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ABSTRACT

Birnbaum (1962a) argued that the conditionality principle (C) and the sufficiency principle (S)
implied the likelihood principle (L); he then argued (Birnbaum 1972) that C and a mathematical
equivalence principle M implied L. Evans, Fraser, and Monette (1985a) gave reference details, and
this paper gives proof that C alone implies L. The level of support by the profession for L is sharply
less than that for S or even for C; thus the paradoxical nature of these results. In this regard, we
elaborate on the Monette example (Fraser, Monette, and Ng 1984), which provides a strong case
against L. We also examine closely the various proofs linking the principles and find that S and C
can each be used operationally to suppress information otherwise deemed relevant. From another
viewpoint this says that S and C can each be used in contexts that directly conflict with the original
examples and motivations supporting them; the principles can thus be viewed as inappropriately
used, or more strongly, as invalid. In either case, the result that C and S imply L or that C implies
L can be regarded as noneffective in the context of discriminating applications. A resolution of the
apparent anomalies can be obtained by allowing the statistical model to include ingredients addi-
tional to those usually present (particularly for subsequent use with conditionality), or alternatively
by restricting the application of the principles to contexts where the conflicts would seem not to arise.

RESUME

Birnbaum (1962a) a montré que le principe de vraisemblance (L) découle du principe de condi-
tionnement (C) et du principe d’exhaustivité (S). Plus récemment, Birnbaum (1972) a démontré que
L découle de C et d’un certain principe d’équivalence mathématique (M). On peut trouver un exposé
de ces résultats dans I’article de Evans, Fraser et Monette (1985a). Dans le présent travail, on
démontre que L est une conséquence de C seulement. Tous ces résultats sont paradoxaux a cause
du peu de faveur dont jouit L dans la profession, 2 comparer 4 S ou méme a C. A ce propos, nous
reprenons un exemple de Monette (Fraser, Monette et Ng 1984) qui plaide en défaveur de L. Un
examen attentif des démonstrations qui unissent ces différents principes nous améne a conclure que
S et C peuvent tous deux étre utilisés en pratique pour supprimer de I’information précieuse. Vu d’un
autre angle, ceci revient a dire que ces deux principes peuvent étre invoqués dans des contextes qui
entrent en conflit direct avec les exemples originaux et leur motivation. On peut donc en venir a
rejeter S et C, ou tout au moins a juger qu’ils sont employés & mauvais escient. Dans les deux cas,
dire que S et C entrainent L ou que C entraine L peut étre considéré comme non avenu dans le cadre
d’applications choisies. On peut réconcilier ces anomalies apparentes en incluant certains ingrédients
nouveaux dans le modele statistique usuel, surtout si on veut faire intervenir le principe de condi-
tionnement. Une autre possibilité consiste a restreindre 1’application de ces principes aux contextes
ou les conflits ne semblent pas surgir.
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1. INTRODUCTION

We are concerned here with the general role of principles in statistical inference and
more specifically with implications among conditionality, sufficiency, mathhematical
equivalence, and likelihood as considered in Birnbaum (1962a, 1972) and in Evans,
Fraser, Monette (1985a).

Within the context of what can be called classical frequency-based statistical inference,
Birnbaum (1962a) argued that the conditionality and sufficiency principles imply the
likelihood principle. Birnbaum (1972) subsequently argued that the conditionality prin-
ciple and a mathematical equivalence principle imply the likelihood principle. The wide
acceptance of the conditionality, sufficiency, and mathematical equivalence principles and
a general rejection of the likelihood principle caused these results to be regarded as
disturbing paradoxes within the foundations of statistical inference and within the inter-
pretations of the statistical process. The results point to a clear need for an incisive
assessment of the use of statistical principles in order that the paradoxes can be understood
and the difficulties avoided.

Doubts have been expressed concerning Birnbaum’s results; for example, Fraser
(1963), Durbin (1970), Kalbfleisch (1975), and Joshi (1976). None of these counter-
arguments can, however, be regarded as providing definitive grounds for rejecting the
results. Other discussion of Birnbaum’s results may be found in Birnbaum (1962b),
Hartigan (1967), Hajek (1967), Birnbaum (1970), Basu (1975), Dawid (1977), Godambe
(1979), Barnard and Godambe (1982), and Berger and Wolpert (1984).

In this paper we present the further result that the conditionality principle alone implies
the likelihood principle. This result is developed from the material on cross-embedded
models in Evans, Fraser, and Monette (1985a).

The difference in the professional support for the conditionality as opposed to the
likelihood principle poses the central contradiction or paradox. Does direct support of
conditionality imply support of the likelihood principle? The answer is yes—but only in
he context of the standard statistical model, the ordinary formulation of the principles, and
their free and uncritical use. The details of the proofs in fact show that a distribution which
ostensibly contains no information can be used to suppress information beyond that in the
likelihood funtion, and that this happens precisely because the ordinary statistical model
contains only the space-algebra-density ingredients. Alternatively, the proofs can be
viewed as inappropriate, as they involve uses of sufficiency and conditionality in contexts
where the applications of these principles are operationally in conflict with or in con-
tradiction to their original supporting examples. Accordingly, the usual justifications for
these principles are not then available in these contexts.

Possible resolutions of the problems posed by these results lie in two directions:
acknowledging that the statistical model should contain additional elements, particularly
for its use with forms of conditionality; or revising the formulation of the principles of
sufficiency and conditionality to correct for the context invalidities indicated by the proofs.

2. THE INFERENCE BASE AND ITS CONTENT

In the pattern of classical frequency-based statistical inference, we follow Birnbaum
(1962a) and others and work from the assumption that a statistical model M has the form

where S is a set, A is a o-algebra on S, and {f, : 6 € } is a class of probability densities
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with respect to a support measure w on (S, A); for a valid application one value of 0 is the
true value.

As discussed in Fraser (1979), a valid statistical model for an application is descriptive
and exhaustive. This reflects in two fairly obvious but different ways on the assumption
concerning the model M.

The first has to do with a model being descriptive. As noted by Joshi (1976) and others,
allowing such a broad mathematical generality for M can produce technical difficulties for
some of the results in Birnbaum (1962a, 1972). However, if we place mathematical
restrictions on the components of M, these difficulties can be avoided. The interested
reader can consult Evans, Fraser, and Monette (1985b). The restrictions are founded on
structural aspects of virtually all applications, and use background material from Rudin
(1974). The mathematical restrictions are such that arbitrariness is avoided in the defini-
tion of the probability density function and will be implicitly assumed here without further
comment. We note, however, that when S and () are finite the difficulties do not arise,
and that this class of models is rich enough to illustrate all points raised in the paper.
Accordingly we generally restrict our present analysis, and take A to be the power set on
S and w to be counting measure.

The second has to do with a model being exhaustive. The physically restrictive nature
of the model (2.1) involving just a space, an algebra, and a class of densities can prevent
full modelling in an application. This has been noted in Fraser (1968), and some additions
to the model for specific contexts have been discussed in Fraser (1979). We will see that
the restrictive nature of the model (2.1) is central to resolving the paradoxes relating
conditionality and sufficiency to likelihood.

The restriction to models of the form (2.1) has been viewed as a distribution principle
of statistical inference by Dawid (1977) and Godambe (1979). By contrast, however, we
view it as concerning the given, not the process (statistical inference) from given to
conclusion.

Now consider the model M together with a data value s €S. We form the model-data
combination / = (M, s), called an inference base in Fraser (1979) and referred to as “an
instance of statistical evidence” in Birnbaum (1962a). Note that when we consider an
inference base we are assuming that the model M is a valid model (Fraser 1979) for an
application, and that the data value was the observational material from that application.

Birnbaum (1962a, 1972) restricted his attention to the class $ () of all inference bases
with parameter space (1, and we continue with this restriction. A more general consid-
eration with various () is not needed for our present discussion of the arguments from
conditionality and sufficiency to likelihood, but is discussed briefly at the beginning of
Section 2.

In relation to applications we note that $({)) operationally contains many identical
copies of any particular inference base /, corresponding to various applications in various
contexts. These various copies are of course identical and are represented formally by just
a single element / in $(£2). In the applications, however, they would typically correspond
to various true values for the parameter in ().

We note, parenthetically, that at a crucial step in Birnbaum’s presentation of a mixture
model two different inference bases must refer to the same true value for the parameter.
This technically could be a difficulty for Birnbaum’s argument. Of course there is no
intention that each inference base in $ ({2) should refer to the same true value. The solution
to the technical difficulty lies in considering identical copies of any inference base and at
the crucial step considering copies that in context refer to the same true 0; this point is
discussed later.
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Many approaches to statistics involve additional ingredients beyond the inference base,
such as prior distributions, classes of decision functions, loss functions. We view such
components as additives to the inference base and stress that our discussion here does not
involve these elements. Discussion concerning the relevance of such additives to inference
can be found in Brenner, Fraser, and Monette (1981).

Birnbaum (1962a) introduced the notation Ev(M, s) for “the evidential meaning of a
specified instance, (M, s), of statistical evidence”. In Birnbaum’s analysis the function Ev
was used only to induce the equivalence relation defined by as follows: (M,s) ~ (M',s")
if and only if Ev(M,s) = Ev(M',s").

The ultimate goal for a theory of inference in the context of $({2) is to express the
fundamental information content of an inference base / in $(£2), in other words, what the
model and data in / = (M, s) say concerning the unknown 6 in ). Accordingly, we let
cont(M, s) = cont(/) designate the collection of all logical implications and constraints
concerning the true 6 as provided by the inference base / = (M, s). From this viewpoint
the ultimate goal of statistical inference is the clear, accessible presentation of cont(/) for
each / in $(£}). While we do not attempt to determine cont in this way, we do target on
a first goal of establishing under what conditions cont(/,) = cont(/,), that is, on deter-
mining the preimage partition of the function cont on $(£2). The shift in emphasis from
meaning to logical content underlies the change in notation from Ev to cont.

3. RELABELLING

We briefly mention some relabelling issues that arise for inference bases/ = (M, s) and
for a class $({2) of all inference bases with a given parameter space ().

First we note that two inference bases, I, € $(£),) and I, € $({1,), that are identical
under a bijection g : }, — (), can in context correspond to the same physical reality, the
difference being only in the labels used to refer to the possible characteristics for the
physical reality. The equivalence of such inference bases would thus assume that the
labelling is nonsubstantive. However, as we have defined the model in Section 2, we have
that /, is different from I, (unless g is the identity function). We do not further address such
relabelling issues, but mention an invariance principle in Hartigan (1967) and the use of
equivalence classes to reduce the model in Fraser (1979).

Now consider relabelling on the sample spaces. For two inference bases I, = (M, s,)
and /, = (M,,s,), suppose there is a measureable bijection g:S, — §, such that
fols) = fﬁ(gs) for all s and 6. We note that in a suitable context the two inference bases
could be in correspondence with the same physical reality, the difference being only in the
labels attached to possible outcome values. With our present model formulation the
inference bases /, and [, are, however, different, except in the trivial identity case.

Consider the class $(2), and let R designate a relabelling principle that asserts
cont(/,) = cont(/,) if the bijection in the preceding paragraph holds. The use of this
principle establishes an equivalence relation on /({2) and removes the dependence on the
sample-space labelling. We will refer to this principle later in our discussion of the basic
statistical principles of sufficiency, conditionality, and likelihood. The principle R has
been discussed in Godambe (1979) (with designation M), and from a somewhat different
viewpoint in Fraser (1979, pp. 79f).

4. THE STATISTICAL PRINCIPLES

While the equivalence relation Ev is not formally specified by Birnbaum, he does
consider a number of possible properties of Ev that relate to principles that various groups
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of statisticians employ. These are the principles of conditionality, sufficiency, mathe-
matical equivalence, and likelihood. We record these principles from Birnbaum (1972),
with slight rephrasing, and use the notation “cont” discussed in Section 2 to emphasize our
shift in emphasis from meaning to content.

4.1. Likelihood Principle.
For an inference base I = (M, s) the likelihood function is given by
lik(J) = {kf-(s) : k € R*},

the class of positive multiples of the density function evaluated at the data point s and
treated as a function of the parameter. Note that lik(/) is formally a ray from the origin
in the vector space R®.

The likelihood principle is then given as

L: cont(/,) = cont(l,) if lik(/,) = lik(/,).

The likelihood principle treats all information beyond the likelihood function as irrelevant
information for inference concerning 6. Some support for the likelihood principle exists
among groups of statisticians, but some of those who support it also work in areas of
statistics precluded by the likelihood principle.

4.2. Sufficiency Principle.

For a model M, the map t:(S,A) — (T, B) is sufficient if the conditional model
induced by ¢ has only one distribution for each value of ¢. For the more general circum-
stances involving nondiscrete models we assume the further restrictions on the function ¢
as discussed in Evans, Fraser, and Monette (1985b).

The sufficiency principle is given as follows:

S: cont(/,) = cont(/,) if I, can be obtained from /, via a sufficiency map.

The sufficiency principle treats the information in the 6-free conditional model and its data
as being irrelevant for inference concerning 6. As one resolution of the paradoxes con-
cerning the principles we will examine a modification of this principle in Section 8.

4.3. Conditionality Principle.

For a model M, the map u : (S,A) — (U, B) is ancillary if the marginal model of u is
0-free. For the more general contexts we assume the further restrictions on u developed
in Evans, Fraser, and Monette (1985b).

The conditionality principle is given as follows:

C: cont(/,) = cont(/,) if I, is the conditional inference base given the value of an
ancillary for /.

The conditionality principle treats the information in the marginal model for the ancillary
and in the collection of conditional models, other than the one indicated by the value of
the ancillary, as being irrelevant for inference concerning 6.

A number of appealing examples exhibit this ancillarity property, perhaps the most
prominent being that involving a random choice of measuring instrument (Cox 1958, Pratt
1961). For consider a random (%, %) choice among two measuring instruments (Inst,, Inst,)
for measuring a parameter 0; the instruments support different statistical models. Persua-
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sively it seems that the measuring instrument actually used should provide the statistical
model for the inference concerning 6. For a discussion of such appealing examples for
conditionality, see Fraser (1979, §3-2).

These special examples provide the grounds for the principle C in the general context
of 1(£}). As part of a resolution of the paradoxes we will examine a modification of this
principle in Section 8.

4.4. Mathematical Equivalence

Birnbaum (1972) inroduced a principle of mathematical equivalence which functions as
a weakened version of sufficiency:

M: cont(/,) = cont(l,) if I, = (M,s,), I, = (M, s,), and fo(s,) = fe(s,) for all 0.

Given that the points s, and s, are identical within the model, except for labelling, then
the information as to which of s, and s, has occurred is viewed as irrelevant for inference
about 0.

Clearly the relabelling principle R implies M, for all we need is a mapping from S to
S that is an identity except for the interchange of the points s, and s,. A minor technical
point arises however, as the relabelling principle R nominally refers to different inference
bases /, and /, rather than a “change of sample point” within an inference base. This is
directly handled by working with a copy of say I, = (M,, s,) as discussed in Section 2.
We also note that the conditionality principle C implies both M and R, as a consequence
of Theorem 1 in Section 6.

4.5. A Note on implications among Principles.

Birnbaum viewed the principles L, S, C, as relations on /({2), that is, as subsets of
1(Q) X 1(£)). Clearly L is an equivalence relation, and so also is S given the regularity
restrictions in Evans, Fraser, and Monette (1985b). Further, we can complete C to an
equivalence relation on /(Q) if /, and I, are viewed as being equivalent under C whenever
there is an /; such that C gives equivalence between /, and /; and between /, and /;; this
was needed for the analyses in Birnbaum (1962a, 1972).

In Birnbaum’s usage and in our usage to this point, the statement “principle A implies
principle B” has the interpretation that “acceptance of principle A implies acceptance of
principle B”, which in set notation on /(2) X /({2) means A D B. By contrast we note
that ordinary equivalence-relation theory would interpret “A implies B” as A C B. Thus
we have the anomaly that implication among principles as used by Birnbaum, and by us
to this point, is the reverse of the ordinary accepted usage and could be a source of
confusion in discussions involving related material in mathematics and logic. Having
stated this, however, we continue with the nonstandard usage, as it does conform to the
manner in which these statistical principles are commonly discussed.

5. THE LIKELIHOOD PRINCIPLE

Before examining Birnbaum’s proofs and our proof that C implies L, we present an
example which, in its simplicity, clearly indicates the sharp discrepancies that can exist
between traditional, frequency-based approaches to inference and those based on the
likelihood function. This example is recorded in Fraser, Monette, and Ng (1984). Other
relevant examples are found in Stein (1962), Stone (1976), and Godambe (1982).

Consider S =Q ={1,2,...}, and let the distribution for s be uniform on
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{{6/2],20,26 + 1}, where [s] is the greatest-integer function except that [3] is taken to
be 1. The S X () probability matrix records p(s, 0) as a function of (s, 0) on S X €Q; it is
a symmetric matrix.

For a given s, the likelihood function is flat on three possible 6 values [s/2], 25, 2s + |
using the preceding definition for [ - ]. However, an examination of the probability matrix
shows that choosing the smallest of the three possible 6-values provides a confidence
procedure at level % that is, one of the three 6-values (each with the same likelihood) is
a 2-to-1 favourite. This can be seen by noting that for any 6 the two largest s-values occur
2 times out of 3, and that the same points on § X () correspond, for any s, to the smallest
of the three 0-values. Thus betting on the smallest of the three possible 8-values has a
2-to-1 success probability.

It is also possible to have an inference base with this same likelihood function, but for
which symmetry would show that inferences would allow no preferential choice of
0-value. For this, suppose that the original inference base had data value say s = 20, with
possible parameter values then in {10, 40, 41}. For the new model M’ let § = Q =
{1,2,...} and let

s =0,

_ L
p(s,8) = {0 otherwise

for 6 not in H = {10, 11,40,41}, and

|
_J|5 s€H, s#8,
ps,8) {O otherwise

for 6 in H; and let the data point be s = I1. Then lik(M,20) = lik(M', 11). For this
second model, however, there is full symmetry with respect to the possible parameter
values, and this thus precludes preferential inferences.

Examples such as this would seem to make the likelihood principle questionable for
statistical inference; for an alternative viewpoint, however, see Berger and Wolpert
(1984). Also, given that S, M, and C are frequency-basic principles, the example makes
the derivation of L from them seem highly paradoxical.

6. CONDITIONALITY IMPLIES LIKELIHOOD

6.1 Cross-Embedded Model

We now present a proof that C alone implies L in the context of a discrete sample space.
Extensions to more general spaces can be made using results in Evans, Fraser, and
Monette (1985a, 1985b).

Consider an inference base I = (M,s") and a comparison Bernoulli inference base
Iz = (Mg, h) that has the same likelihood function. We build a reference model, a
cross-embedded model M*, using copies of the inference bases / and I, and as before
consider a context in which both models have the same true value for 6.

For the sample space we use a matrix-type array with columns designated by the points
of the sample space S of / and with rows designated by the points 4, ¢ of the Bernoulli
sample space. Let p in (0, 1) be any value such that

]’——i——pfe(so) = 1.

The cross-embedded model here is a minor modification of that in Evans, Fraser, and
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Monette (1985a). For the first row let the probabilities be given by pf,(s); thus the first
row has conditional model M. For the second row let the probability in cell s° be
1 — p — pfe(s®), and in some other cell, say s', be pfy(s°):

0 !

N S PR N
h pfo(s%) pfos"y ... pfi(s)
t I = p — pfa(s) pfo(s”) ... 0

Note then that the conditional model for column s° has labels h,t and probabilities
pfo(s®)/(1 — p), 1 — pfe(s°)/(1 — p); this model is Bernoulli (pfy(s’)/(1 — p)), and
the data value is h. By choice of p this can be made equal to a copy of the Bernoulli
model M.

THEOREM 1. C implies L.

Proof. From the construction of the cross-embedded model M * we have that the first-row
indicator has probability p and is ancillary. We also have that the column-s° indicator is
ancillary with probability 1 — p. We are thus in the position of being able to use the
conditionality principle twice:

cont(M*, (h,s")) = cont(M, s"),

6.1)
cont(M*, (h,s%)) = cont(M;, h);

that is, cont(M, s°) = cont(Mg, h). It follows that for any two inference basis /, and /,
with the same likelihood function we have that cont(/,) = cont(/,) by transfer through the
Bernoulli. Q.E.D.

6.2. On Resolution of the Paradox.

A critical step in the proof of Theorem | involves the use of ancillarity for the column
indicator for s°. The structure of the model M exists in the column label sample space. The
indicators for column s° and not-(column s°) form an ancillary statistic, and the marginal
density for that ancillary is 6-free. However the general-context marginal model for that
ancillary contains the essential model-M information as its understructure. In the present
context, then, this (deemed) essential information is concealed in a context where the
justification for conditionality says there is no information. It is by this means then that
such model information is suppressed and the likelihood result obtained.

In summary we note that conditionality C allows model information to be concealed
behind a statement that there is no relevant information.

What are the underlying mechanisms in the preceding phenomenon? First, we note that
the use of the ordinary statistical model is at the core of the difficulty with Theorem 1. The
cross-embedded model, treated as an ordinary model, allows the model-M information to
be “absent” from the marginal model for the columns. Accordingly, it is absent at the end
of the proof. Concerns with the ordinary model have been expressed at various times; see
for example Fraser (1968).

Next we focus on the use of conditionality C. The marginal distribution for the column
indicator is 8-free. The full context-based column model however would contain model-M
information. Thus conditionality C is being used in a physical context where its justifi-
cation is violated. The use of a principle when its justification is contradicted is clearly,
from a general viewpoint, inappropriate.

Consider a context where a statistician who accepts C is presented with the inference
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base (M, (h, s°)) of Theorem 1. In the context of the proof there are two ancillaries, one
indexing the rows and the other a particular data point. We note that both of these
ancillaries are maximal and thus no unique maximal ancillary exists. Accordingly these
ancillaries make contradictory assertions as to which is the correct model to use for
inference. It is clear that no physical context can arise where two such conflicting ancil-
laries each correspond to an experimental or physical ancillary. Thus the use of C in the
theorem does not correspond to the physical justifications for C.

We see that the proof of the theorem proceeds precisely because of a well-known
problem with C, namely, the lack of a unique maximal ancillary. If we were to disallow
such applications, we would then not have the proof of the theorem. More formally, if we
were to require that principles operate in a noncontradictory fashion, then we would not
have the result in the theorem. But we would also not have the original unqualified
principles.

7. ON BIRNBAUM'S PROOF THAT C AND S IMPLY L

We discuss briefly the proof (Birnbaum 1962a) that C and S imply L and the later proof
(Birnbaum 1972) that C and M inply L.

7.1. The Mixture Model.

Consider the inference bases I, = (M, ,s‘,’), I, = (Mz,sg), and suppose that lik(/,) =
lik(/,). Both arguments presented by Birnbaum involve a mixture model M * in which with
probability p, the model M, applies conditionally and with probability p, (p, + p, = 1)
the model M, applies conditionally.

For the use of this mixture model we note an implicit assumption not addressed in
Birnbaum’s discussions: that the true value of 0 is the same for each of the contexts I, and
I,. For the mixture model M* to have the parameter space () rather than 1 X € it is
necessary that the two components in the mixture model have the same true value as
reference. In the present development this is easily addressed: the mixture model is defined
as above, with a common parameter 6 for the two component conditional models, and each
of these component models is viewed as a copy of the original models M, and M, (recall
the brief discussion concerning copies in Section 2).

For the proof that C and S imply L we can use any nonzero values of p, and p,. For
the proof that C and M imply L we need a specific choice for the p’s. We make this special
choice now, thus covering both proofs. Let ¢ be the positive constant such that f,;(s?) =
cfﬁ(sg) for the common likelihood points. Then letp, = 1/(1 + ¢)andp, = ¢/(1 + ¢).

Now consider the mixture model in more detail. We view the sample space as a two row
matrix-type array with first-row values labelled by the points of S, and second-row values
labelled by the points of S, and then for convenience of discussion place the value s\ in
the first row above the value sg in the second row. Let A, ¢ label the rows corresponding
to (say) the Bernoulli “heads” and “tails”.

The mixture-model probabilities for the first row are given by p,fi(s,); thus the first row
has conditional model M,. Similarly the probabilities for the second row are given by
Ppafi(s,); thus the second row has conditional model M. The marginal model for the row
label 4,1 is of course Bernoulli (p)).

Note that the rows are ancillary. Thus by conditionality principle C we have that

cont(/,) = cont(M.,s‘,’) = cont(M*,s‘,’),

7.1
cont(/,) = cont(M,z,sg) = cont(M*,sg). (.1
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The linking of the right sides is then provided by the principles S or M.

The points s} and s, have the same likelihood function and thus belong to a contour of
a sufficient statistic; it follows that the right sides of (7.1) are equal by S, and thus
cont(/,) = cont(/,). Alternatively, we note that the points s) and s have the same
probability function in M* : p,fa(s}) = p.fa(s3) by our construction. It follows then that
the right sides of (7.1) are equal by M, and thus that cont(M,) = cont(M,).

Various reservations have been raised previously concerning these results. Fraser
(1963) noted that when we consider the class of models that are transformation models,
then two inference bases that have the same likelihoods can give quite different inferences
when the transformation structure is taken into account. Of course, Birnbaum’s discussion
does not include these models, and thus this does not invalidate the results.

Durbin (1970) noted that Birnbaum’s results do not hold if we require that the inference
process proceed by making the reductions first via sufficiency to the minimal sufficient
statistic and then via conditionality. Then in the first proof we would not be able to assert
(6.1) after (6.2). On the other hand, there seems to be no compelling reason to prefer this
order of application, and thus we cannot view this as resolving the paradoxical result.

Kalbfleisch (1975, p. 255) notes that if the inference process proceeded by first condi-
tioning on an experimental ancillary, the paradoxical result would be avoided. Some
suggestions in this direction may be found in Basu (1964) and in an example discussed in
Fraser (1973). The experimental ancillary is treated as providing an instance of necessary
reduction in Fraser (1979, §3.2).

One could view the direction indicated by the experimental ancillary as providing the
fundamental resolution of the issues and paradoxes raised by Birnbaum’s arguments. With
the class $({2), however, the paradoxical result is not voided. For clearly we see that the
notion of an experimental ancillary, or structural ancillary from a different viewpoint,
requires specifications beyond that provided by $(£}), that is, it requires the specification
of a certain variable or certain subspace as having distinguished properties. A related step
in this direction is provided by the additional elements of the structural models, beyond
those in the ordinary model.

7.2. The Difficulties in the Arguments.

A critical step in the two arguments occurs when s’ and s} are taken to have the same
inference implications in the mixture model, in our case by S and in the other case by M.
The points, however, clearly label the corresponding component models M, and M.

Thus we note that sufficiency S and mathematical equivalence M allow model informa-
tion to be concealed behind a statement that there is no relevant information. This is the
essential mechanism by which L is derived from C and S and from C and M.

Alternatively, consider a context where a statistician who accepts C and S is presented
with the mixture inference base (M*, (h,s?)). Conditionality indicates that the relevant
model for inference about 8 is given by M,. On the other hand, application of S
establishes—as is clearly seen via the sufficient statistic #(x, s) = {(h, s?)} if (x, 5) €
{(h, s, (t,s}yand t(x, s) = (x,s) otherwise—that the information as to which model has
occurred is irrelevant information for inferences about 6. The statistician is presented with
contradictory recommendations from these principles. Clearly the principles interact in
such a context in a way that leads to doubts as to the validity of their application and
accordingly doubts as to the validity of the proof. Recalling the justifications of S and C,
we note that the random system used for postrandomization in § and prerandomization in
C can be taken to be one and the same in the applications of these principles in the proofs.
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It is not hard to see that such a conflict between C and S occurs when and only when
two points in a sample space give rise to the same likelihood function and yet give different
values for some ancillary variable. This is what happens in Birnbaum’s proof (1962a), and
if such applications are disallowed, then the proof fails. It is also apparent that such a
conflict exists between M and C in the Birnbaum (1972) proof.

From Section 6 we recall that conditionality C in Theorem 1 allowed model information
to be concealed behind a statement that there is no relevant information, and this was the
mechanism by which L was derived from C in Theorem 1. Further, C was used in a
context which does not correspond to its justification.

The three proofs thus have essentially the same mechanism by which information
beyond the likelihood function is eliminated. And furthermore, in each case the usage of
the particular principle runs counter to the motivation used to support the principle.

8. ALTERNATIVES

What has gone wrong? Clearly, the use of the ordinary statistical model (2.1) restricts
what information can be carried by a model, and in the context of the mixture model
actually eliminates the component-model identification. Thus the general deficiency of the
ordinary statistical model provides the mechanism for the proofs giving the paradoxical
results.

8.1. More than an Equivalence Relation.

Given the disturbing consequences of Birnbaum’s formulation of the common prin-
ciples, we examine more closely the meaning and uses of a principle. We recall that
cont(/,) = cont(/,) means that /, and /, contain the same information concerning the
parameter 6. We first question to what degree a statistical principle is merely the statement
of an equivalence.

Consider the sufficiency principle. Given / = (M, s) and a statistic ¢ sufficient for M,
the sufficiency principle as described above asserts that (M, s) and (M', ¢(s)) contain the
same information. Operationally, however, the principle S seems to imply more: that we
should replace (M,s) by (M',1(s)) for purposes of inference. For associated with any
inference base is a wealth of inference procedures that can commonly be invoked, and in
replacing (M, s) by (M, 1(s)) we are restricting this class, unless of course ¢ is trivial. In
this sense sufficiency can be viewed as an operation step towards cont, and would be more
than a mere statement of equivalence.

A further point concerns the justifications for a principle, which, after all, motivate our
using it. Necessarily, in any given context where we are going to use the principle, we
must be sure that we are using it in a way that corresponds to its justification. Otherwise
the support for the principle is being compromised. It is partly for this reason that we
introduce below two modifications for sufficiency and conditionality. A further point
arises when more than one principle is used: that the justifications for the principles be
not in conflict; for this would mean yet again that the support for the principles is
compromised.

Birnbaum did not address these aspects of the principles, only treating them as equiv-
alence relations. Accordingly his proofs, and also the present proof that C implies L, allow
the use of the principles in contexts where the justification for the principles is violated.
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Such applications are clearly inappropriate and indicate at least that some clarification is
needed of the principle, or of the application context $({2), or of both.

8.2. Modified Principles.

In an attempt to address the issues raised by the proofs, we introduce two variations on
the sufficiency principle:

S(as): As the conditional model given a sufficient statistic contains no information
concerning the parameter, cont(/,) = cont(/,) if I, can be obtained from I, via a
sufficiency map.

S(if):  If the conditional model given a sufficient statistic contains no information con-
cerning the parameter, cont(/,) = cont(,) if I, can be obtained from /, via a
sufficiency map.

For Birnbaum’s proof (1962a) we have noted that sufficiency S is used in a context
where the justification for the principle is violated. If we use the modification S(as), we
have that this modified principle is not true. If we use the modification S(if), we have that
the modified principle is not applicable. These provide two possible resolutions of the
paradox.

For Birnbaum’s proof (1972) we have noted that mathematical equivalence M is used
in a context where two points in fact are nor mathematically equivalent, that is, where
component-model identification is admitted over and above the ordinary model representa-
tion of the mixture model.

For our current Theorem 1, we propose two modifications of C paralleling those
introduced for sufficiency. For this let C(as) and C(if) be the principle C preceded by “as
the marginal model of an ancillary contains no information concerning the parameter” and
“if the marginal model of the ancillary contains no information concerning the parameter”,
respectively.

Suppose now for Theorem 1 that we replace C by one of its modifications. We note that
the principle C(as) is then seen to be false. On the other hand, for the principle C(if) we
see that the principle is not applicable. However, this modified principle C(if) may be so
qualified as to be not easily or usefully checked.

9. CONCLUDING COMMENTS

We have examined Birnbaum’s arguments from C, S, and M to L and presented a proof
from C to L. The results are paradoxical, and we have probed the sources of these
disturbing results.

From one viewpoint the restriction to an ordinary space-algebra-measure model pro-
vides the means by which information beyond the likelihood function can be made to
disappear. Some preliminary discussion concerning what is an appropriate statistical
model may be found in Fraser (1979); the present result reemphasizes these issues.

From a general viewpoint we can state that conditionality—as intended by its
justifications—does not imply likelihood. The direction proposed by Kalbfleisch (1975),
following the lead of earlier authors, provides a key to reformulating conditionality in the
context of more general models.
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At a minimum we have shown that Birnbaum’s use of S and M and our use of C in
Theorem 1 are contrary to the intentions of the principles, as judged by the relevant
supporting and motivating examples. From this viewpoint we can state that the intentions
of S and C do not imply L. This points to a more qualified approach to the basic principles.
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DISCUSSION

J.D. KALBFLEISCH, University of Waterloo

I would like to congratulate the authors on a stimulating and insightful paper. The
careful analysis and discussion throws much light on the general issues involved, and I find
myself largely in agreement with their views and conclusions.

I found the example in Section 5 to be compelling at first, but decreasingly so as 1
considered variations on the theme. I question the summary statement that, for given s,
0 = [s/2] is a 2:1 favourite. Consider an analogous example but with parameter space
truncated at 2N + 1. It is still the case that P (0 = [s/2]) = 2/3 for all 0, but the likelihood
is concentrated on O = [s/2] if s > N and identical to that obtained in Section 5 if
s = N. One should clearly be unwilling to assert, in this case, that 6 = [s/2] is a 2:1
favourite once s is observed; if s > N the odds are infinite in its favour, and if s = N the
odds would presumably be less than 2: 1 (in fact, 1:2 would appear more descriptive). For
s = N and N large, this example is very similar to the infinite case in Section 5, yet we
seem to be led to different inferences. The identifiable subsets for which the probability
statement should differ are clear in the finite case; are there similar considerations in the
infinite case which are somehow missed?

I do have reservations about the appropriateness of L and agree with the authors that the
restrictive and abstract model M lies at the root of the many derivations of L from
frequentist principles. All these derivations have a common mechanism of proof involving
the introduction of artificial mixtures and the application of principles to these mixtures
in an automatic way without, as the authors indicate, regard to their motivations. This
arbitrariness in the sample space and in experiment definition makes the emergence of a
principle like L unsurprising. An essential additive to M, in my view, is the scientific
context of the experiment. This includes many aspects: for example, its purpose, particular
decision processes which led to the experiment and random elements in the experiment
design. This was my motivation in formulating an experimental conditionality principle
with the aim of defining the experiment actually performed (see Kalbfleisch 1975). The
formulation is incomplete — perhaps necessarily so — and ambiguities may still exist, but





