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Why does statistics have two theories?

Donald A.S. Fraser

Department of Statistical Sciences
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The public image of statistics is changing, and recently the changes have been
mostly for the better, as we’ve all seen. But occasional court cases, a few con-
spicuous failures, and even appeals to personal feelings suggest that careful
thought may be in order. Actually, statistics itself has more than one the-
ory, and these approaches can give contradictory answers, with the discipline
largely indifferent. Saying “we are just exploring!” or appealing to mysticism
can’t really be appropriate, no matter the spin. In this paper for the COPSS
50th Anniversary Volume, I would like to examine three current approaches
to central theory. As we will see, if continuity that is present in the model is
also required for the methods, then the conflicts and contradictions resolve.

22.1 Introduction

L’Aquila and 300 deaths. The earthquake at L’Aquila, Italy on April 5, 2009
had been preceded by many small shocks, and Italy’s Civil Protection Depart-
ment established a committee of seismologists to address the risks of a major
earthquake. The committee reported before the event that there was no par-
ticularly good reason to think that a major earthquake was coming and the
Department’s Deputy Head even allowed that the small shocks were reducing
the seismic stresses, lowering the chances of a major quake. This gave some
reassurance to many who were concerned for their lives; but the earthquake
did come and more than 300 died. For some details, see Pielke (2011). Charges
were then brought against the seismologists and seven were sentenced to six
years in prison for manslaughter, “for falsely reassuring the inhabitants of
L’Aquila”. Part of the committee’s role had been the communication of their
findings, statistics being intrinsically involved. See Marshall (2012) and Prats
(2012).
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Viozz and 40,000 deaths. The pain killer Vioxx was approved by the US
Food and Drug Administration (FDA) in 1999 after a relatively short eight
years in the approval process and then withdrawn by the pharmaceutical com-
pany Merck in 2004 after an acknowledged excess of cardiovascular thrombotic
(CVT) events under Vioxx in a placebo controlled study. But statistical as-
sessments as early as 2000 had indicated the heightened rate of CVT events
with the use of Vioxx. Statistician David Madigan of Columbia University
rose to the challenge as litigation consultant against Merck, and a five billion
dollar penalty against Merck went to the injured and their survivors; some felt
this was a bargain for Merck, as the company had made billions in profit from
the drug. One estimate from the FDA of the number of deaths attributed to
the use of the drug was 40,000. See Abraham (2009).

Challenger and 7 deaths. The space shuttle Challenger had completed nine
successful flights but on its tenth take-off on January 28, 1986 disintegrated
within the first two minutes. The failure was attributed to the breakdown of
an O-ring on a solid rocket booster. The external temperature before the flight
was well below the acknowledged tolerance for the O-rings, but the flight was
given the go-ahead. The 7 crew members died. See Dalai and Fowlkes (1989)
and Bergin (2007).

The preceding events involve data, data analysis, determinations, predic-
tions, presentations, then catastrophic results. Where does responsibility fall?
With the various levels of the application of statistics? Or with the statistical
discipline itself with its contradicting theories? Or with the attitude of many
statisticians. We are just exploring and believe in the tools we use?

Certainly the discipline of statistics has more than one theory and these
can give contradictory results, witness frequency-based, Bayes-based, and
bootstrap-based methodology; these provide a wealth of choice among the
contraindicating methods. Here I would like to briefly overview the multiple
theories with a view to showing that if continuity as present in the typical
model is also required for the methods, an equivalence emerges among the
frequency, the bootstrap, and partially the Bayesian approach to inference.

But also, there is attitude within the discipline that tolerates the contradic-
tions and indeed affects within-discipline valuations of statistics and statisti-
cians. In recent years, an important Canadian grant adjudication process had
mathematicians and statisticians evaluating applications from mathematicians
and statisticians using standardized criteria but with a panel from mathemat-
ics for the mathematicians and a panel from statistics for the statisticians;
and it was found that mathematicians rate mathematicians much higher than
statisticians rate statisticians, even though it was clear that benefits would be
apportioned accordingly. For details, see Léger (2013). The contradictory the-
ory and the contradictory attitude provide a potential for serious challenges
for statistics, hopefully not at the level of I’Aquila, Vioxx and Challenger.
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22.2 65 years and what’s new

I did my undergraduate studies in mathematics in my home town of Toronto,
Ontario. An opportunity to study analysis and algebra in the doctoral pro-
gram at Princeton University arose in 1947. But then, with a side interest
in actuarial things, I soon drifted to the Statistics Group led by Sam Wilks
and John Tukey. A prominent theme was Neyman—Pearson theory but a per-
sistent seminar interest focussed on Fisher’s writings, particularly those on
fiducial inference which had in turn triggered the Neyman (Neyman, 1937)
confidence methodology. But also, a paper by Jeffreys (Jeffreys, 1946) kept
reemerging in discussions; it offered a default Bayes (Bayes, 1763) approach,
often but incorrectly called objective Bayes in present Bayes usage. The strik-
ing thing for me at that time was the presence of two theories for statistics
that gave contradictory results: If the results were contradictory, then simple
logic on theories says that one or the other, or both, are wrong. This latter
view, however, was not part of the professional milieu at the time, though
there was some puzzlement and vague acceptance of contradictions, as being
in the nature of things; and this may even be part of current thinking! “One
or the other, or both, could be wrong?” Physics manages to elicit billions in
taxpayer money to assess their theories! Where does statistics stand?

With a completed thesis that avoided the frequency-Bayes contradictions,
I returned to Canada and accepted a faculty position in the Department of
Mathematics at the University of Toronto. The interest in the frequency-
Bayes contradictions, however, remained and a conference talk in 1959 and
two resulting papers (Fraser, 1961a,b) explored a broad class of statistical
models for which the two approaches gave equivalent results: The location
model f(y — 0), of course, and the locally-generated group extensions, the
transformation-parameter models. Then an opportunity for a senior faculty
position in the Mathematics Department at Princeton arose in 1963, but I was
unable to accept. The concerns for the frequency-Bayes contradictions, how-
ever, remained!

Now in 2013 with COPSS celebrating its 50th anniversary, we can look
about and say “What’s new?” And even more we are encouraged to remi-
nisce! There is very active frequency statistics and related data analysis; and
there is very active Bayesian statistics; and they still give contradictory an-
swers. So nothing has changed on the frequency-Bayes disconnect: What goes
around comes around... Does that apply to statistical theory in the 65 years
I have been in the profession? Oh, of course, there have been massive exten-
sions to data exploration, to computer implementation, to simulations, and to
algorithmic approaches. Certainly we have Precision, when sought! But what
about Accuracy? I mean Accuracy beyond Precision? And what about the
frequency-Bayes contradictions in the theory? And even, indeed, the fact that
no one seems to care? And then I’Aquila, Vioxx, Challenger, and of course the
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contradictory theory? Are perceptions being suppressed? It might wind up in
a court, as with L’Aquila, an inappropriate place to address a scientific issue
but perhaps not to address a conflict coming from discipline contradictions.

WEell yes, something has changed! Now a general feeling in the milieu is
acceptance of the frequency-Bayes contradiction: It just doesn’t matter, we
are just exploring; our models and calculations are just approximations; and
we can acquire any Precision we want, even though we may not have used the
full information provided by the model, so just run the MCMC longer, even
though several million cycles only give two decimal places for some wanted
probability or confidence calculation. Or put together an algorithm for pro-
cessing numbers. Or use personal feelings as in some Bayes methods.

But even for explorations it certainly behooves one to have calibrated
tools! And more generally to know with Precision and Accuracy what a model
with data implies? Know as a separate issue quite apart from the descriptive
Accuracy of the model in a particular context, which of course in itself is
an important but separate issue! This Accuracy is rarely addressed! Indeed,
as L’Aquila, Vioxx, and Challenger indicate, a concern for Accuracy in the
end products of statistics may have an elusive presence in many professional
endeavours. An indictment of statistics?

22.3 Where do the probabilities come from?

(i) The starting point. The statistical model f(y;#) with data y° forms
the starting point for the Bayes and often the frequency approach. The
Bayesian approach calculates and typically uses just the observed likelihood
L°(0) = f(y°;0), omitting other model information as part of a Bayes commit-
ment. The frequency approach uses more than the observed likelihood func-
tion: It can use distribution functions and full model calculations, sometimes
component model calculations that provide relevant precision information,
and more.

(ii) The ingredients for inference. In the model-data context, y° is an ob-
served value and is thus a known constant, and 0 is an unknown constant.
And if a distribution () is present, assumed, proposed or created, as the
source for 6, then a second distribution is on offer concerning the unknown
constant. Probabilities are then sought for the unknown constant, in the con-
text of one or two distributional sources: One part of the given and the other
objective, subjective, or appended for computational or other reasons. Should
these distributions be combined, or be examined separately, or should the
added distribution be ignored? No over-riding principle says that distribu-
tions of different status or quality should be combined rather than having
their consequences judged separately! Familiar Bayes methodology, however,
takes the combining as a given, just as the use of only the observed likelihood
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function is taken as a given, essentially axioms in the Bayes methodology! For
a recent discussion, see Fraser (2011).

(iii) The simple location model. Consider the location model f(y—#). This
is of course rather special in that the error, the variable minus the parame-
ter, has a fixed known distributional shape, free of the parameter. A common
added or proposed prior is the flat prior 7(6) = 1 representing the translation
invariance of the model. As it stands the model almost seems too simple for
consideration here; but the reality is that this simple model exists as an em-
bedded approximation in an incredibly broad class of models where continuity
of parameter effect is present and should thus have its influence acknowledged.

(iv) Location case: p-value or s-value. The generic version of the p-value
from observed data 3° is

’o - | "y — 0)dy = F(0),

which records just the statistical position of the data relative to the param-
eter. As such it is just the observed distribution function. This p(#) function
is uniform on the interval (0,1), which in turn implies that any related con-
fidence bound or confidence interval has validity in the sense that it bounds
or embraces the true parameter value with the stated reliability; see Fisher
(1930) and Neyman (1937). In parallel, the observed Bayes survivor value is

$0(0) = /9 f(4° - a)da.

The two different directions of integration correspond to data left of the
parameter and parameter right of the data, at least in this stochastically in-
creasing case. The two integrals are mathematically equal as is seen from a
routine calculus change of variable in the integration. Thus the Bayes sur-
vivor s-value acquires validity here, validity in the sense that it is uniformly
distributed on (0,1); and validity also in the sense that a Bayes quantile at
a level B will have the confidence property and bound the parameter at the
stated level. This validity depends entirely on the equivalence of the integrals
and no reference or appeal to conditional probability is involved or invoked.
Thus in this location model context, a sample space integration can routinely
be replaced by a parameter space integration, a pure calculus formality. And
thus in the location model context there is no frequency-Bayes contradiction,
just the matter of choosing the prior that yields the translation property which
in turn enables the integration change of variable and thus the transfer of the
integration from sample space to parameter space.

(v) The simple scalar model. Now consider a stochastically increasing scalar
model f(y;#) with distribution function F'(y;#) and some minimum continuity
and regularity. The observed p-value is

p°(0) = FO(9) :/y Fy(y;H)dy=/6—Fe(y°;9)d9,
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where the subscripts to F' denote partial differentiation with respect to the in-
dicated argument. Each of the integrals records an F'(y, §) value as an integral
of its derivative — the fundamental theorem of calculus — one with respect to
# and the other with respect to y. This is pure computation, entirely without
Bayes! And then, quite separately, the Bayes survivor value using a proffered
prior 7(0) is

L) = [ n 0. .
(6) /6 (6)F, (4°:6)d0

(vi) Validity of Bayes posterior: Simple scalar model. The second integral
for p(f) and the integral for s°(6) are equal if and only if the integrands are
equal. In other words if and only if

Fy(y%:0)  Oy(8;u)

9 = — =
() F, (49 0) 00 lfixedF(y:0):y0

with an appropriate norming constant included. The second equality comes
from the total derivative of u = F(y;60) set equal to 0, thus determining
how a 6-change affects y for fixed probability position. We can also view
v(0) = Oy(0;u) /00 for fixed u as being the change in y caused by a change in
6, thus giving at 3° a differential version of the y, @ analysis in the preceding
subsection.

Again, with this simple scalar model analysis, there is no frequency-Bayes
contradiction; it is just a matter of getting the prior right. The correct prior
does depend on the data point y® but this should cause no concern. If the
objective of Bayesian analysis is to extract all accessible information from an
observed likelihood and if this then requires the tailoring of the prior to the
particular data, then this is in accord with that objective. Data dependent
priors have been around for a long time; see, e.g., Box and Cox (1964). But of
course this data dependence does conflict with a conventional Bayes view that
a prior should be available for each model type. The realities of data analysis
may not be as simple as Bayes might wish.

(vit) What’s the conclusion? With a location model, Bayes and frequency
approaches are in full agreement: Bayes gets it right because the Bayes cal-
culation is just a frequency confidence calculation in mild disguise. However,
with a non-location model, the Bayes claim with a percentage attached to
an interval does require a data-dependent prior. But to reference the condi-
tional probability lemma, relabeled as Bayes lemma, requires that a missing
ingredient for the lemma be created, that a density not from the reality being
investigated be given objective status in order to nominally validate the term
probability: This violates mathematics and science.
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22.4 Inference for regular models: Frequency

(i) Normal, exponential, and regqular models. Much of contemporary infer-
ence theory is organized around Normal statistical models with side concerns
for departures from Normality, thus neglecting more general structures. Re-
cent likelihood methods show, however, that statistical inference is easy and
direct for exponential models and more generally for regular models using an
appropriate exponential approximation. Accordingly, let us briefly overview
inference for exponential models.

(ii) Ezxponential statistical model. The exponential family of models is
widely useful both for model building and for model-data analysis. The full ex-
ponential model with canonical parameter ¢ and canonical variable u(y) both
of dimension p is f(y;¢) = exp{¢'u(y) + k(¢)}h(y). Let y° with u” = u(y°)
be observed data for which statistical inference is wanted. For most purposes
we can work with the model in terms of the canonical statistic u:

g9(u;0) = exp{€°(¢) + (¢ — &°) (u — u°) }g(u),

where (°(p) = a + In f(y°; ¢) is the observed log-likelihood function with the
usual arbitrary constant chosen conveniently to subtract the maximum log-
likelihood In f(y°; °), using ¢° as the observed maximum likelihood value.
This representative £°(¢) has value 0 at @Y, and —£%(y) relative to @ is the
cumulant generating function of u — u°, and g(u) is a probability density
function. The saddle point then gives a third-order inversion of the cumulant
generating function —¢°(¢) leading to the third-order rewrite

ek/n
o) = gy expl=r(oi) 2} o (2] 172

where ¢ = ¢(u) is the maximum likelihood value for the tilted likelihood

Upsu) = (p) + ¢’ (u—u?),
r2(p;u)/2 = £(p;u) — €(p;u) is the related log-likelihood ratio quantity,

. 0
Jop(P) = W (s U>|¢(u)

is the information matrix at w, and finally k/n is constant to third order. The
density approximation g(u;@g) gives an essentially unique third-order null
distribution (Fraser and Reid, 2013) for testing the parameter value ¢ = ¢yq.

Then if the parameter ¢ is scalar, we can use standard r*-technology to
calculate the p-value p(pp) for assessing ¢ = ¢p; see, e.g., Brazzale et al.
(2007). For a vector ¢, a directed r* departure is available; see, e.g., Davison
et al. (2013). Thus p-values are widely available with high third-order accuracy,
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all with uniqueness coming from the continuity of the parameter’s effect on
the variable involved; see in part Fraser et al. (2010b).

(iii) Testing component parameters. Now consider more generally a com-
ponent parameter ¥ () of dimension d with d < p. If ¢ is linear in ¢, then
a rotation of coordinates lets us write ¢ = (x, A\) with x equivalent to ¢ and
with say (s, t) as the corresponding canonical coordinates. Statistical inference
is available from the d-dimensional conditional distribution on the profile line
or plane LY = {(s,t°)} with parameter . This uses in an essential way the
profile likelihood ratio

r2(x;8)/2 = L7 (3 8) — €7 (x5 8) = £(s, 1% %, A) — £(5,8% X, Ay)

and related saddle point, but does need a norming constant dependent on .

But more generally when the interest parameter ¢ is non-linear and thus
curved in the initial ¢ parameterization, the conditional approach just de-
scribed is effectively unavailable and a marginal approach coming from recent
likelihood asymptotics is needed. This involves integrating out over a nuisance
parameter variable, and gives to third order the marginal distribution for an
ancillary variable under v = 1, viz.

6k/n
(2m)d/2

fm(s;0) = CXp(g— ?)

X |Jw{¢(5’to)}\*l/QU(A,\)(%,/A\wo;S,tO)P/z’ (22.1)

on LY = {(s,t°)} using rotated coordinates (x,\) and (s,t) having x = xo
first derivative equivalent to 1 = g at gb?po. Here ¢ — / is the log-likelihood
ratio at (s,t°) for the tested value 1, and the nuisance information uses
A with given ¥ = 19 and X\ derivatives for fixed ¥ = 1)y then rescaled in
terms of the ¢ parameterization at $(s,t°) as indicated by the parentheses
and described in Brazzale et al. (2007), Fraser and Reid (1993) or Davison
et al. (2013). This distribution is essentially unique if continuity of parameter
effect is respected; and it is simple, involving only the log-likelihood ratio
for 1y and information determinants. In the linear parameter case where the
conditional approach is available, this agrees with that conditional result;
but here with curvature where no easily accessible conditional approach is
available the present marginal approach is the reference standard. My only
purpose here is to report on the availability of these unique null distributions
and on the availability of p-values, for both linear and curved parameters; for
details see, e.g., Fraser and Reid (2013).

(iv) Regular statistical model. Now consider a statistical model f(y;6) with
continuity in parameter effect and general regularity. For such models we can
find, quite widely, a quantile representation y = y(6,u) as discussed briefly
for a simple case earlier. Such is widely used for simulations and is routinely
and definitively available in cases where the model has independent scalar
coordinates. Let V' (0,y) = 0y(0; u)/08 be the n x p matrix giving the vectors
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that record the effect on y of change in the parameter coordinates 01, ... ,0,;
and let V = V(éo, y0) = V0 be the observed matrix. Then V records tangents
to an intrinsic ancillary contour, say a(y) = a(y°), that passes through the
observed y°. Thus V represents directions in which the data can be viewed as
measuring the parameter, and LV gives the tangent space to the ancillary at
the observed data, with V having somewhat the role of a design matrix. For
development details, see Fraser and Reid (1995).

From ancillarity it follows that likelihood conditionally is equal to the
full likelihood L°(#), to an order one higher than that of the ancillary used.
And it also follows that the sample space gradient of the log-likelihood in the
directions V' along the ancillary contour gives the canonical parameter, viz.

0

w(0) = 5y U0:0)|
whenever the conditional model is exponential, or gives the canonical param-
eter of an approximating exponential model otherwise. In either case, ¢°(6)
with the preceding ¢(0) provides third order statistical inference for scalar
parameters using the saddle point expression and the above technology. And
this statistical inference is uniquely determined provided the continuity in the
model is required for the inference (Fraser and Rousseau, 2008). For further
discussion and details, see Fraser et al. (2010a) and Fraser and Reid (1995).

22.5 Inference for regular models: Bootstrap

Consider a regular statistical model and the exponential approximation as
discussed in the preceding section, and suppose we are interested in testing a
scalar parameter 1)(¢) = 1bp with observed data y°. The bootstrap distribu-
tion is f(y; o, 5‘%0)7 as used in Fraser and Rousseau (2008) from a log-model
perspective and then in DiCiccio and Young (2008) for the exponential model
case with linear interest parameter.

The ancillary density in the preceding section is third-order free of the
nuisance parameter A. Thus the bootstrap distribution f(y; o, 5\2}0) provides
full third-order sampling for this ancillary, equivalent to that from the true
sampling f(y; %o, A), just the use of a different A value when the distribution
is free of .

Consider the profile line L° through the data point y°. In developing the
ancillary density (22.1), we made use of the presence of ancillary contours
cross-sectional to the line L°. Now suppose we have a d-dimensional quan-
tity ¢(y, ) that provides likelihood centred and scaled departure for v, e.g.,
a signed likelihood root as in Barndorff-Nielsen and Cox (1994) or a Wald
quantity, thus providing the choice in DiCiccio and Young (2008). If ¢(y) is a
function of the ancillary, say a(y), then one bootstrap cycle gives third order,
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a case of direct sampling; otherwise the conditional distribution of y|a also be-
comes involved and with the likelihood based t(y) gives third order inference
as in the third cycle of Fraser and Rousseau (2008).

This means that the bootstrap and the usual higher-order calculations are
third-order equivalent in some generality, and in reverse that the bootstrap
calculations for a likelihood centred and scaled quantity can be viewed as
consistent with standard higher-order calculations, although clearly this was
not part of the bootstrap design. This equivalence was presented for the lin-
ear interest parameter case in an exponential model in DiCiccio and Young
(2008), and we now have that it holds widely for regular models with linear or
curved interest parameters. For a general regular model, the higher order rou-
tinely gives conditioning on full-model ancillary directions while the bootstrap
averages over this conditioning.

22.6 Inference for regular models: Bayes

(i) Jeffreys prior. The discussion earlier shows that Bayes validity in gen-
eral requires data-dependent priors. For the scalar exponential model, how-
ever, it was shown by Welch and Peers (1963) that the root information prior
of Jeffreys (1946), viz.

w(0) = oy’
provides full second-order validity, and is presented as a globally defined prior
and indeed is not data-dependent. The Welch—Peers presentation does use
expected information, but with exponential models the observed and expected
informations are equivalent. Are such results then available for the vector
exponential model?

For the vector regression-scale model, Jeffreys subsequently noted that his
root information prior (Jeffreys, 1946) was unsatisfactory and proposed an
effective alternative for that model. And for more general contexts, Bernardo
(1979) proposed reference posteriors and thus reference priors, based on max-
imizing the Kullback—Leibler distance between prior and posterior. These pri-
ors have some wide acceptance, but can also miss available information.

(i1) The Bayes objective: Likelihood based inference. Another way of view-
ing Bayesian analysis is as a procedure to extract maximum information from
an observed likelihood function L°(6). This suggests asymptotic analysis and
Taylor expansion about the observed maximum likelihood value °. For this
we assume a p-dimensional exponential model g(u; ) as expressed in terms
of its canonical parameter ¢ and its canonical variable u, either as the given
model or as the higher-order approximation mentioned earlier. There are also
some presentation advantages in using versions of the parameter and of the
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variable that give an observed information matrix jgw = I equal to the identity
matrix.

(#3) Insightful local coordinates. Now consider the form of the log-model in
the neighborhood of the observed data (u”, ¢°). And let e be a p-dimensional
unit vector that provides a direction from ¢¥ or from u°. The conditional
statistical model along the line u® + Le is available from exponential model
theory and is just a scalar exponential model with scalar canonical param-
eter p, where ¢ = @ + pe is given by polar coordinates. Likelihood theory
also shows that the conditional distribution is second-order equivalent to the
marginal distribution for assessing p. The related prior ];;/;2dp for p would use
A = A% where )\ is the canonical parameter complementing p.

(iv) The differential prior. Now suppose the preceding prior ],%de is used
on each line ¢° 4+ Le. This composite prior on the full parameter space can
be called the differential prior and provides crucial information for Bayes in-
ference. But as such it is of course subject to the well-known limitation on
distributions for parameters, both confidence and Bayes; they give incorrect
results for curved parameters unless the pivot or prior is targeted on the
curved parameter of interest; for details, see, e.g., Dawid et al. (1973) and
Fraser (2011).

(v) Location model: Why not use the location property? The appropri-
ate prior for p would lead to a constant-information parameterization, which
would provide a location relationship near the observed (y°,2°). As such the
p-value for a linear parameter would have a reflected Bayes survivor s-value,
thus leading to second order. Such is not a full location model property, just
a location property near the data point, but this is all that is needed for the
reflected transfer of probability from the sample space to the parameter space,
thereby enabling a second-order Bayes calculation.

(vi) Second-order for scalar parameters? But there is more. The conditional
distribution for a linear parameter does provide third order inference and it
does use the full likelihood but that full likelihood needs an adjustment for the
conditioning (Fraser and Reid, 2013). It follows that even a linear parameter in
an exponential model needs targeting for Bayes inference, and a local or global
prior cannot generally yield second-order inference for linear parameters, let
alone for the curved parameters as in Dawid et al. (1973) and Fraser (2013).

22.7 The frequency-Bayes contradiction

So is there a frequency-Bayes contradiction? Or a frequency-bootstrap-Bayes
contradiction? Not if one respects the continuity widely present in regular
statistical models and then requires the continuity to be respected for the
frequency calculations and for the choice of Bayes prior.
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Frequency theory of course routinely leaves open the choice of pivotal
quantity which provides the basis for tests, confidence bounds, and related
intervals and distributions. And Bayes theory leaves open the choice of the
prior for extracting information from the likelihood function. And the boot-
strap needs a tactical choice of initial statistic to succeed in one bootstrap
cycle. Thus on the surface there is a lot of apparent arbitrariness in the usual
inference procedures, with a consequent potential for serious contradictions.
In the frequency approach, however, this arbitrariness essentially disappears
if continuity of parameter effect in the model is respected, and then required
in the inference calculations; see Fraser et al. (2010b) and the discussion in
earlier sections. And for the Bayes approach above, the arbitrariness can dis-
appear if the need for data dependence is acknowledged and the locally based
differential prior is used to examine sample space probability on the parameter
space. This extracts information from the likelihood function to the second
order, but just for linear parameters (Fraser, 2013).

The frequency and the bootstrap approaches can succeed without arbi-
trariness to third order. The Bayes approach can succeed to second order
provided the parameter is linear, otherwise the prior needs to target the par-
ticular interest parameter. And if distributions are used to describe unknown
parameter values, the frequency joins the Bayes in being restricted to linear
parameters unless there is targeting; see Dawid et al. (1973) and Fraser (2011).

22.8 Discussion

(i) Scalar case. We began with the simple scalar location case, feeling that
clarity should be present at that transparent level if sensible inference was to
be available more generally. And we found at point (ii) that there were no
Bayes-frequency contradictions in the location model case so long as model
continuity was respected and the Bayes s-value was obtained from the location
based prior. Then at point (v) in the general scalar case, we saw that the p-
value retains its interpretation as the statistical position of the data and has
full repetition validity, but the Bayes requires a prior determined by the form
of the model and is typically data dependent. For the scalar model case this
is a radical limitation on the Bayes approach; in other words inverting the
distribution function as pivot works immediately for the frequency approach
whereas inverting the likelihood using the conditional probability lemma as
a tool requires the prior to reflect the location property, at least locally. For
the scalar model context, this represents a full vindication of Fisher (1930),
subject to the Neyman (1937) restriction that probabilities be attached only
to the inverses of pivot sets.

(i1) Vector case. Most models however involve more than just a scalar pa-
rameter. So what about the frequency-Bayes disconnect away from the very
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simple scalar case? The Bayes method arose from an unusual original exam-
ple (Bayes, 1763), where at the analysis stage the parameter was retroactively
viewed as generated randomly by a physical process, indeed an earlier per-
formance of the process under study. Thus a real frequency-based prior was
introduced hypothetically and became the progenitor for the present Bayes
procedure. In due course a prior then evolved as a means for exploring, for
inserting feelings, or for technical reasons to achieve analysis when direct meth-
ods seemed unavailable. But do we have to make up a prior to avoid admitting
that direct methods of analysis were not in obvious abundance?

(#41) Distributions for parameters? Fisher presented the fiducial distribu-
tion in Fisher (1930, 1935) and in various subsequent papers. He was criticized
from the frequency viewpoint because his proposal left certain things arbitrary
and thus not in a fully developed form as expected by the mathematics com-
munity at that time: Welcome to statistics as a developing discipline! And he
was criticized sharply from the Bayes (Lindley, 1958) because Fisher proposed
distributions for a parameter and such were firmly viewed as Bayes territory.
We now have substantial grounds that the exact route to a distribution for a
parameter is the Fisher route, and that Bayes becomes an approximation to
the Fisher confidence and can even attain second-order validity (Fraser, 2011)
but requires targeting even for linear parameters.

But the root problem is that a distribution for a vector parameter is inher-
ently invalid beyond first order (Fraser, 2011). Certainly in some generality
with a linear parameter the routine frequency and routine Bayes can agree.
But if parameter curvature is allowed then the frequency p-value and the Bayes
s-value change in opposite directions: The p-value retains its validity, having
the uniform distribution on the interval (0, 1) property, while the Bayes loses
this property and associated validity, yet chooses to retain the label “proba-
bility” by discipline commitment, as used from early on. In all the Bayes cases
the events receiving probabilities are events in the past, and the prior probabil-
ity input to the conditional probability lemma is widely there for expediency:
The lemma does not create real probabilities from hypothetical probabilities
except when there is location equivalence.

(iv) Owverview. Most inference contradictions disappear if continuity
present in the model is required for the inference calculations. Higher order
frequency and bootstrap are consistent to third order for scalar parameters.
Bayes agrees but just for location parameters and then to first order for other
parameters, and for this Bayes does need a prior that reflects or approximates
the location relationship between variable and parameter. Some recent prelim-
inary reports are available at http://www.utstat.toronto.edu/dfraser/
documents/ as 260-V3.pdf and 265-V3.pdf.
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