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summary

In the Bayes approach the model-data summary is the observed likelihood func-
tion; in the frequentest approach it is arguably a p-value function assessing a least
squares or maximum-likelihood departure; and in the higher-order likelihood ap-
proach it is the observed likelihood together with a canonical reparameterization.
For likelihood the obvious method of combining is to add log-likelihoods from
independent sources: this is in the nature of likelihood itself and is also a Bayes
imperative as only likelihood is used in the Bayesian argument. For the familiar
frequentest approach the combining of p-values is often ad hoc: we discuss first a
Fisher proposal and then offer a likelihood based alternative. For the higher order
likelihood approach the combining begins with the standard summary, which is
likelihood plus a canonical reparameterization: we develop the appropriate higher
order combining procedure. For the p-value summary, Fisher (1948) proposed a
quick and easy method for combining p-values from independent investigations:
multiply them together and use chi-square tables. The proposal received criti-
cism that it did not address power and other conventional criteria, but Fisher
had assumed quite clearly that such related information was unavailable. We
use first order likelihood theory to derive a simple modification: the p-values are
converted to likelihood values and the likelihood values to observed likelihood
functions and these in turn to a new composite p-value. Higher order likelihood
offers further refinement: use the standard summary involving the log-likelihood
`(θ) and the canonical reparameterization ϕ(θ); the combining from indepen-
dent investigations then amounts to adding the observed log-likelihoods `i(θ) and
weighting and adding the reparameterizations ϕi(θ). We develop this information
combining procedure: add log-likelihoods and suitably weight and add canonical
parameters. Some examples follow.

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.
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1 Introduction1

(i) Fisher on combining p-values2

Two independent investigations lead to p-values .145 and .087 and it ” is sometimes desired3

. . . to obtain a single (test) ... based on the product of the (individual p-values) observed.”4

Thus Fisher (1948) introduced a quick and easy method for combining p-values “taking5

account only of (the p-values) and not of the detailed composition of the (initial) data6

. . . .” Fisher used three p-values but two values will suffice for illustration here. Various7

criticisms emerged that his proposal did not address conventional optimality criteria. He of8

course ignored the criticisms for he had been upfront in mentioning the absence of “detailed9

composition” concerning the original data. He thus presented a quick and dirty method, a10

useful method like a mean-and-standard deviation assessment of data.11

Consider a single p-value p, which under a hypothesis being examined would be Uniform(0, 1)12

in distribution. The transformation χ2 = −2 log p is a decreasing transformation and it con-13

verts the Uniform(0, 1) distribution for p to a chi-square (2 df) for χ2; and it has the14

attractive simplicity that the right tail distribution function of the new variable is just15

exp{−χ2/2}. Also if small values of p indicate significance then large value of χ2 corre-16

spondingly represent significance.17

Fisher then made use of the additivity of chi-square variables. The two p-values 14.5%18

and 8.7% give the chi-square values 3.86 and 4.88 and thus give the composite χ2 = 3.86 +19

4.88 = 8.74; the corresponding right tail p-value for chi-square (4 df) is 6.8%, and represents20

some blend of the original p-values. In Figure 1a we plot the observed p-value vector21

(p1, p2) = (.145, .087); then in Figure 1b we plot the observed chi-square vector (χ2
1, χ

2
2) =22

(3.86, 4.88) together with the contour of points having the same χ2 = 8.74 value and thus23

having the same composite p-value p = 6.8%; the image of this observed contour is then24

recorded in Figure 1a. To give some feel for this we calculate the median value of chi-square25

(4 df)): χ2 = 3.36; then plot in Fig 1b the contour of points (χ2
1, χ

2
2) having χ2 at that26

median value, and then the corresponding contour of (p1, p2) in Figure 1a.27

Fisher described the procedure as a “simple test of the significance of the aggregate”,28

certainly a simple quick and easy way of combining p-values without “detailed (information29

concerning) the (original) data.” Clearly the procedure is driven by the simplicity of the30

χ2 = −2 log p mapping. And Figure 1 indicates that it treats p-values in a balanced way,31

while often p-values can have quite different importance in the evaluation of a parameter,32

and we will see this in Section 4.33

(ii) First order likelihood combining34

Now consider how first order likelihood analysis can inform the combining of p-values from35

independent investigations. We use results that say log-likelihood functions should be added36

and that observed information provides evidence concerning the strength of the p-value37

information. The manner in which p-values are calculated is clearly relevant. For this38

suppose the p-values are providing a one sided assessment of a scalar parameter θ = θ0,39
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Figure 1: (a) The observed p-vector (p0
1, p

0
2) = (0.145, 0.087), the corresponding contour,

and the median contour. (b) The observed χ2 vector with χ2 = 8.74 and p-value 0.068 with
corresponding contour, and the median contour with χ2 = 3.36.

such as p = Φ−1{(ȳ−µ0)/(σ̂/
√
n)} might be giving a Central Limit Theorem assessment of1

µ = µ0. with a concern that µ might be large relative to µ0. Thus we are considering basic2

one-sided p-values with small indicating significance, and not the common 2-sided values3

that are often proposed.4

The extension of Central Limit Theorem analysis into likelihood theory says that the
signed likelihood root (SLR) r(θ) and the Wald statistic q(θ) are first order Normal (0, 1):

r(θ) = sgn(θ̂ − θ̂0)[2{`(θ̂)− `(θ)}]1/2, q(θ) = j
1/2
θθ (θ̂ − θ),

where θ̂ maximizes the observed log-likelihood `(θ) = `(θ; y0) and jθθ is the observed in-5

formation −∂2/∂θ2`(θ; y)|θ̂ being the second derivative of likelihood at the maximum. The6

SLR is typically better behaved than the Wald statistic but the latter overtly includes ob-7

served information, which in turn gives an evaluation of the effectiveness of p-values. We8

assume now that the observed information ̂θθ is available from each investigation and that9

regularity is present for the individual models used.10

Thus suppose that we have ̂1 = 4 and ̂2 = 1 suggesting that the first investigation11

is providing more sensitive information. Then directly using the equivalence of ri(θ) and12

qi = ̂
1/2
i (θ̂i − θ0) we can start with a p-value pi, solve for the normal score ri, calculate the13

log-likelihood drop `i and then solve for the maximum likelihood departure θ̂ − θ0:14

We might be tempted to directly combine the likelihood drops `i but they are referring
to different maximum values. For ease of discussion we take the θ-scale to be centered at
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Investigation ̂i pi ri = Φ−1(pi) `i = −r2
i /2 θ̂i − θ0 = ri/̂

1/2
i

1 4 .145 -1.06 -.562 -.53

2 1 .087 -1.36 -.925 -1.36

θ0, so in effect θ0 = 0. The first order individual likelihood functions are then

`1(θ) = −4
2

(−.53− θ)2, `2(θ) = −1
2

(−1.36− θ)2,

giving the combined likelihood

`(θ) = −4
2

(−.53− θ)2 − 1
2

(−1.36− θ)2;

this sum of quadratics can then be rewritten relative to its maximum as

`(θ) = −5
2

(−.696− θ)2,

perhaps most easily by using weight-by-information calculations giving

θ̂ =
4(−.53) + 1(−1.36)

5
= −.696, ̂ = 4 + 1 = 5.

Now from the rewritten log-likelihood for the combined data we obtain the likelihood
drop ` = −(5/2)(−.696)2 = −1.21; we then obtain the composite signed likelihood root r
and corresponding composite p value:

r = −
√

(2× 1.21) = −1.56, p = Φ(−1.56) = .059

This composite p-value .059 is smaller than the Fisher p-value, seemingly influenced by1

the more informative first investigation. The individual log-likelihoods and the combined2

likelihood based on first order theory are plotted in Figure 2.3

(iii) An overview4

We have used first order theory to indicate how observed information can be used in the
combining of inferences from independent investigations. And observed information in turn
depends directly on how the parameter is scaled or functionally calibrated. In some parallel
sense the familiar Bayesian approach uses only observed likelihood and with independent
data adds the log-likelihoods as the modus operandi, but provides no direct role for the
use of available p-value reliability. The frequentest approach as developing in current likeli-
hood theory also adds log-likelihoods as being clearly a routine procedure, but in addition
addresses the need to calibrate the scale on which the parameter is presented; a partial indi-
cation of this need arises in the Bayesian search for an appropriate prior for analysis which
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Figure 2: The imputed likelihoods `1(θ), `2(θ) from p-values 0.145 and 0.087; and the
combined likelihood which in turn gives the p-value 0.068.

provides in turn a partial calibration of the parameter. In Section 3 we report on the third
order theory that leads to the addition of log-likelihood from independent investigations,

`(θ) = `1(θ) + `2(θ),

as one might reasonably expect. However the third order theory also leads to the use of a
weighted combination of the canonical parameterizations that are usually critical in higher
order statistical inference,

ϕ(θ) = v1ϕ1(θ) + v2ϕ2(θ),

but the weights v1 and v2 are modifications of the observed informations usually found in1

estimation theory.2

But first in Section 2, we give a brief outline of the derivation of the canonical parame-3

terizations and also an indication of the procedure for calculating the third order p-values.4

Section 4 then contains examples.5
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2 The approximate model: Third order1

The Normal distribution is the distribution of choice for most approximations in statistical2

inference: A typical departure from expectation is a sum of independent or approximately3

independent terms; This is then statistically standardized and a plug-in estimate used to4

eliminate nuisance parameters; The Central Limit Theorem gives approximate Normality5

for the sum and Slutzky’s Lemma enables the transfer of Normality to the standardized6

quantity; And rarely is there any suggestion that higher order distributional methods might7

contribute to the relevance or accuracy.8

Higher order approximations in statistics appeared first (Daniels, 1954) in a mathemat-9

ically focussed journal and then after substantial delay (Barndorff-Nielsen & Cox, 1979)10

in a more statistically oriented medium, thus gaining needed recognition. As saddlepoint11

approximations they were highly accurate but little professional interest arose for going12

beyond the familiar Normal approximations to the perhaps less transparent Fourier ap-13

proximations. A subsequent extension from density approximation to distribution function14

approximation (Lugannani & Rice, 1980) and then from cumulant generating function con-15

texts to asymptotic contexts (Barndorff-Nielsen, 1986) provided a major increase in the16

range of applicability. Approximate conditioning then became available and enabled the17

route to very general contexts; for a recent overview see Fraser et al (2010).18

The higher-order approximations do not focus on particular conventional statistics, but19

rather on approximating the full statistical model, that is, approximating the model at es-20

sentially all sample points, although in an application only the observed data point seems21

relevant or needs the calculations. The approximation is achieved using an exponential22

model pattern with many more free parameters to increase the fit. In addition, the expo-23

nential pattern allows highly accurate density and distribution function approximations and24

leads to the statistics needed for statistical inference calculations. Together this provides an25

incredibly flexible approach.26

At any data point of interest, say the observed data, the most immediate part of a27

statistical model is given by the density function at that data point, that is, by the observed28

likelihood function, usually recorded in logarithmic form as `(θ) = log f(y0; θ). Of course29

this is often ignored in frequentest statistics but in the Bayes approach is focal and exclusive.30

After the likelihood function, however, what next would be important? Well, seemingly31

model form near the observed data point, or even just the first derivative form at the32

data point, or even, as it turns out, just model form in a few critical directions, with other33

directions of no additional interest. Such critical directions are in fact immediately available34

from continuity, how a change in the parameter affects the distribution at the data point.35

For convenience, now, consider the case of independent coordinates, y1, . . . , yn and let
Fi(yi; θ) be the ith coordinate distribution function and yi(ui; θ) be its inverse, the quantile
function, where ui is the coordinate p-value or some equivalent scoring variable; the critical
or sensitivity directions are then obtained by seeing how a change in θ = (θ1, . . . , θp)′ affects
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the response variable at the observed data. For notation, let

V = (v1, . . . , vp) =
dy

dθ

∣∣
y0,θ̂0

be the derivative of the quantile vector with respect to the p coordinates of the parameter,
as evaluated at the observed data y0 and corresponding maximum likelihood value θ̂0. This
gives the direction of probability ”flow” at the observed data when the parameter is changed
at the observed maximum likelihood value; the p vectors in V record sensitivity directions,
how the different coordinates of θ move the data point; for some background detail and
discussion, see Fraser & Reid (1995, 2001). This gives the needed gradient of the log-model
at the data:

ϕ(θ) =
d log f(y; θ)

dV

∣∣
y0 ,

where the derivative is calculated in the p directions v1, ..., vp. The approximating model is
then the exponential model with the same likelihood and the same log-model gradient ϕ(θ)
as the original model; the approximating exponential model is then

g(s; θ) = exp{`(θ) + s′ϕ(θ)}h(s)

with corresponding observed data y0 = 0. For convenience we designate the preceding ex-1

ponential model as {`(θ), ϕ(θ)}. Calculation with this exponential model is straightforward2

using routine saddlepoint methods and the model provides third order inference for arbi-3

trary scalar parameters. The theory for determining the sensitivity directions is reviewed in4

Fraser et al (2010), the use of the tangent exponential model is discussed in Reid & Fraser5

(2010) and Davison et al (2006), and some general discussion may be found in Fraser et al6

(2009).7

We thus treat {`(θ), ϕ(θ)} as a definitive summary of statistical information from a8

statistical investigation, a summary that defines the exponential model from which full9

third order accurate inference is available for scalar parameters using current third order10

analysis, as summarized for example in Fraser et al (1999), Davison et al (2006) and Bédard11

et al (2008).12

3 The combining of information summaries13

(i) Two investigations14

Now consider the third order combining of information from independent investigations and
for convenience here restrict our attention to the scalar full parameter case; the vector full
parameter case has some intriguing additional features that will be discussed separately.
Let

{`1(θ), ϕ1(θ)}, {`2(θ), ϕ2(θ)}

be the representative exponential models with observed data s1 = 0, s2 = 0 from the inde-
pendent investigations with a common unknown parameter θ. Background theory for such
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combining may be found for example in Fraser & Reid (1978, 2001), and Fraser et al (2010).
The log-likelihoods for the combined model is of course the sum of the log-likelihoods for
the components; thus

`(θ) = `1(θ) + `2(θ).

For likelihood gradient a second order ancillary direction is needed in order to retain third1

order accuracy for the combined model. For this let θ̂0 be the maximum likelihood value for2

the combined model log-likelihood `(θ) just recorded. We need to determine how θ change3

at θ̂0 affects or moves the variables s1, s2 at their observed values s0
1, s

0
2..4

(ii) Sensitivity with an exponential model5

First consider a scalar exponential model and assume the smoothness and regularity that
supports the usual asymptotic analysis. For this we use the location relationship implicit in
Welch & Peers (1963). For the exponential model {`(ϕ), ϕ} the somewhat unusual quantity

z =
∫ ϕ̂

j1/2
ϕϕ (ϕ̃)dϕ̃−

∫ ϕ

j1/2
ϕϕ (ϕ̃)dϕ̃

has a fixed distribution free of the parameter ϕ to the second order; each integral represents
the constant information reparameterization and the difference gives the related observed
minus expected. The first integral can be rewritten by changing the variable from the max-
imum likelihood variable ϕ̂ to the score variable s thus producing the following alternative
form for the standardized departure z:

z =
∫ s

j−1/2
ϕϕ {ϕ̂(s)}ds−

∫ ϕ

j1/2
ϕϕ (ϕ̃)dϕ̃.

This departure relates the score variable to the canonical parameter, and in an exponential
model allows us to calculate the special derivative ds/dϕ for fixed p-value. This derivative of
variable with respect to parameter then evaluated at observed data determines a probability
flow and thus determines the conditioning and related sensitivity directions that underlie the
development of the canonical reparameterization. Accordingly by taking the total derivative
in the preceding equation we obtain

ds

dθ

∣∣
s0

= j1/2
ϕϕ {ϕ̂(s0)}j1/2

ϕϕ (ϕ)

at the observed s0. In particular, at the maximum likelihood value, this derivative of score6

with respect to parameter or maximum likelihood value of the parameter is given by a full7

information. These results are of particular interest in second order asymptotics, as the8

model can be represented equally as a location model or as an exponential model, and the9

obvious derivative in the location model case becomes the product of two root informations10

in the exponential model case.11
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(iii) Sensitivity with two investigations1

Now consider two investigations and how parameter change at the overall maximum likeli-
hood value θ̂0 affects the i-th investigation, in particular how it moves the variable si at its
observed value s0

i . We apply the above formula to each investigation and thus obtain the
change in si under change in ϕi, and then in turn the change dϕi = ϕ′i(θ̂

0)dθ in terms of
change dθ at that overall maximum likelihood value; thus

dsi = j1/2
ϕiϕi

(ϕ̂0
i )j

1/2
ϕiϕi
{ϕi(θ̂0)}ϕ′i(θ̂0)dθ = vidθ;

this gives us the rate
vi = j1/2

ϕiϕi
(ϕ̂0
i )j

1/2
ϕiϕi
{ϕi(θ̂0)}ϕ′i(θ̂0)

for the parameter effect on the individual exponential model variables si. And in turn it gives
us the sensitivity matrix V = (v1, v2), which is just a 2-vector as a row with a coordinate v1

for the first investigation and a coordinate v2 for the second investigation. The likelihood
theory then gives the composite canonical parameter for the combined exponential models
as

ϕ(θ) = v1ϕ1(θ) + v2ϕ2(θ),

or equivalently

ϕ(θ) = j1/2
ϕ1ϕ1

(ϕ̂0
1)j1/2

ϕ1ϕ1
{ϕ1(θ̂0)}ϕ′1(θ̂0)ϕ1(θ) + j1/2

ϕ2ϕ2
(ϕ̂0

2)j1/2
ϕ2ϕ2
{ϕ2(θ̂0)}ϕ′2(θ̂0)ϕ2(θ),

which is just a weighted linear combination of the component canonical parameters ϕ1(θ)2

and ϕ1(θ) as mentioned in the Introduction.3

4. Some examples.4

Example 1: Two exponential models5

Consider two scalar-parameter scalar-variable exponential models with observed data. These
models can be put in the modified form:

g1(s1; θ) = exp{`1(θ) + s1ϕ1(θ)}h1(s1), g2(s2; θ) = exp{`2(θ) + s2ϕ1(θ)}h2(s1)

with observed data (s0
1, s

0
2) = (0, 0). If ϕ1(θ) and ϕ2(θ) are affinely related then we just6

add the likelihoods and use either of the ϕ in the composite model. More generally, the7

composite model has `(θ) as the sum of the component likelihoods and has ϕ as the weighted8

sum of the component ϕ(θ) with weights as recorded in the preceding paragraph.9

Example 2: Two location models10

Consider two independent location-model investigations yielding the following tangent mod-
els

{`1(θ), ϕ1(θ)}, {`2(θ), ϕ2(θ)}
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where y1 = a1θ + σ1z1 and y2 = a2θ + σ2z2 are the quantile functions and the zi are say
standard Normal with σ’s known. The combined likelihood is

` = −1
2
(y1 − a1θ

σ1

)2 − 1
2
(y2 − a2θ

σ2

)2
.

The gradients of the individual likelihoods are

`1 =
a1θ − y1

σ2
1

, `2 =
a2θ − y2

σ2
2

.

For the sensitivities we directly use the quantile expressions rather than again verify the use
of the Welch-Peers second-order approximation; we obtain v1 = a1 and v2 = a2. We then
have

ϕ =
a1θ − y1

σ2
1

a1 +
a2θ − y2

σ2
2

a2

which is just an affine function of θ. This gives the tangent full model as {`(θ), θ} using1

the above combined likelihood and reparameterization. This is just the combined location2

model and the simplicity is based on the canonical parameter in the location Normal being3

just the location parameter of the Normal.4

Example 3: Two location models with nonlinear location structures5

Consider two independent location-model investigations as above but now with nonlinear
location structure: y1 = a1(θ) + σ1z1 and y2 = a2(θ) + σ2z2. The combined likelihood is

` = −1
2
(y1 − a1(θ)

σ1

)2 − 1
2
(y2 − a2(θ)

σ2

)2
.

For the combined ϕ(θ) we are again able to bypass the Welch-Peers sensitivity formula and
directly use the sensitivity available from the quantile expression in the model description;
we then obtain the derivatives v1 = a′(θ̂0) and v2 = a′2(θ̂0). This gives the composite
reparameterization

ϕ(θ) =
a1(θ)− y1

σ2
1

a′1(θ̂0) +
a2(θ)− y2

σ2
2

a′2(θ̂0)

which is affinely equivalent to

ϕ(θ) =
a′1(θ̂0)
σ2

1

a1(θ) +
a′2(θ̂0)
σ2

2

a2(θ),

and thus blends the two location parameterizations as based on scaling at the overall max-6

imum likelihood value.7
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Example 4: Weather modeling and different sources of information1

Different weather models can sometimes give radically different predictions (Stainforth et2

al, 2007). Various possible causes for this have been implicated, in particular the use of3

flat priors for parameters in the models. In some cases an input parameter would be based4

on how it was measured in the physical environment; and in another model the related5

input parameter could in turn come from a quite different measurement process in the6

environment. In such cases of course a flat prior for the parameter in the first model need7

not correspond to a flat prior for the corresponding parameter in the second model, thus8

giving a potential for significant differences. We do not here address this major concern9

with default priors for model simplification, but rather focus on the more specific issue of10

combining p-values when the sources of information concerning a parameter are from quite11

different measurement contexts.12

We consider a simple context where the arrival of particles is viewed as a Poisson process13

with θ particles expected per unit time interval, and we examine whether θ is less than or14

equal .1 which represents some background rate for particle arrival or whether the rate θ15

has increased above that threshold due say to the presence of a new particle, which would16

be the objective of the investigation. This is of interest in High Energy Physics with the17

search for a new particle at the Large Hadron Collider in Geneva; for some related statistical18

issues see Fraser, Reid & Wong, (2004) and Reid & Fraser (2003). We consider two very19

oversimplified investigations that yield different inference summaries.20

(i) Investigation I Let x1, . . . , x10 record the number of particles arriving in 10 consec-
utive unit time intervals and suppose the observed value of the sum Σxi is 3. The observed
log-likelihood function is

`1(θ) = 3 log θ − 10θ = 3ϕ1 − 10 expϕ1

where ϕ1(θ) = log(θ) is the canonical parameter of the model. Twice differentiating the
log-model with respect to the canonical parameter ϕ1 gives the information function ϕ1ϕ1 =
10 expφ1 = 10θ. The observed maximum likelihood value is θ̂1 = .3 and ϕ̂1 = −1.2040. A
standard p-value is obtained from the Poisson(1) distribution for the sum of 10 Poisson(.1)
values and is recorded as a mid-p-value for assessing θ = .1

p1(.1) = .3679 + .3679 + .1840 + (1/2).0613 = .9504;

the data is in the upper portion of the null distribution, indicating a higher occurrence rate21

than would be expected under the hypothesis being assessed.22

(ii) Investigation II As an alternative suppose we measure the time t to first occurrence
from some initial time point and that the observed value is t0 = 2.232. The distribution is
a standard exponential life and the observed log-likelihood is

`2(θ) = −2.23θ + log θ = −2.23ϕ2 + logϕ2
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where ϕ2 = θ is the canonical parameter of this second model. Twice differentiating the
log-model with respect to the canonical parameter ϕ2 gives the information function ϕ2ϕ2 =
1/ϕ2

2 = 1/θ2. The observed maximum likelihood value is θ̂2 = .448 and correspondingly θ̂2 =
ϕ̂2 = .448. A standard p-value is obtained as a right tail sample space value acknowledging
the different role of θ in this second investigation:

p2(.1) = exp{−2.23(.1)} = .800.

(iii) The Combined Investigations Of course we add the log-likelihoods from the com-
ponent investigations as has long been Bayes and frequentest common procedure:

`(θ) = `1(θ) + `2(θ) = 4 log(θ)− 12.23θ.

The component log-likelihoods both involve θ and log(θ) but in somewhat reversed roles.
The form of the likelihood does however still make the maximum likelihood value immedi-
ately accessible: θ̂ = 4/12.23 = .3271. Now to find the weights v1 and v2 for combing the
component ϕ1 and ϕ2. For the first, we have

v1 = j1/2
ϕ1ϕ1

(ϕ(θ̂0
1))j1/2

ϕ1ϕ1
{ϕ1(θ̂0)}ϕ′1(θ̂0) = 1.732× 1.809× 3.057 = 9.578

where the first investigation root information is evaluated at the individual and then overall
maximum likelihood values and then the derivative ∂ϕ1/∂θ = 1/θ is evaluated at the overall
maximum likelihood value. And for the second we have

v2 = j1/2
ϕ2ϕ2

(ϕ(θ̂0
2))j1/2

ϕ2ϕ2
{ϕ2(θ̂0)}ϕ′2(θ̂0) = 2.23× 3.057× 1 = 6.8172

where the second investigation root informations are evaluated at the individual and the
overall maximum likelihood values and the derivative ∂ϕ2/∂θ = 1 is unity. This gives the
combined canonical parameter

ϕ(θ) = 9.578ϕ1 + 6.8172ϕ2 = 9.578 log(θ) + 6.8172θ;

and then by substituting θ̂ = .3271 we obtain ϕ̂ = −8.473.1

The preceding gives us the third order accurate ` and ϕ for the combined investigation.
The consequent p-value is then available from the standard saddlepoint approximation for
the imputed exponential model {`(θ), ϕ(θ)}. The signed likelihood root is available imme-
diately from the combined likelihood:

r = +[2{`(.3271)− `(.1)}]1/2 = 1.981.

And the standardized maximum likelihood departure q(.1) is calculated in the canonical
parameterization ϕ. For this we need the departure

ϕ(θ̂)− ϕ(.1) = −8.473− (−21.372) = 12.90,
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as obtained by substituting the observed and expected maximum likelihood values .3271
and .1 in the expression for the combined canonical parameter ϕ(θ); and we need the root
observed information as obtained from the combined likelihood:

1/2ϕϕ (θ̂) =
{ 4

(.3271)2
.(

9.576
.3271

+ 6.817)−2
}1/2

= .1694,

where an indicated first factor is a second derivative with respect to θ and the second factor
gives rescaling to the ϕ parameterization. Then combining the preceding gives

q = .1694× 12.90 = 2.185.

We can now calculate the third order standardized departure

r∗ = 1.981− 1.981−1 log
(1.981

2.185

)
= 2.031

and then the third order combined p-value

p(.1) = Φ(2.031) = .979.

The individual highly accurate p-values 95.01% and 80.00% lead to the highly accurate1

combined value 97.9%. By contrast the simple and easy Fisher procedure works from the2

reverse values .0499 and .2000 giving .056 and thus produces the p-value 94.4%.3

In this instance the third order accurate p-value is substantially more significant in the4

convention senses. While simulations to evaluate the present third order value might easily5

be suggested we refer to very extensive validations of third order as in Bédard et al (2008)6

and Fraser et al (2009) and the references therein.7

5 Discussion8

We have developed general theory for combining p-values from statistically independent9

investigations. Foremost, of course, is the addition of log-likelihoods from component in-10

vestigations. This aspect is the credo of the Bayesian approach where it is often presented11

as if such likelihood combining was not a routine standard of central statistics, although12

often neglected. And then to go beyond the first order accuracy of likelihood-only analysis,13

we target the weighted combination of the canonical parameters which provides the central14

feature of higher order likelihood theory. The weighting is not by reciprocal variance or15

information as perhaps might be expected, but by the product of two root informations,16

one at the component maximum likelihood value and the other at the overall maximum17

likelihood value; and the informations need to be calculated in the scale of the individual18

canonical parameters.19

As future work we anticipate the development of third order tangent models for interest20

parameters and the development of appropriate combining procedures for the corresponding21

information summaries.22
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