g.,
see Braun and Hall, 2001; Hall and Kang, 2005). It has been shown theoretically that such data-sharpening methods are capable
of reducing the estimation bias to a higher order, while at the same time only inflate the variance by a constant factor.

In this article we study data-sharpening methods in the context of nonparametric regression, for which pioneering work was
done by Choi et al. (2000). In Choi et al. (2000) the authors propose three different sharpening strategies for the Nadaraya–Watson
estimator. The first strategy sharpens the explanatory variable, the second strategy sharpens the response variable, while the
last strategy sharpens simultaneously both the explanatory and response variables. The exact formulae used by these three
sharpening strategies were designed and motivated by careful and large-sample theoretical considerations. Motivated by our
previouswork on spectral density estimation (Yao and Lee, 2007), in the present paperwe develop twomodifications of the above
sharpening strategies and investigate their empirical performances. The first modification is concerned with the sharpening of
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the response variable. Unlike those “fixed-amount” sharpening formulae examined by Choi et al. (2000), we allow the amount
of sharpening to be adjustable so that it could be tuned to adapt best to the data at hand. We achieve this via the introduction of
a new tuning parameter, which we shall call the sharpening parameter. Our second modification is, for each sharpening strategy,
the proposal of an automatic method for jointly selecting all the relevant tuning parameters, including the sharpening parameter
and the bandwidth(s) that control the amount of smoothing. In the regression setting we are unaware of any bandwidth selection
method developed in the literature for data sharpening, not to mention the non-existence of any method for choosing the
sharpening parameter. Therefore, these new parameter selection methods greatly enhance the applicability and practicality of
data sharpening for nonparametric regression.

The new parameter selection method was developed using the idea of Stein's unbiased risk estimation (SURE, Stein, 1981).
That is, an unbiased estimator for the L2 risk between the true function and the regression curve estimator is first constructed
and then the parameters are chosen as the joint minimizer of this risk estimator obtained from the sharpened data. We have
investigated the theoretical properties of our proposed unbiased risk parameter selection methods. By adopting and modifying
a technique of Li (1987), we were able to show that these selection methods are asymptotically optimal in the following sense:
the ratio of the L2 loss between the true and the estimated curve to the corresponding minimal possible loss converges to 1 in
probability. See Theorem 2 for a precise description of this result.

Wehave also conducted anumerical experiment to evaluate thepractical performances of the above threedifferent sharpening
strategies when combined with automatic parameter selection. Based on the empirical results, we recommend sharpening only
the response variable. It is because it provides a best compromise between statistical and computational efficiencies.

Before we proceed we highlight the major differences between the current work and the work conducted in Yao and Lee
(2007). First, only regularly-spaced data and one sharpening strategy are considered in Yao and Lee (2007) while the current
work extends to irregularly-spaced data and multiple sharpening strategies. Second, these two pieces of work study different
random structures: the current one studies additive errorswithmoment constraints, whereas for Yao and Lee (2007) the common
distribution of the multiplicative errors is assumed to be completely known (standard exponential). Last and most importantly,
the present work studies the consistency properties of the risk estimators while no theoretical study is offered by Yao and Lee
(2007) in this aspect.

The rest of this article is organized as follows. Section 2 provides background material and defines our data-sharpening
formulae. Automatic selection methods for choosing the sharpening parameter and bandwidths are described in Section 3.
Theoretical properties and practical performances of our sharpening methods are given, respectively, in Sections 4 and 5. Lastly
technical details are deferred to Appendix A.

2. Adaptive data-sharpening estimators

Suppose we observe n independently and identically distributed (i.i.d.) observations {(Xi,Yi)}ni=1 that were generated from a
bivariate population (X,Y). Our interest is to estimate the regression function g(x)=E(Y|X=x) that satisfies themodel assumption

Y = g(X) + �, (1)

where the independent random error � is zero-mean with variance Var(�) = �2. We also assume that the marginal density of X
(i.e., the design density) has a compact support.

Let K(·) be a nonnegative kernel function and h be a bandwidth. The Nadaraya–Watson estimator of g(x) is defined as

ĝ(x) =
n∑

j=1

Wj(x;h)Yj, (2)

where

Wj(x;h) = Kh(Xj − x)∑n
k=1 Kh(Xk − x)

with Kh(Xj − x) = 1
h
K

(
Xj − x

h

)
. (3)

Notice that ĝ(x) can be interpreted as a weighted average of the Yj's with weights Wj(x;h)'s sum to unity.
Following Choi et al. (2000), we investigate three different sharpening strategies. The first strategy sharpens only the explana-

tory variable X. It aims to cluster the design points Xi's closer together at regions for which the design density is high, and also to
separate them further apart at regions that have low design density. As illustrated by Choi et al. (2000), the goal for this strategy
is to obtain an improved estimate of the design density, which will in turn lead to a better estimate for g(x). The second strategy
keeps the design points unchanged and instead adjusts the response variable Y. For any (Xi,Yi) that is believed to be near a local
maximum, this second strategy aims to increase the value of Yi with the hope that this will offset the downward bias typically
caused by the local averaging operation around local maxima. Similarly, it also aims to decrease the value of Yi if this Yi is believed
to be near a local minimum. Lastly, the third sharpening strategy combines the above two strategies together; that is, both the
explanatory and response variables will be adjusted.

Our adaptive sharpening strategies modify those in Choi et al. (2000) in the following ways. First, in Choi et al. (2000) a single
bandwidth is used for sharpening the explanatory variable X as well as for smoothing the response variable Y, while we propose
using two different bandwidths, hx and hy, for executing these two different tasks. Second, for the sharpening of Y, we introduce
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an additional parameter �, the sharpening parametermentioned before, to control the amount of sharpening.We have developed
methods for automatically choosing the values of hx, hy and �.

Sharpening of explanatory variable X : Let hx be the bandwidth for sharpening the explanatory variable X The “sharpened”
design points are defined as

X̂i =
n∑

j=1

Wj(Xi;hx)Xj, i = 1, . . . ,n, (4)

where Wj(Xi;hx) was given in (3). With these sharpened design points, one could obtain a data-sharpening estimator for g(·) by
smoothing {(X̂i,Yi)}ni=1 with a second bandwidth hy. Denote the resulting estimator as g̃X(·). It admits the expression

g̃X(x) =
n∑

j=1

W̃j(x;hy)Yj with W̃j(x;hy) = Khy (X̂j − x)∑n
k=1 Khy (X̂k − x)

. (5)

Notice that two bandwidths (hx and hy) are required for computing g̃X(·), and that the weights W̃ 's depends implicitly on hx
through the X̂j's. Also notice that g̃X(·) is essentially the same as the “unsharpened” estimator ĝ(·), except now the raw data
(Xi,Yi)'s are replaced by the sharpened data (X̂i,Yi)'s. In below we shall refer g̃X(·) as the “ X-only estimator” of g(·).

Sharpening of response variable Y : The second data-sharpening estimator for g(·) is defined as follows. Denote the unsharpened
fitted value of Yi as Ŷi; that is, Ŷi = ĝ(Xi) with ĝ(·) defined in (2). The sharpened response variable is defined as

Ỹi = (1 + �)Yi − �Ŷi, i = 1, . . . ,n, (6)

where 0���1 is a tuning parameter that controls the degree of sharpening to Yi. We shall call � the sharpening parameter.
When � = 1 the above sharpening formula reduces to the corresponding sharpening formula studied by Choi et al. (2000), while
no sharpening is done when � = 0. Now the resulting data-sharpening estimator g̃Y (·) for g(·) can be obtained by smoothing
{(Xi, Ỹi)}ni=1 with bandwidth hy:

g̃Y (x) =
n∑

j=1

Wj(x;hy)Ỹj, (7)

where Wj(x;hy) was defined in (3). Note that g̃Y (·) requires both hy and � to be pre-specified. We shall call g̃Y (·) the “Y-only
estimator” for g(·).

Sharpening of both explanatory and response variables X and Y : Lastly we present the data-sharpening estimator for g(·) for
the case when both X and Y are sharpened. A more consistent notation for such an estimator is g̃X,Y (·), but for simplicity we
remove the superscripts and denote this estimator as g̃(·). This data-sharpening estimator is defined similarly to the unsharpened
estimator ĝ(·), except that (Xi,Yi)'s are now replaced by (X̂i, Ỹi)'s:

g̃(x) =
n∑

j=1

W̃j(x;hy)Ỹj, (8)

where X̂i, Ỹi and W̃j(x;hy) were defined in (4), (6) and (5), respectively. Observe that for g̃(·) three parameters (hx,hy,�) are needed
to be pre-selected. In sequel g̃(·) is referred as the “X-and-Y estimator” for g(·).

One can speculate that the introduction of the sharpening parameter in the last two situations leads to a more flexible and
data-adaptive sharpening strategy. Indeed, the simulation results to be reported below suggest that this adaptive sharpening
strategy performs very well in practice.

3. Automatic parameter selection

In practice the calculation of any of the above three versions of data-sharpening estimators for g(·) requires the selection of all
or some of the following three tuning parameters: hx, hy and �. This section presents automatic selection methods for choosing
their values. These methods are based on the unbiased risk estimation approach of Stein (1981). That is, the parameters are
chosen as the minimizers of an unbiased estimator of an appropriate risk function measuring the distance between the true and
the estimated g(·). We begin by defining the risk function for each of the three versions of data-sharpening estimators. We need
the following notation to proceed. LetXn = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn)

T . For i=1, . . . ,n, write gi = g(Xi), g̃Xi = g̃X(Xi), g̃Yi = g̃Y (Xi)

and g̃i = g̃(Xi). Finally set g = (g1, . . . , gn)
T , g̃X = (g̃X1 , . . . , g̃

X
n )

T ,g̃Y = (g̃Y1 , . . . , g̃
Y
n )

T and g̃ = (g̃1, . . . , g̃n)
T .

For the X-only estimator, conditioned on Xn, the corresponding risk function depends on the bandwidths hx and hy, and is
defined as

RX(hx,hy) = 1
n
E

⎧⎨
⎩

n∑
i=1

(gi − g̃Xi )
2‖Xn

⎫⎬
⎭ = 1

n
E(‖g − g̃X‖2|Xn), (9)
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where ‖ · ‖ = √〈·, ·〉 is the Euclidean norm associated with the corresponding inner product. Ideally hx and hy should be chosen as
the joint minimizer of RX(hx,hy). However, in practice this is not possible, as the true risk RX(hx,hy) is an unknown quantity. To
overcome this issue, we shall construct an unbiased estimator for RX(hx,hy) and select hx and hy as the joint minimizer of such
an unbiased risk estimator.

In a similar fashion, the risk functions for the Y-only and the X-and-Y data-sharpening estimators are defined, respectively, as

RY (hy,�) = 1
n
E

⎧⎨
⎩

n∑
i=1

(gi − g̃Yi )
2|Xn

⎫⎬
⎭ = 1

n
E(‖g − g̃Y‖2|Xn) (10)

and

R(hx,hy,�) = 1
n
E

⎧⎨
⎩

n∑
i=1

(gi − g̃i)
2‖Xn

⎫⎬
⎭ = 1

n
E(‖g − g̃‖2|Xn). (11)

For clarity, denote the residual sum of squares for the X-only estimator g̃X(·) as

RSSX(hx,hy) =
n∑

i=1

(Yi − g̃Xi )
2.

Similarly the residual sum of squares for the other two estimators g̃Y (·) and g̃(·) are denoted as

RSSY (hy,�) =
n∑

i=1

(Yi − g̃Yi )
2 and RSS(hx,hy,�) =

n∑
i=1

(Yi − g̃i)
2,

respectively. In the next theorem, we present our unbiased estimators for the above three risk functions (9)–(11).

Theorem 1. Conditioned onXn,

R̂X(hx,hy) = RSSX(hx,hy)
n

+ �2

n

n∑
i=1

{2W̃i(Xi;hy) − 1}, (12)

R̂Y (hy,�) = RSSY (hy,�)
n

+ �2

n

n∑
i=1

⎡
⎣2

⎧⎨
⎩(1 + �)Wi(Xi;hy) − �

n∑
j=1

Wj(Xi;hy)Wi(Xj;hy)

⎫⎬
⎭ − 1

⎤
⎦ (13)

and

R̂(hx,hy,�) = RSS(hx,hy,�)
n

+ �2

n

n∑
i=1

⎡
⎣2

⎧⎨
⎩(1 + �)W̃i(Xi;hy) − �

n∑
j=1

W̃j(Xi;hy)Wi(Xj;hy)

⎫⎬
⎭ − 1

⎤
⎦ , (14)

are unbiased estimators of the risk functions RX(hx,hy), Ry(hy,�) and R(hx,hy,�), respectively.

If the noise variance�2 is known, then the tuning parameters (hx,hy,�) can be chosen as the jointminimizer of the correspond-
ing risk estimator. If �2 is unknown, methods are available for obtaining an asymptotically unbiased and

√
n-consistent estimate

�̂2 that is independent of the tuning parameters (hx,hy,�) (e.g., see Buckley et al., 1988; Hall et al., 1990; Hall and Marron, 1990).
It is straightforward to see that the asymptotic unbiasedness of the risk estimators in Theorem 1 still holds if the unknown �2 is
replaced by such an independent estimate �̂2.

If thenoise variance�2 is knownor anestimate �̂2 canbeobtained independently of the tuningparameters, it is straightforward
to see that the minimization of the risk estimators R̂X(hx,hy), R̂Y (hy,�) and R̂(hx,hy,�) in Theorem 1 are equivalent to the
minimization of

R̃X(hx,hy) = RSSX(hx,hy)
n

+ 2�2

n

n∑
i=1

W̃i(Xi;hy), (15)

R̃Y (hy,�) = RSSy(hy,�)
n

+ 2�2

n

n∑
i=1

⎧⎨
⎩(1 + �)Wi(Xi;hy) − �

n∑
j=1

Wj(Xi;hy)Wi(Xj;hy)

⎫⎬
⎭ (16)

and

R̃(hx,hy,�) = RSS(hx,hy,�)
n

+ 2�2

n

n∑
i=1

⎧⎨
⎩(1 + �)W̃i(Xi;hy) − �

n∑
j=1

W̃j(Xi;hy)Wi(Xj;hy)

⎫⎬
⎭ , (17)
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respectively. Inpractice, for the threedata-sharpeningestimators g̃X(·), g̃Y (·) and g̃(·),wepropose choosing their tuningparameters
as, respectively, the jointminimizer of R̃X(hx,hy), R̃Y (hy,�) and R̃(hx,hy,�). In all our numericalwork below�2 is assumedunknown
and is estimated by the fourth order �2 estimator proposed by Hall et al. (1990), which admits the form

�̂2 = 1
n − 4

n−4∑
k=1

⎛
⎝ 4∑

j=0

djYj+k

⎞
⎠2

,

with (d0,d1,d2, d3, d4) = (0.2708,−0.0142, 0.6909,−0.4858,−0.4617).

4. Theoretical properties

This section summarizes our theoretical findings of the proposed parameter selection procedures that minimize the risk
estimators defined in (15)–(17). More specifically, wewill establish that these parameter selection procedures are asymptotically
optimal in a well defined sense, as stated in (21)–(23) below.

For technical feasibility, we shall assume that the risk estimators (15)–(17) are minimized over the discrete index sets AX
n ,

AY
n andAn, respectively. In other words, say for R̃X(hx,hy) in (15), its joint minimizer is restricted to be an element ofAX

n , where
AX

n can be seen as a two-dimensional gridded values of (hx,hy). One could always keep increasing the grid density ofAX
n so that

AX
n is dense inR2. Therefore, practically speaking, when the grid density is high enough, no difference would bemade nomatter

if R̃X(hx,hy) was minimized overAX
n orR2. Similar comments apply to bothAY

n andAn. In below, we shall denote the order of
the cardinalities of AX

n , A
Y
n and An as, respectively, n�X , n�Y and n�. That is, |AX

n | = O(n�X ), |AY
n | = O(n�Y ) and|An| = O(n�) for

some �X ,�Y ,�>0.
To continue, define, respectively, the loss functions for the three versions of the sharpening estimators as

LX(hx,hy) = 1
n

n∑
i=1

(gi − g̃Xi )
2 = 1

n
‖g − g̃X‖2, (18)

LY (hy,�) = 1
n

n∑
i=1

(gi − g̃Yi )
2 = 1

n
‖g − g̃Y‖2 (19)

and

L(hx,hy,�) = 1
n

n∑
i=1

(gi − g̃i)
2 = 1

n
‖g − g̃‖2. (20)

Let (ĥx, ĥy) ∈ AX
n , (ĥy, �̂) ∈ AY

n and (ĥx, ĥy, �̂) ∈ An be, respectively, the minimizers of (15)–(17). That is, they are the parameters
selected by the proposed parameter selection procedures. Then our proposed selection procedures are asymptotically optimal in
the following sense:

LX(ĥx, ĥy)
inf(hx ,hy)∈AX

n
LX(hx,hy)

P−→1, (21)

LY (ĥy, �̂)
inf(hy ,�)∈AY

n
LY (hy,�)

P−→1 (22)

and

L(ĥx, ĥy, �̂)
inf(hx ,hy ,�)∈An

L(hx,hy,�)
P−→1, (23)

for any sequence of design points Xn. These asymptotic optimality for the proposed procedures are established in Theorem 2
below. Similar definitions for asymptotic optimality have also been studied by previous authors in different contexts, for both
parametric and nonparametric model selection problems. For examples, see Craven and Wahba (1979) on generalized cross-
validation and Li (1986, 1987) on Mallow's CL and (generalized) cross-validation.

Now we present the required assumptions for establishing (21)–(23). Define the n × n matrices W = {Wj(Xi;hy)}1� i,j�n and
W̃ = {W̃j(Xi;hy)}1� i,j�n. From (5), (7) and (8), the so-called “smoother matrices” for obtaining the sharpened estimators g̃X , g̃Y

and g̃ are, respectively, MX = W̃ , MY = (1 + �)W − �W2 and M = (1 + �)W̃ − �W̃W . That is, g̃X = MXY , g̃Y = MYY andg̃ = MY .
Denote the maximum singular value of an arbitrary matrix A by �A. The assumptions required for establishing the asymptotic
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optimality of R̃X(hx,hy) are: for any sequence of design pointsXn,

(A1) lim supn→∞ sup(hx ,hy)∈AX
n
�MX <∞,

(A2)
∑

(hx ,hy)∈AX
n
{nRX(hx,hy)}−mX → 0 as n → ∞,

(A3) E(�4mX )<∞,

for some mX >0 satisfying certain condition discussed below. Assumption (A1) is natural, and in fact if �MX >1, then g̃X is inad-
missible and dominated by some other linear estimators (Cohen, 1966). To understand (A2), one first notes that in nonparametric
regression with the sample size n goes to infinity, the optimal risk RX(hx,hy) is typically of order n−(1−�′

X ) for some �′
X >0. If the

cardinality ofAX
n is of polynomial order n�X for some �X >0, one can always find anmX >�X/�

′
X so that (A2) is satisfied. The last

assumption (A3) is just a standard moment condition on the error distribution.
Analogously, the assumptions for establishing the asymptotic optimality of R̃Y (hy,�) and R̃(hx,hy,�) are: for any sequence of

design pointsXn,

(A1∗) lim supn→∞ sup(hy ,�)∈AY
n
�MY <∞,

(A2∗)
∑

(hy ,�)∈AY
n
{nRY (hy,�)}−mY → 0 as n → ∞,

(A3∗) E(�4mY )<∞,

and

(A1†) lim supn→∞ sup(hx ,hy ,�)∈An
�M <∞,

(A2†)
∑

(hx ,hy)∈An
{nR(hx,hy,�)}−m → 0 as n → ∞,

(A3†) E(�4m)<∞,

for some mY >0 and m>0 that have certain lower bounds similar to mX .

Theorem 2. If the noise variance �2 is known, then, for any sequence of design pointsXn,

• R̃X(hx,hy) is asymptotically optimal under assumptions (A1)–(A3); i.e., (21) holds for (h̃x, h̃y) = arginf(hx ,hy)∈AX
n
R̃X(hx,hy),

• R̃Y (hy,�) is asymptotically optimal under assumptions (A1∗)–(A3∗); i.e., (22) holds for (h̃y, �̃) = arginf(hy ,�)∈AY
n
R̃Y (hy,�), and

• R̃(hx,hy,�) is asymptotically optimal under assumptions (A1†)–(A3†); i.e., (23) holds for (h̃x, h̃y, �̃) = arginf(hx ,hy ,�)∈An
R̃(hx,hy,�).

If the noise variance is unknown and is replaced by an independent
√
n-consistent estimate �̂2, then the conclusions in

Theorem 2 also hold with the following additional assumptions:

(A4) sup(hx ,hy)∈AX
n
n−3/2R−1

X (hx,hy) tr(MX) −→ 0;

(A4∗) sup(hy ,�)∈AY
n
n−3/2R−1

Y (hy,�) tr(MY ) −→ 0;

(A4†) sup(hx ,hy ,�)∈An
n−3/2R−1(hx,hy,�) tr(M) −→ 0.

Corollary 1. If the noise variance �2 is unknown and is replaced by an independent
√
n-consistent estimate �̂2, then the asymptotic

optimality of R̃X(hx,hy), R̃Y (hy,�) and R̃(hx,hy,�) still holds for any sequence of design pointsXn under the assumption sets (A1)–(A4),
(A1∗)–(A4∗) and (A1†)–(A4†), respectively.

5. Numerical performance

Two sets of numerical experiments were conducted to evaluate the empirical properties of the proposed methodology.

5.1. The settings of Choi et al. (2000)

In this first set of experiments we compare the relative performances amongst the unsharpened estimator ĝ(·) defined by (2)
and all other sharpened estimators: the sharpened X-only estimator g̃X(·) defined by (5), the sharpened Y-only estimator g̃Y (·)
defined by(7), and the sharpened X-and-Y estimator g̃(·) defined by (8). The bandwidth h for the unsharpened estimator ĝ(·) was
automatically chosen as the minimizer of

1
n

n∑
i=1

{Yi − ĝ(Xi)}2 + �2

n

n∑
i=1

{2Wi(Xi;h) − 1},
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Table 1
MSE values for each combination of (q,�) together with standard errors in parentheses obtained from the numerical experiments conducted in Section 5.1.

(q,�) Unsharpened X-only Y-only X-and-Y

(1,0.1) 10.84 (0.41) 10.41 (0.41) 9.32 (0.38) 9.20 (0.38)
(1,0.5) 15.67 (0.58) 14.81 (0.57) 13.41 (0.50) 13.15 (0.51)
(1,0.9) 23.52 (1.03) 22.55 (1.04) 23.05 (1.07) 22.00 (1.07)

(2,0.1) 9.98 (0.29) 9.69 (0.28) 8.55 (0.26) 8.51 (0.27)
(2,0.5) 10.25 (0.28) 9.92 (0.29) 8.88 (0.24) 8.75 (0.26)
(2,0.9) 12.66 (0.41) 12.29 (0.41) 11.50 (0.40) 11.34 (0.40)

(4,0.1) 9.15 (0.27) 8.88 (0.26) 7.85 (0.23) 7.76 (0.22)
(4,0.5) 8.69 (0.24) 8.47 (0.24) 7.57 (0.20) 7.54 (0.20)
(4,0.9) 10.37 (0.28) 10.67 (0.31) 9.70 (0.31) 9.75 (0.31)

For clarity, these values are multiplied by 100. Recall that (q,�) are parameters of the mixture density that generated the design points x: �B(4, q)+ (1− �)U[0, 1],
where B(·, ·) and U[0, 1] are the beta and the standard uniform distributions, respectively.

which is an unbiased estimator of the risk function

1
n
E

⎡
⎣ n∑

i=1

{gi − ĝ(Xi)}2|Xn

⎤
⎦

(e.g., see Rice, 1984). We are aware that, in terms of empirical performance, there are more reliable kernel-based smoothing
methods other than this unsharpened estimator ĝ(·). However, as ĝ(·) can be treated as an unsharpened version of the three
sharpened estimators proposed above, we adopted it here for the purpose of evaluating the improvement, if any, that could be
gained by using data sharpening.

For the three data-sharpening estimators, their tuning parameters were chosen, respectively, as the joint minimizer of
R̃X(hx,hy), R̃Y (hy,�) and R̃(hx,hy,�). In all cases the noise variance �2 was assumed unknown and was estimated by the fourth
order estimator proposed by Hall et al. (1990). Although this variance estimator may suffer from finite-sample bias problems
(Seifert and Gasser, 1993), it performed satisfactory in our numerical work.

We follow Choi et al. (2000) and adopted the following experimental settings. The target regression function was

g(x) = 2 − 5x + 2.5k exp{−200k(x − 0.5)2},

which is a linear trend with a Gaussian peak centered at x= 0.5. We used k= 2. The design density for xwas a mixture density of
a beta distribution B(p, q) with parameters p and q and the uniform distribution U[0, 1] on [0, 1] : �B(4, q) + (1 − �)U[0, 1], where
0���1 is the mixing probability. Three values of q and three values of � were used: q = 1, 2 and 4, and � = 0.1, 0.5 and 0.9. The
sample size was n = 100 and the noise was zero-mean Gaussian with �2 = 0.52. To reduce the edge effects, we followed Choi
et al. (2000) and placed additional designed points distributed uniformly in [−0.5, 0]∪ [1, 1.5]. The following kernel function was
used: K(x) = 3

4 (1 − x2), x ∈ [0, 1]. It is the optimal kernel of order (0, 2) derived in Gasser et al. (1985).
For each combination of (q,�), 200 artificial data sets were generated. Then the unsharpened and the three data-sharpening

methods were applied to each simulated data set to obtain estimates for g(x). For the unsharpened estimate ĝ(·), the following
was calculated as an approximation to the mean-squared-error (MSE)

∫ 1
0 {g(x) − ĝ(x)}2 dx:

MSE(ĝ) = 1
201

200∑
i=0

{
g

(
1

200

)
− ĝ

(
1

200

)}2

.

Similar MSE values were also calculated for the three sharpening estimators g̃X(·), g̃Y (·) and g̃(·). The means and standard errors
of these calculated MSE values are tabulated in Table 1.

Paired t-tests were applied to test if the difference between the averaged MSE values of any two estimation methods is
significant or not. The significance level used was 5

4%= 1.25%. Based on the test results the four estimation methods were ranked
in the followingmanner. If the averagedMSE value of a method is significantly less than the remaining three, it will be assigned a
rank 1. If the averagedMSE value of amethod is significantly larger than one but less than twomethods, itwill be assigned a rank 2,
and similarly for ranks 3 and 4. Methods having non-significantly different averaged MSE values will share the same averaged
rank. The resulting rankings are tabulated in Table 2.

From Tables 1 and 2, one could see that, in terms of statistical significance, g̃X(·) never gave a worse averaged MSE value than
ĝ(·), g̃Y (·) never gave a worse averaged MSE value than g̃X(·), and g̃(·) never gave a worse averaged MSE value than ĝY (·). Also, the
overall averaged t-test rankings for ĝ(·), g̃X(·), g̃Y (·) and g̃(·) are, respectively, 3.72, 3.06, 1.72 and 1.50. Judging from these results
it seems that the X-and-Y data-sharpening estimator g̃(·) is the most preferable estimator. However, as g̃(·) requires the selection
of three tuning parameters (hx,hy,�) (i.e., need to solve a three-dimensional minimization problem), the Y-only data-sharpening
estimator g̃Y (·) is a viable alternative. It is because g̃Y (·) only requires the choosing of two parameters (hy,�) and it gave very
comparable performance relative to g̃(·).
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Table 2
Pairwise t-test rankings for the unsharpened and sharpening estimates for the numerical experiments conducted in Section 5.1.

(q,�) Unsharpened X-only Y-only X-and-Y

(1, 0.1) 4 3 1.5 1.5
(1, 0.5) 4 3 1.5 1.5
(1, 0.9) 2.5 2.5 2.5 2.5

(2, 0.1) 4 3 1.5 1.5
(2, 0.5) 4 3 2 1
(2, 0.9) 4 3 1.5 1.5

(4, 0.1) 4 3 2 1
(4, 0.5) 3.5 3.5 1.5 1.5
(4, 0.9) 3.5 3.5 1.5 1.5

Averaged 3.72 3.06 1.72 1.50

Table 3
Medians of the relative absolute distances between various ideal and selected parameters for the numerical experiments conducted in Section 5.1.

(q,�) Unsharpened h X-only Y-only X-and-Y

hx hy hy � hx hy �

(1,0.1) 0.31 0.50 0.25 0.29 0.00 0.53 0.29 0.00
(1,0.5) 0.38 0.59 0.33 0.33 0.00 0.50 0.32 0.11
(1,0.9) 0.36 0.60 0.33 0.33 0.20 0.50 0.29 0.25

(2,0.1) 0.30 0.60 0.25 0.29 0.00 0.67 0.25 0.00
(2,0.5) 0.27 0.50 0.25 0.29 0.00 0.40 0.25 0.00
(2,0.9) 0.25 0.50 0.25 0.20 0.00 0.50 0.17 0.00

(4,0.1) 0.26 0.67 0.25 0.29 0.00 0.67 0.20 0.00
(4,0.5) 0.19 0.40 0.20 0.17 0.00 0.50 0.17 0.00
(4,0.9) 0.15 0.59 0.00 0.17 0.00 0.50 0.17 0.00

The following has been done for assessing the qualities of the selected parameters. For each simulated data set and for the
Y-only estimator, we obtained the corresponding ideal bandwidth hidealy and ideal sharpening parameter �ideal that jointly
minimizeMSE(ĝ). These ideal values are of course not obtainable in practice. We then calculated the following absolute distances
between these ideal values with those (ĥy, �̂) that were automatically selected by the corresponding proposed selection method:

∣∣∣∣∣∣
ĥy − hidealy

ĥy

∣∣∣∣∣∣ and

∣∣∣∣∣ �̂ − �ideal

�̂

∣∣∣∣∣ .

Finally, for each combination of (q,�), the median values of the above two distances were calculated. Similar median values for
the unsharpened, X-only, and X-and-Y estimators were also computed. The reason that the medians instead of the means were
calculated was that, for some data sets the values of the selected or the ideal values of (hy,�) were very close to zero. This led to
numerical instability when the above distances were being averaged, and the use of median bypasses this issue.

The above median values are tabulated in Table 3, and from which one could see that the proposed selection methods
performed very well for selecting the sharpening parameter �, and reasonably well for the Y-direction bandwidth hy.

For each simulated data set we have also calculated the MSE value when the ideal parameter values were used in place of
those selected values. Denote this “ideal MSE” value as MSEideal and the one from the selected parameters as ̂MSE. With this we
computed the following relative reduction of MSE value: (̂MSE−MSEideal)/̂MSE. The averaged MSE reductions for all combinations
of (q,�) are listed in Table 4. Loosely, about 10–30% further reduction in MSEs is possible if the ideal parameter values were
known.

To visually evaluate the qualities of various estimated curves, we randomly selected a data set generatedwith q=4 and �=0.5,
and computed the corresponding unsharpened curve estimate and the three different versions of sharpened estimates. This data
set, the true regression function, and all the curve estimates are displayed in Fig. 1. To further facilitate the visual inspection
of the behaviors of various sharpening strategies around the central peak of the true regression function, zoomed-in plots for
X ∈ [0.44, 0.56] are given in Fig. 2. From these plots one could see that, for both the Y-only and X-and-Y estimators, the resulting
estimated curves were pulled closer towards the true regression function.
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Fig. 1. Plots of the observations (asterisks), true regression function (broken lines) and various estimated curves (solid lines) for the numerical experiments
conducted in Section 5.1. The MSE value of each estimated curve is listed at the bottom of each panel.
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Fig. 2. Zoomed-in plots of Fig. 1 for X ∈ [0.44, 0.56]. In each panel the true regression function and the estimated curve are represented as broken and solid
lines, respectively. Raw observations and sharpened data are denoted as asterisks and circles, respectively. One could see that, for both the Y-only and X-and-Y
estimators, the resulting estimated curves were pulled closer towards the true regression function.
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Table 4
MSE reduction values (in %), together with standard errors in parentheses, if the ideal parameter values were used instead of those selected by the proposed
automatic methods for the numerical experiments conducted in Section 5.1.

(q,�) Unsharpened X-only Y-only X-and-Y

(1,0.1) 21.6 (1.06) 23.1 (0.97) 23.1 (1.07) 25.9 (1.03)
(1,0.5) 29.3 (1.11) 31.4 (1.09) 31.3 (1.16) 35.0 (1.14)
(1,0.9) 20.1 (1.14) 23.6 (1.11) 26.8 (1.24) 30.0 (1.22)

(2,0.1) 19.9 (1.02) 22.2 (0.98) 20.8 (1.03) 24.6 (1.06)
(2,0.5) 17.0 (1.04) 19.4 (0.91) 18.8 (0.98) 21.2 (0.95)
(2,0.9) 10.9 (0.83) 14.1 (0.79) 12.4 (0.88) 17.1 (0.91)

(4,0.1) 17.3 (0.98) 20.0 (0.96) 19.1 (1.02) 22.6 (0.99)
(4,0.5) 8.9 (0.72) 11.4 (0.70) 9.9 (0.71) 13.9 (0.75)
(4,0.9) 3.5 (0.37) 11.4 (0.72) 6.2 (0.56) 12.6 (0.81)

Table 5
MSE values for each combination of (q,�) together with standard errors in parentheses obtained from the numerical experiments conducted in Section 5.2.

(q,�) Test function 1 Test function 2

Unsharpened Y-only Unsharpened Y-only

(1,0.1) 10.56 (0.34) 7.22 (0.30) 2.60 (0.08) 2.19 (0.07)
(1,0.5) 6.61 (0.41) 3.05 (0.14) 3.34 (0.11) 3.09 (0.11)
(1,0.9) 36.56 (3.17) 16.61 (1.51) 7.00 (0.34) 6.49 (0.36)

(2,0.1) 10.75 (0.35) 7.73 (0.33) 2.56 (0.08) 2.21 (0.07)
(2,0.5) 5.75 (0.42) 2.65 (0.14) 2.62 (0.08) 2.22 (0.07)
(2,0.9) 25.65 (1.48) 10.55 (0.67) 4.27 (0.16) 3.45 (0.14)

(4,0.1) 10.85 (0.31) 7.73 (0.31) 2.45 (0.07) 2.06 (0.06)
(4,0.5) 5.47 (0.26) 2.43 (0.10) 2.41 (0.06) 2.06 (0.06)
(4,0.9) 22.24 (1.33) 8.80 (0.60) 3.50 (0.11) 2.90 (0.11)

For clarity, these values are multiplied by 100.

5.2. Two additional test functions

In order to demonstrate the usefulness of the sharpeningmethodology, the above-recommended Y-only estimatorwas further
tested with two additional test functions.

Test function 1: g(x) = 1 − 48x2 + 218x2 − 315x3 + 145x4

Test function 2: g(x) = sin(8x − 4) + 2 exp{−16(4x − 2)2}.

These two functions have been used by previous authors (e.g., Ruppert et al., 1995; Fan and Gijbels, 1996).
The design points were generated in the same manner as before, and the same nine combinations of (q,�) were tested. The

noise standard deviation � was set to the value that the resulting signal-to-noise ratio ‖g‖/� was 3. For each generated data set,
both the unsharpened and the Y-only estimators were applied to estimate the unknown test function, and the corresponding
MSE values were computed. The averages and standard errors of the MSE values are provided in Table 5. These values show that
the Y-only estimator never performed worse than the unsharpened estimator. In some situations the averaged MSE values of the
Y-only estimator are even less than 50% of those from the unsharpened estimator.

5.3. Local linear regression

When comparing to the classical Nadaraya–Watson estimator, it is known that the local linear regression estimator has
superior bias properties (e.g., Fan and Gijbels, 1996). Therefore it is interesting to compare data sharpening with local linear
regression.

A new set of simulations was conducted using the same experimental setup as in Section 5.1. Three estimators were studied:
the proposed Y-only estimator, local linear regression (without sharpening), and local linear regression with the Y-only sharp-
ening strategy. The bandwidths for the later two estimators were chosen using Stein's unbiased risk estimation approach. Two
major empirical conclusions can be drawn from the numerical results. First, the unsharpened local linear regression estimator
gave inferior performance to both Y-only sharpening estimators. Second, the Y-only local linear regression did not outperform the
Y-only Nadaraya–Watson estimator. This seems to suggest that the comparative bias advantage of local linear regression dis-
appears when data sharpening is employed. For brevity, these simulation results are omitted but can be obtained from the
authors.
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6. Conclusion

In this paper we have modified the data-sharpening technique for nonparametric regression in two directions. First, through
the introduction of the sharpening parameter �, we allow the data to be sharpened to different extents. Second, using the idea
of unbiased risk estimation, we have developed methods for simultaneously choosing the values of all the tuning parameters
required for the computations of the sharpened estimators. We have also shown that these parameter selection methods are
asymptotically optimal in a well defined sense. In addition we have conducted numerical experiments to demonstrate the
superiority of the sharpened estimators when comparing to their unsharpened counterparts. From the simulation results we
recommend the estimator that sharpens only the response variable as the “best” estimator, in the sense that it provides a good
compromise between statistical performance and computational speed.
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Appendix A. Proofs

Proof of Theorem 1. We first show the unbiasedness of R̂X(hx,hy). Note that

E{RSSX(hx,hy)|Xn} = E

⎧⎨
⎩

∑
i

(Yi − g̃Xi )
2|Xn

⎫⎬
⎭ =

∑
i

E{Y2
i − 2Yig̃

X
i + (g̃Xi )

2|Xn},

E(Yi|Xn)= gi and E(Y2
i |Xn)= g2i + �2, where gi = g(Xi) and g = (g1, . . . , gn)

T . For brevity, in the sequel we suppress the dependence
of expectations on the design pointsXn. We also use the notation “

∑
i” for “

∑n
i=1” unless specified otherwise. From (5) we have

E(Yig̃
X
i ) = E

⎧⎨
⎩Yi

∑
j

W̃i(Xj;hy)Yj

⎫⎬
⎭

= W̃i(Xi;hy)(g
2
i + �2) +

∑
j� i

W̃j(Xi;hy)gigj

=
∑
j

W̃j(Xi;hy)gigj + W̃i(Xi;hy)�2

= giE(g̃
X
i ) + W̃i(Xi;hy)�2.

Then we have

E(Yi − g̃Xi )
2 = g2i + �2 − 2{giE(g̃Xi ) − W̃i(Xi;hy)�2} + E{(g̃Xi )2}

= E{(gi − g̃Xi )
2} − {2W̃i(Xi;hy) − 1}�2

and

E{RSSX(hx,hy)} = nRx(hx,hy) − �2
∑
i

{2W̃i(Xi;hy) − 1},

which leads to the unbiasedness of R̂X(hx,hy).
We next show the unbiasedness of RY (hx,hy). From (2) and (7), one has Ỹi = (1 + �)Yi − �

∑
j Wj(Xi;hy)Yj and

g̃Yi = (1 + �)
∑
j

Wj(Xi;hy)Yj − �
∑
j,k

Wj(Xi;hy)Wk(Xj;hy)Yk.
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For convenience, writeWij = Wj(Xi;hy). Then we have

E(Yig̃
Y
i ) = E

⎧⎨
⎩(1 + �)(gi + �i)

∑
j

Wij(gj + �j)

⎫⎬
⎭ − �E

⎧⎨
⎩(gi + �i)

∑
j,k

WijWjk(gk + �k)

⎫⎬
⎭

= (1 + �)

⎛
⎝gi

∑
j

Wijgj + �2Wii

⎞
⎠ − �

⎧⎨
⎩

∑
j

WijWji(g
2
i + �2) + gi

∑
j

∑
k� i

WijWjkgk

⎫⎬
⎭

=
⎧⎨
⎩(1 + �)Wii − �

∑
j

WijWji

⎫⎬
⎭�2 + gi

⎧⎨
⎩(1 + �)

∑
j

Wijgj − �
∑
j,k

WijWjkgk

⎫⎬
⎭

=
⎧⎨
⎩(1 + �)Wii − �

∑
j

WijWji

⎫⎬
⎭�2 + giE(g̃

Y
i ).

Therefore

E{(Yi − g̃Yi )
2} = g2i + �2 − 2

⎡
⎣

⎧⎨
⎩(1 + �)Wii − �

∑
j

WijWji

⎫⎬
⎭�2 + giE(g̃

Y
i )

⎤
⎦ + E{(g̃Yi )2}

= E{(gi − g̃Yi )
2} −

⎡
⎣2

⎧⎨
⎩(1 + �)Wii − �

∑
j

WijWji

⎫⎬
⎭ − 1

⎤
⎦�2

and

E{RSSY (hy,�)} = nRy(hy,�) − �2
∑
i

⎡
⎣2

⎧⎨
⎩(1 + �)Wii − �

∑
j

WijWji

⎫⎬
⎭ − 1

⎤
⎦ .

Thus R̂Y (hy,�) is an unbiased estimator of Ry(hy,�). By analogy to R̂Y (hy,�), one can easily show the unbiasedness of
R̂(hx,hy,�). �

Proof of Theorem 2. In here we establish the asymptotic optimality of R̃y, while the proofs for the other two versions are
essentially the same. First note that the smoother matrix for computing g̃Y is MY = (1 + �)W − �W2, where W = (Wij)1� i,j�n,
which implies that the diagonal elements of MY = (mij)1� i,j�n is mii = (1 + �)Wij − �

∑
jWijWji. Then one can express R̃Y (hy,�) =

(1/n)(RSSY + 2
∑

imii�2). Write � = (�i, . . . , �n)
T and A = I − MY , where I is the n × n identity matrix. We have

nR̃Y (hy,�) = ‖Y − g + g − g̃Y‖2 + 2
∑
i

mii�2

= ‖�‖2 + nLY (hy,�) + 2〈�, g − g̃Y 〉 + 2
∑
i

mii�2

= ‖�‖2 + nLY (hy,�) + 2〈�,Ag〉 + 2

⎛
⎝∑

i

mii�2 − 〈�,MY�〉
⎞
⎠ . (24)

Since ‖�‖2 does not depend on (hy,�), in order to prove (22), it is sufficient to show that, for any sequence of design pointsXn,

sup
AY

n

|〈�,Ag〉|/{nRY (hy,�)} P−→0, (25)

sup
AY

n

|
∑
i

mii�2 − 〈�,MY�〉|/{nRY (hy,�)} P−→0 (26)

and

sup
AY

n

|LY (hy,�)/RY (hy,�) − 1| P−→0. (27)
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To show (25), we apply Chebyshev's inequality: for any �>0, one has

P

⎧⎨
⎩sup

AY
n

|〈�,Ag〉|
nRY (hy,�)

>�

⎫⎬
⎭ �

1

�2mY

∑
AY

n

E(〈�,Ag〉2mY )

n2mY RY (hy,�)
2mY

�
C

�2mY

∑
AY

n

‖Ag‖2mY

n2mY R2mY
Y (hy,�)

, (28)

for someconstantC>0, byobserving (A3) andapplyingTheorem2ofWhittle (1960). SincenRY (hy,�)=‖Ag‖2+E(‖MY�‖2)� ‖Ag‖2
and (A2), the right-hand side of (28) is bounded by C�−2mY

∑
AY

n
{nRY (hy,�)}−mY → 0. Thus (25) is proved.

Eq. (26) can be shown analogously by observing

E〈�,MY�〉 = E

⎛
⎝∑

i

mii�2i

⎞
⎠ = �2

∑
i

mii

and

nRY (hy,�)� E(‖MY�‖2) = E

⎛
⎝∑

i

mii�2i

⎞
⎠ = �2

∑
i

mii ��2tr(MT
YMY ).

Then (26) follows by (A2) and (A3) and again Theorem 2 of Whittle (1960),

P

⎧⎨
⎩sup

AY
n

|∑i mii�2 − 〈�,MY�〉|
nRY (hy,�)

>�

⎫⎬
⎭ �

1

�2mY

∑
AY

n

E{(〈�,MY�〉 − E〈�,MY�〉)2mY }
n2mY R2mY (hy,�)

�
C′

�2mY

∑
AY

n

tr(MT
YMY )

n2mY R2mY
Y (hy,�)

�
C′

�2mY �2

∑
AY

n

1
nmY RmY

Y (hy,�)
−→ 0.

To show (27), one notes

LY (hy,�) − RY (hy,�) = 1
n

{‖MY�‖2 − E(‖MY�‖2) − 2〈Ag,MY�〉}.

Then it is sufficient to show

sup
AY

n

|〈Ag,MY�〉|/{nRY (hy,�)} P−→0 (29)

and

sup
AY

n

|‖MY�‖2 − E(‖MY�‖2)|/{nRY (hy,�)} P−→0, (30)

which is similar to the proofs of (25) and (26). Observing

〈Ag,MY�〉 = 〈�,MT
YAg〉 and ‖MT

YAg‖2 ��MY ‖Ag‖2,

that lead to (29), while

‖MY�‖2 = 〈�,MT
YMY�〉 and tr(MT

YMYMT
YMY )��2

MY
tr(MT

YMY ),

complete the proof of (30). �

Proof of Corollary 1. The identity (24) holds with �2 replaced by �̂2, and (25) and (27) are still valid. We only need to verify (26)
with �2 substituted by �̂2. Since the estimate �̂2 does not depend on the tuning parameters hy and �, it is sufficient to show

|�̂2 − �2| sup
AY

n

∑
i

mii/{nRY (hy,�)} P−→0.

It is obvious that the assumption (A4∗) leads to the asymptotic optimality of R̃Y (hy,�), given that the estimate �̂2 is√
n-consistent. �
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